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In this paper, we proposed a multiscale and bidirectional input model based on convolutional neural network and deep neural
network, named MBCDNN. In order to solve the problem of inconsistent activity segments, a multiscale input module is
constructed to make up for the noise caused by filling. In order to solve the problem that single input is not enough to extract
features from original data, we propose to manually design aggregation features combined with forward sequence and reverse
sequence and use five cross-validation and stratified sampling to enhance the generalization ability of the model. According to
the particularity of the task, we design an evaluation index combined with scene and action weight, which enriches the
learning ability of the model to a great extent. In the 19 kinds of activity data based on scene+action, the accuracy and
robustness are significantly improved, which is better than other mainstream traditional methods.

1. Introduction

The research of using sensors for human activity recognition
existed as early as 30 years ago [1, 2]. With the advent of indus-
try 4.0 era, new opportunities and challenges are filled. Human
activity recognition research has attracted much attention due
to its advantages in intelligent monitoring system, medical care
system [3], virtual reality exchange, smart homes [4], anomaly
detection [5], and other fields, as well as the ability to provide
personalized support and interconnection for different fields.
At present, human activity recognition is mainly realized by
two ways: one is through indoor and outdoor sensors, and
the other is some wearable devices [6–8]. The former is limited
by the need to be placed in a fixed location, and the inference of
activity completely depends on the user’s interaction with these
devices. For example, if the user is not within the sensor range
or the object moves freely in the scene to introduce varying
degrees of occlusion, the activity cannot be recognized. Sec-
ondly, the environment is dynamic and complex, such as the
weather and sunlight in the background, which also increases
the difficulty of recognition. The latter also has many defects,
such as high cost and inconvenient carrying.

Smart phones have many advantages in the field of
human activity recognition [9]. Due to its small size and
convenient portability, the built-in sensors are becoming
more and more diverse, and specific types of activities can
be effectively classified through the information of multiple
sensors. For example, the built-in accelerometers of smart
phones [10, 11] can describe human actions, such as stand-
ing, walking, and running [12, 13]. Similarly, by collecting
audio information from the phone microphone [14], the
user’s activities can be identified, such as listening to music,
speaking, and sleeping [15, 16], running rhythm can be
monitored [17], and user respiratory symptoms are related
to sound, such as sneezing or coughing [15]. Users’ emotions
can also be inferred from various sensor data, including Wi-
Fi, accelerometer, compass, and GPS [15, 18–20]. The activ-
ity identification system based on mobile devices can be per-
ceived from personal perception to group in multiscale [21].
Generally speaking, the quality of data collected by each
built-in sensor of a smart phone is also different. For exam-
ple, the gyroscope of smart phone can sense the change of
the movement direction of the person holding the phone,
while the acceleration sensor of smart phones can reflect

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 7374177, 9 pages
https://doi.org/10.1155/2021/7374177

https://orcid.org/0000-0003-4704-9189
https://orcid.org/0000-0001-5338-0471
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7374177


the speed change of the person holding the phone. There-
fore, by fusing the real-time data obtained by the various
sensors of the smart phone, the final data obtained has a cer-
tain heterogeneity. These data can be widely used in human
activity recognition and have broad market and social value
in health care, smart home, financial fraud, and other sce-
narios. At the same time, the user does not need to carry
additional equipment with sensors in the process of collect-
ing data. In terms of human activity recognition, using smart
phones as research equipment has become the preferred
equipment for researchers.

We study the indoor and outdoor human activity recog-
nition, redefine activity as the combination of scene and
action, and achieve real-time monitoring of users’ indoor
and outdoor activity through smart phones.

