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Stochastic frontier model is an important and effective method to calculate industry efficiency. However, when dealing with
temporal and spatial data from the industry, it is difficult to accurately calculate the industrial production efficiency due to the
influence of spatial correlation and time lag effect. If the traditional spatial statistical method is used, the setting method of
spatial weight matrix is often questioned. To solve this series of problems, one possible idea is to design a spatial data mining
process based on stochastic frontier analysis. Firstly, the stochastic frontier model should be improved to analyze spatio-
temporal data. In order to accurately measure the technical efficiency in the case of dual correlation between time and space, a
more effective spatio-temporal stochastic frontier model method is proposed. Meanwhile, based on the idea of generalized
moment estimation, an estimation method of spatiotemporal stochastic frontier model is designed, and the consistency of
estimators is proved. In order to ensure that the most appropriate spatial weight matrix can be selected in the process of model
construction, the K-fold crossvalidation method is adopted to evaluate the prediction effect under the data-driven idea. This
set of spatio-temporal data mining methods will be used to measure the technical efficiency of high-tech industries in various
provinces of China.

1. Introduction

Stochastic frontier analysis (SFA) is an important method to
measure technical efficiency and calculate total factor produc-
tivity. The whole process is divided into two steps: the first
step is the model estimation process, which can be regarded
as a supervised learning process; the second step is to use
the estimated model to calculate the technical efficiency,
which can be regarded as an unsupervised learning process.

From the perspective of machine learning, supervised
processes have three main objectives: (a) feature selection
and reduction of the dimension of feature variables; (b)
selecting the optimal one from multiple classifiers or predic-
tion models; (c) model evaluation, which estimates the pre-
diction error of the selected classifier or prediction model
on the new data.

The paper found that the traditional stochastic frontier
analysis method has the following defects: (a) it is not suitable
for the special structure of spatial data or spatio-temporal data;

(b) the modeling process lacks variety. The traditional analy-
sis process is knowledge-driven and completely relies on a
single theoretical model for estimation and testing. The
above two characteristics lead to the large deviation of the
traditional stochastic frontier model when analyzing the
spatio-temporal data, and it is impossible to make an accu-
rate measure of the production efficiency with spatial rela-
tionship, either. To solve the two problems above, this
study considers two improvements to the industrial effi-
ciency calculation process based on temporal and spatial
data: (1) improve the existing stochastic frontier model and
make it suitable for spatial data or spatio-temporal data; (2)
turn the modeling process into a spatial data mining process.
In view of the unique structure of spatio-temporal data, a
more suitable crossvalidation method is proposed for the
selection of prediction model.

Stochastic frontier analysis (SFA) was successively pro-
posed by Aigner et al. (1977) [1], Meeusen and Broeck
(1977) [2], and Battese and Corra (1977) [3]. Over the past
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40 years, its theoretical system and methods have been con-
tinuously expanded and innovated; it is widely used to mea-
sure the operating efficiency of different industries.

The development of spatial statistics provides a theoret-
ical basis for studying spatial interactions in stochastic fron-
tier models. Druska and Horrace (2004) [4] first applied the
method of spatial econometrics to the analytical framework
of stochastic frontier model and started the research of spa-
tial stochastic frontier model. Affuso (2010) [5] established
the spatial stochastic frontier model and gave the maximum
likelihood estimation in the empirical study. Tonini and
Pede (2011) [6] applied maximum entropy method to
parameter estimation of spatial stochastic frontier model.
Vidolia et al. (2016) [7], Tsionas and Michaelides (2016)
[8], Carvalho (2018) [9], and Adetutu et al. (2015) [10] con-
sider SF models with local spatial dependence. Jin and Lee
(2020) [11] proved the asymptotic properties of a maximum
likelihood estimator of a spatial autoregressive stochastic
frontier model. Kutlu et al. (2020) [12] proposed a spatial
autoregressive stochastic frontier model, which allows for
the endogeneity in both the frontier and environmental
variables, and discussed a single-stage control function
approach to estimate the parameters.

Because spatial stochastic frontier analysis methods can
fully consider the impact of spatial correlation, they can
obtain more accurate results in efficiency analysis of data
with spatial spillover effect and thus have been more widely
used in recent years. Bergantino et al. (2020) [13] analyses
the potential impact of airport competition on technical effi-
ciency by applying the spatial stochastic frontier. Graaff
(2020) [14] used spatial stochastic frontier model to estimate
spatially correlated technical efficiencies within a European
regional production function context. At present, some liter-
atures have studied panel spatial stochastic frontier model,
for example, Druska and Horrace (2004) [4], Tonini and
Pede (2011) [6], and Lin Jia-Xian (2014) [15]. These litera-
tures all focus on the static panel space stochastic frontier
model, and the model utilizes two-dimensional information
from panel data; formally, the spatial lag term of the
explained variable and the spatial lag term of the error are
used to capture the spatial correlation of the production
unit. The time lag term is not included in the model, which
means that the model still cannot fit well when there is sig-
nificant inertia in the research problem. In input-output
analysis, current behavior is largely dependent on past
behavior, for example, the adjustment of capital stock is
often influenced by previous capital. Therefore, a dynamic
stochastic frontier model should be established, and the
model should describe the double lag effect of space and
time, so as to reflect the influence relationship between eco-
nomic variables more objectively. The spatial weight matrix
in spatial statistics is often considered to be “subjective.”
Moreover, due to the various setting methods of spatial
weight matrix, the selection of different spatial weight matrix
may lead to the difference of model estimation results. In
addition, the selection of spatial weight matrix has not
formed a unified principle. Based on the above three points,
the spatial weight matrix is often questioned. But in the era
of “big data,” such skepticism may end [16].