(1) From the study of recognition simple activity to recog-
nition complex activity, activity is defined as the com-
bination of scene and action, which has 19 different
activities. The aggregation feature is designed manu-
ally to help automatic feature extraction and realize
more abundant feature information extraction

(2) A multiscale bidirectional sequence fusion model
(MBCDNN) is designed to recognition complex
activity. The experiment result shows that the model
has higher advantages than the current popular net-
work model

2. Related Work

2.1. Dataset Collected by Smart Phone. In the research of
human activity recognition, the data collected by a smart
phone through sensors is particularly important. Some of
these benchmark datasets have been released to the public.
In studies, such as Roggen et al.’s [22], using 72 environmen-
tal and body sensors, a set of daily activities were recorded in
the sensor rich environment. Similarly, the other researchers
have provided dataset, such as Tapia et al. [23] and Hase-
gawa[24]. In 2012, WISDM Lab released wisdm dataset
[25], the device for collecting data is an Android smart-
phone, and the number of users participating in data collec-
tion is 29. Users participating in data collection are required
to put the smartphone in the front trouser leg pocket, which
is more in line with the real-life scene. Users need to com-
plete a series of actions, including walking, jogging, going
up and down the stairs, standing, and sitting. In 2013, the
University of Genoa provided UCI-HAR dataset [26] to
record the daily activity of each user, including standing, sit-
ting, walking, going up and down the stairs, and lying down.
With the help of the acceleration sensor and gyroscope of
the smart phone, the data collection device collects 30 users,
aged from 19 to 48, and each user is instructed to wear a
smart phone at the waist. Each user needs to carry out two
experiments. In the first experiment, the smart phone is
worn on the left side of the waist, and in the second experi-
ment, the user can freely choose the position. In 2016,
Vavoulas and others offered MobiAct dataset [27], Mobiact
data is an extension of the MobiFall data set published in

2014 and was initially created with fall detection in mind.
This dataset contains four different types of falls and nine daily
activities, such as walking, standing, and going up and down
the stairs. The number of users collected is 57, including 42
men and 15 women. The users are between 20 and 47 years
old, including more than 2500 experiments, all from the col-
lection of smart phone sensors. In the same year, Hnoohom
and others provided the UniMiBSHAR dataset [28]. In the
authors’ opinion, the data collected by smart phone sensors
are rarely public, and public data often contain samples of
users with too similar characteristics and lack of specific
information. They proposed a new dataset, which collected
daily activities of users mainly including simple activity such
as walking, standing, running, and sitting down and complex
activity such as washing dishes, combing hair, and preparing
sandwiches. The dataset contains 11771 human activities
and 30 users aged between 18 and 60, of which 24 are women
and 6 are men. It is worth noting that it includes more elderly
people. In 2019, Beijing University of Posts and Telecommu-
nications provided the Sanitation dataset [29]. The user receiv-
ing the acquisition needs to wear a smart watch at the wrist.
The user selected according to the demand is the sanitation
worker. According to the research requirement, sanitation
workers were invited as a user, in which 7 kinds of daily life
action data that were collected included walking, running,
sweeping with a big broom and sweeping with a small broom,
cleaning, and taking out garbage.

2.2. HAR Based on AI. Reference [30] collected data from 10
volunteers (4 women and 6 men) through four sensors of
smart phones. The volunteers are between 24 and 30 years
old. Volunteers are required to carry smart phones to com-
plete the specified actions, standing, walking, walking slowly,
go upstairs and downstairs and cycling. In order to eliminate
errors, discard the data of the first 2 seconds and the second
after the volunteer starts the action, and select 50050 data for
each action. They processed data using median filtering, data
normalization, sliding window segmentation, feature selec-
tion, and optimal feature subset selection are performed on
the data. Also, they used the idea of fusion. The traditional
random forest (RF) [31], support vector machine (SVM)
[32], k-nearest neighbor (KNN) [33], and naive Bayes classi-
fication algorithm (NBC) [34] are fused. The accuracy was
99%, which is 6% higher than that of single model

With the development of artificial intelligence, deep learn-
ing has become a favorite choice of researchers. Reference [35]
used smart phone sensors to collect 6 different activities from
30 volunteers, including walking, going upstairs and down-
stairs, standing, lying flat, and sitting. The collected data are
preprocessed by noise filter, and 2.56 seconds are used as
sliding window. A total of 7352 training data and 2947 test
data are divided. Three design optimization schemes were
proposed to improve the accuracy of human activity recogni-
tion: (1) Scheme 1—combining three sensor data; (2) Scheme
2—based on three-dimensional convolution; and (3) Scheme
3—based on difference optimization convolution kernel. By
comparing the results of the experimental scheme, it was
found that the accuracy of the first scheme is the highest, with
an average accuracy of 97.50%.
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Due to the complexity of human activities, there are few
researches on excessive activities in the past, such as sitting-
standing. Reference [36] proposed a hierarchical recognition
model based on support vector machine and random forest,
studying 4 kinds of excessive activities and 10 kinds of daily
life activities. The data preprocessing adopted filtering denois-
ing and acceleration separation, and the feature extraction
adopted the time domain and frequency domain of features,
in which the frequency domain uses a total of 118 features,
such as Fourier realization, mean, variance, and standard devi-
ation. In the self-collected data, support vector machine and
random forest hierarchical recognition model achieved an
average accuracy of 98.1%. LSTM is good at processing time
series data. The author used bidirectional LSTM network for
activity recognition research and achieved 94.1%, 98.5%, and
98.8% accuracy in UCI-HAR, WISDM, and self-collected
data, respectively.

3. Method

3.1. MBCDNNModel.Human activity data collected based on
scenes+actions are more complex. Since the collected data is
time series data, we send the data of the forward sequence
and the reverse sequence to the MultiConv2D module for
training. Due to the different activity duration, the collected
data length is not consistent. Different experiments in the past
have segmented the data, trying to find the best segmentation
length [15, 37], but in order to ensure the consistency of the
sequence fragments in the division process, the filling strategy
is adopted. The obvious problem is that the noise interference
is increased. Therefore, we introduce the activity convolution
module ComplexConv1D, which uses a series of designed
one-dimensional convolution kernels to perform convolution
operations on forward and reverse sequences to extract diver-
sified features; the interference caused by noise is largely
reduced. In addition to the forward and reverse sequences as
input to the model, we also added a series of aggregation

features, including three types of features: time domain, fre-
quency domain, and time-frequency domain, which perform
feature extraction on the original data, these extracted aggrega-
tion features are input into the deep neural network (DNN)
module, and this is verified to be effective. Our MBCDNN
model is composed of MultiConv2D and ComplexConv1D
and DNN modules. Finally, the output results of all modules
are connected, and the classification result is obtained through
the fully connected layer. The overall structure of the model is
shown in Figure 1.

3.1.1. MultiConv2D and ComplexConv1D. The task of the
MultiConv2D module is to receive the input of the forward
sequence and the reverse sequence, followed by four convolu-
tional layers (Conv2D); the kernel size is 3 × 3; the number of
convolution channels is 64, 128, 256, and 512, respectively; the
activation function is ReLU. Each layer of convolution passes
through the Batch Normalization (BN) layer, then passes
through the pooling layer. This module extracts the feature
of actions and scenes through a series of convolution opera-
tions. The formula for two-dimensional convolution is as
follows:

convx,y = f 〠
k×k

i

wi × vi

 !
, ð1Þ

where x, y are the spatial coordinates (x, y) of the input data
sample, f is the activation function, the weight of the convolu-
tion kernel isw, the size of the convolution kernel is k × k, and
the sample data value is v. The convolution process is the sum
of the inner product of the weight of the convolution kernel
sliding on the value corresponding to the sample data.

The task of the ComplexConv1D module is to extract the
features of MultiConv2D from multiple angles when the
sequence length is inconsistent, so as to reduce the impact
of noise on training. When the input vector dimension is
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Figure 1: MBCDNN model.
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ðN , Cin, LinÞ, the output vector dimension is ðN , Cout, LoutÞ.
As shown in

Lout =
Lin + 2 × p − d × k − 1ð Þ − 1

s
+ 1

� �
, ð2Þ

where Lin, Lout represent the length of the input and
output vectors, respectively, p represents the padding size,
d represents the distance between the core points, also
called à trous algorithm [38], k represents the size of the
convolution kernel, and s represents the convolution stride.
To illustrate the relevant parameters of the model, Table 1
lists the parameters of MultiConv2D and ComplexConv1D
in detail. The experimental process of the MBCDNN model
is shown in Figure 2. The data processing, generate dataset,

and aggregation characteristic part will be described in this
section; the rest will be described in the next section.

3.2. Data Processing. The data collected by the smart phone
sensor is time series data; for this reason, the research and
design collection scenes are divided into 3 categories: walking,
standing, sitting, and lying; each scene collects 6 kinds of
actions, playing games (mobile game), watching short videos,
watching live broadcasts or watching long videos (similar to
news broadcasts), browser query or viewing browser content,
typing chat or other typing, and other actions (WeChat calls):
6 types of actions. At the same time, an action that is regardless
of scene is added, the activity of user A “handing the phone” to
user B. We redefine activity as a combination of scene+action,
so there are 19 different activities in total. A total of 7292
samples were collected. 80% of the overall data were randomly
selected as the training set and 20% as the test set. The sample

Table 1: MultiConv2D & ComplexConv1D network parameters. Each layer of convolution passes through the BN layer; the selected
activation function is ReLU.

MultiConv2D ComplexConv1D
Layer name Kernel size, filters/stride, pad Layer name Kernel size, filters/stride, pad

Conv_1 MaxPooling 3 × 3, 64/1, same 2 × 2/2 Conv1d_1 1 × 7, 128/1, same

Conv_2 3 × 3, 128/1, same Conv1d_2 1 × 5, 256/1, same

Conv_3 3 × 3, 256/1, same Conv1d_3 1 × 3, 128/1, same

Conv_4 3 × 3, 512/1, same GlobalAveragePooling1D

GlobalAveragePooling2D

Data
preprocessing

Generate
dataset

Aggregation
characteristic

Model training

Model
optimization

Model test

Optimization

Model
compare

Yes

No
End

Where the
parameters
are optimal

Figure 2: Experimental flowchart of MBCDNN.
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categories are unbalanced. The proportion of standing playing
games is the most, and the proportion of standing brush video
is the lowest. Table 2 describes the situation of each activity.
Figure 3 shows the proportion of various activities types of col-
lected data.

3.3. Generated Dataset. Use the two built-in sensors of the
smart phone: gravity sensor and acceleration sensor to col-
lect data. The volunteers who collected the data were com-
posed of 5 men and 5 women, aged between 20 and 55
years. During the collection process, the volunteers can com-
plete 6 types of actions according to each scene (see Table 2
for details). The collected data includes gravitational acceler-
ation, and nongravitational acceleration data and the action
segment are divided by the accelerometer count; every 5
seconds is regarded as a segment. The basic attributes of
the collected dataset are described in Table 3. A total of 19
actions were collected based on smart phone sensors. A total
of 7292 samples were collected. 80% of the overall data were
randomly selected as the training set and 20% as the test set.

3.4. Aggregation Feature. The data is time series data, which
needs to be divided into activity segments. Each activity
segment data contains 60 pieces of data, which can be used
for feature aggregation. Aggregation time series data features
generally select three types of features: time domain,
frequency domain, and time-frequency domain; they have
been verified to be effective. In time domain, the independent
variable is time, and the dependent variable is the change of
the signal, which describes the value of the signal at different
moments. In frequency domain, the independent variable is
the frequency, the dependent variable is the amplitude of the
signal, and it describes the spectrogram. Among them, the
sample features that can be extracted in the time domain
include variance, standard deviation, mean, and skewness.
The median frequency, average frequency, and energy spectral
density of sample features can be extracted in the frequency
domain. The specific calculation formula for sample feature
is shown in Table 4.

4. Experiment and Analysis

4.1. Evaluation Index. Human activity recognition based on
scenes and actions cannot simply use the recognition accu-
racy to evaluate the quality of the model. Since the activity
involves actions under the scene, predicting the scene also

has a certain value. For this reason, we designed an evalua-
tion index that comprehensively considers the weight of
the scene and the action: acc combo, which is more condu-
cive to the recognition efficiency of the real reaction model.
The specific rules of the evaluation index are that if the activ-
ity of handing over the mobile phone is predicted to get 1

Table 2: Predefined activity based on smart phone sensors.

Scene Action Activity description

Walking/standing/sitting
and lying

Playing games User plays the game in this scene (mobile game)

Watching short videos User watches short videos in this scene

Watching live broadcasts or watching long
videos

User watches live broadcast or long videos in this scene
(similar to news broadcast)

Browser query or viewing browser content User views browser content in this scene

Typing chat or other typing User types text in this scene

Other actions User makes WeChat calls in this scene, etc.

Regardless of scene Hand phone User hands the phone to another user

241, 
3.30%

676, 9.27%

409, 5.61%

332, 4.55%

435, 5.97%

343, 4.70%

742, 10.18%

236, 
3.24%

328, 4.50%287, 3.94%

236, 
3.24%

449, 6.16%

734, 10.07%

291, 3.99%

126, 1.73%

478, 6.56%

345, 4.73%

259, 3.55%

345, 4.73%

Proportion of activity categories

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19

Figure 3: Proportion of activity categories. Labels 1 to 6,
respectively, represent six types of actions in scene walking:
playing games, watching short videos, watching live or long
videos, browser query or viewing browser content, typing chat, or
other typing and other actions. Labels 7 to 12 represent six types
of actions in scene standing. Labels 13 to 18 represent six types of
actions in sitting and lying. Label 19 represents the action of
delivering the mobile phone alone.

5Wireless Communications and Mobile Computing



point, the prediction error is 0 point. We hope to predict the
correct action to get a relatively high positive feedback in the
model evaluation. If it is not the activity of handing the
phone, the scene+action is completely correct to get 1 point,
only the correct scene is predicted to get 1/7 point, and only
the correct action is predicted to get 1/3 point; if the scene
+action are not correct, the score of acc combo is 0 points.
The acc combo is expressed by

acccombo =
∑N

i=1S ið Þ + A ið Þ
N

, ð3Þ

where N represents the total number of prediction samples,
S represents the score of the predicted scene, and A repre-
sents the score of the predicted action.

4.2. Model Train and Optimization. Through continuous
experimentation to explore, the model is upgraded step by
step and finally proposed a Activity Bidirectional input
Convolution and Deep Neural Network model: MBCDNN,
and the effect is the best among all comparative experiments.
The data collected by the smart phone sensor contains com-
ponents of gravitational acceleration (accx, accy, accz) and
components that do not contain gravitational acceleration
(accxg, accyg, acczg) (see Table 3). In order to increase the
effect of the model, as shown in formulas (4) , the compo-
nents are combined into a vector.

mod = accx2 + accy2 + accz2,

mod g = accxg2 + accyg2 + acczg2:
ð4Þ

Table 3: Data attribute description table.

Num Attribute name Data type Data description

1 fragment_id int Activity fragment ID

2 activity_id int Activity ID

3 time_point float Acquisition time point (ms)

4 accx float X-axis component without gravitational acceleration (m/s2)

5 accy float Y-axis component without gravitational acceleration (m/s2)

6 accz float Z-axis component without gravitational acceleration (m/s2)

7 accxg float X-axis component containing the acceleration of gravity (m/s2)

8 accyg float Y-axis component containing the acceleration of gravity (m/s2)

9 acczg float Y-axis component containing the acceleration of gravity (m/s2)

Table 4: Calculation of time and frequency domain features.

Feature Calculation formula Meaning

Mean �x = 1
n
〠
n

i=1
xi The mean of the activity segment data

Variance σ = 1
n
〠
n

i=1
xi − �xð Þ2 The variance of activity segment data

Standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
xi − �xð Þ2

s
The standard deviation of the activity segment data

Skewness
∑n

i=1 xi − �xð Þ3
n − 1ð Þσ3 The skewness of the activity segment data

Quartile deviation Q3 −Q1 The difference between the third quartile and the first quartile

Power spectral density Ps wð Þ = FT wð Þj j2
T , FT wð Þ

This is the Fourier transform formula
Power in unit frequency band

Median frequency

Ð∞
0 f P fð Þⅆ fÐ∞
0 P fð Þⅆ f Median of power spectral density

Average frequency

ð∞
0
P fð Þⅆ f Mean value of power spectral density

Energy spectral density G fð Þ = FT wð Þj j2 Signal energy in unit frequency band
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Take the component andmod,mod g as the input data of
the model. To reduce model deviation and overfitting prob-
lems, 5-fold cross-validation and stratified sampling are used
to ensure that the proportions of different categories in each
compromise are equal. This section takes the MultiConv2D
module in the MBCDNN model as a baseline. The optimiza-
tion methods of the model include RMSProp, adding the BN
layer after the convolutional layer, GlobalAveragePooling2D,
and combining the input of the forward sequence and the
reverse sequence. Among them, adding a reverse sequence to
the input part has the best effect. The analysis of the reasons
shows that the diversified input facilitates the model to more
fully extract the feature of activity. The improvement of the
specific experimental model is shown in Table 5. In the
preliminary work, it is found that the effect of model fusion
is better than the effect of single model. So we optimized the
model from the following aspects:

(1) Combine the input of the MultiConv2D module with
the input of the DNNmodule. The input model data is
time series data and aggregation feature data. The time
series data is input to the MultiConv2D module, and
the feature data is input to the DNN module

(2) For the input part, due to the existence of various scales
of activity sequence fragments, a single padding length

cannot be used, and for too long or too short frag-
ments, interception or padding will bring a lot of noise,
so we built a activity module: ComplexConv1D, to
make up for the impact of noise and enrich the model
learning ability

(3) Data enhancement (noise enhancement, cubic spline
interpolation) increases the generalization ability of
the model

Table 6 shows the model optimization process.
According to Tables 5 and 6, the effect of multiple

models is obviously better than that of single model. Adding
reverse sequence and aggregation feature data to the input
data has significantly improved the score. Data enhancement
is also an important method for score improvement. The
addition of activity modules has further improved the score.

4.3. Model Comparison. We improve our model based on the
idea of convolutional neural network and deep neural network
and propose the idea of activity and multi-input; after recog-
nizing 19 kinds of activities, the effect of the algorithm model
in this paper is fully proved. Comparative experiments include
ensemble learning, deep learning single model, single input
model, and multiple input model. Table 7 shows the experi-
mental comparison results of different models.

Table 5: Parameter exploration process.

Version Model Input Modify parameter acc_combo

1 MultiConv2D Origin data Adam、GlobalMaxPooling2D 0.730

2 MultiConv2D Origin data Modify the optimization parameter to rmsprop 0.746

3 MultiConv2D Origin data Add the BN layer to the convolution layer 0.786

4 MultiConv2D Origin data GlobalAveragePooling2D 0.792

5 MultiConv2D Forward and reverse sequence — 0.812

Table 6: Model optimization process.

Model Input Optimized content acc_combo

MultiConv2D+DNN Forward, reverse, and aggregation feature Added reverse sequence and aggregation features 0.846

MultiConv2D+DNN Forward, reverse, and aggregation feature Data enhance 0.862

MBCDNN Forward, reverse, and aggregation feature Activity module 0.887

Table 7: Comparison results of different model.

Model Input acc_combo

Lightgbm Aggregation feature data 0.774

DNN Aggregation feature data 0.713

MCNN Forward and reverse sequence 0.834

CNN Forward and reverse sequence 0.812

ResNet Forward sequence 0.828

VGG19 Forward sequence 0.435

Bidirectional LSTM Forward and reverse sequence 0.708

MBCDNN Forward, reverse and aggregation feature 0.887
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It can be seen from Table 7 that the scores of the multi-
input models are all above 0.8. The MBCDNNmodel we pro-
posed has a maximum score of 0.887, explaining that input of
multiple conversion methods of data, data enhancement, and
model fusion can obtain better scores, which further shows
that our model has a good activity recognition effect.

5. Conclusions

Aiming at the lack of complex action and different scene
existing in human activity recognition, we use a smart phone
as the carrier equipment and propose complex human activ-
ity recognition based on scene+action, by introducing the
forward sequence and reverse sequence, as well as aggrega-
tion features to help the model with more activity features.
However, as the time series data, a truncated or filling
strategy will introduce unnecessary noise; for this reason,
we propose a ComplexConv1D module to compensate for
the impact of unnecessary noise. At the same time, in order
to more comprehensively evaluate the performance of the
model under a specific activity, we define an evaluation
index that combines the weight of the scene and the action.
Through experimental comparison and analysis, the perfor-
mance of our model has indeed been improved, which
proves the effectiveness of our method. After all this job
we have done, it still needs a lot of things to do on human
activity recognition. We believe there will be a more out-
standing work in the future.
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