This paper proposes the spatiotemporal stochastic fron-
tier model; considering that the model may be endogenous
in time and space dimensions, a generalized method of
moments (GMM) estimation process is designed to estimate
the model. When Druska and Horrace (2004) [4] studied the
static panel space stochastic frontier model, a generalized
moment estimation process was proposed by referring to
Kelejian and Prucha (1999) [17] for spatial error correlation.
In this paper, Druska and Horrace (2004) [4] is used to deal
with model’s error space autocorrelation, which is different
from that of the stochastic frontier model. According to
the method of Kapoor et al. (2007) [18], the compound error
term was processed, and the moment condition was con-
structed to estimate the distribution parameters of the error
term. In this paper, Jacobs et al. (2009) [19] was used as a
reference to construct the moment condition, and Anselin
(1988) [20] was used as a reference for the selection of tool
variables to obtain the generalized moment estimator. Fur-
thermore, the consistency of the obtained structural param-
eter estimators is proved by using the extreme value
consistency theorem and the law of uniform large numbers
(ULLN). To solve the problem of selecting spatial weight
matrix, we can consider a crossvalidation method suitable
for spatio-temporal data. Fortunately, a series of methods
such as dimensionality reduction, feature selection, and
model generalization has been provided by machine learning
methods. The earliest crossvalidation method was called
hold-out, which relied on only one partition of the data,
and there was no crossover process, so it was also called
the verification method [21]. Noting that the hold-out
method relies on a partition of data and is easily affected
by contingency factors, Geisser (2010) [22] proposed a
crossvalidation method that includes the average of multiple
hold-out estimates, realizing the transition from verification
estimation to crossvalidation estimation. In order to reduce
the combination number of data partition in crossvalidation,
Shao (1993) [23] proposed the leave-P-out crossvalidation
(LPOCV) in which the number of test samples in each data
partition was the same. Especially in the special case when
P = 1, the method is evolved to leave-one-out crossvalidation
(LOOCV). LOOCV is the simplest and most widely used
crossvalidation in traditional analysis. Compared with the
LPOCV considering all data partitioning, Geisser (2010) also
proposed a crossvalidation based on only partial data parti-
tioning, which is called RLT method. K-folded crossvalida-
tion is proposed as an alternative to LOOCV which has a
large computational overhead and relies on a basic partition
of data divided into K-fold, each of which has a data capacity
of N/K . In the case of limited samples, k-fold crossvalidation
is the simplest and most widely used method of generaliza-
tion error estimation. From the various crossvalidation
methods that have appeared in the past, each method fully
considers the randomness of the validation set to ensure
the generalization ability of the test model. However, for
the special panel data such as spatio-temporal data, there is
usually an internal connection between spatial individuals,
and the overall data also tends to have time trend. This prob-
lem is not taken into account by the previous crossvalidation
methods, which may break the inherent regularity of spatio-
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temporal data. Based on the above considerations, this paper
designs a kind of crossvalidation scheme suitable for spatio-
temporal data. It is used to select stochastic frontier models,
especially models with different weight matrices.

Finally, the technology efficiency of China’s high-tech
industry is analyzed by establishing a spatiotemporal sto-
chastic frontier model.

2. Methodology

Previous studies on panel spatial stochastic frontier models
mainly involved static panel spatial stochastic frontier
models. Spatial lag effect is considered in the process of
model building, but the influence of time lag effect is not
included. If the time lag term and time-spatial lag term
are added into the model, this kind of model can be called
spatiotemporal stochastic frontier model. Obviously, the
time-space double lag effect will produce stronger endo-
geneity, and new estimation methods should be considered
to solve it.

2.1. Model Specification and Assumption

2.1.1. Model Specification. The general form of the spatio-
temporal stochastic frontier model can be stated in matrix
form as

Yt = λ1WYt + λ2WYt‐1 + γYt‐1 + XtΒ + Εt ,

Et = ρMEt + εt ,

εt = vt − u,

ð1Þ

where Yt , Et , εt , and νt are N-dimensional vectors, whose
components at time t = 1,⋯, T are given by Yt =
½y1t ,⋯,yNt�′, Et = ½E1t ,⋯,ENt �′, εt = ½ε1t ,⋯,εNt�′, and vt =
½v1t ,⋯,vNt�′. The vector Yt consists of the outputs of the N
production units, Et and εt are the composite error vectors
corresponding to Yt , vt is the heterogeneous error vector,
and u = ½u1,⋯,uN �′ is the vector of time-invariant ineffi-
ciency terms. This kind of setting is appropriate when the
time span is not large. As u is time invariant, it can be
regarded as the individual effect, and thus, this paper pri-
marily considers u as a fixed effect. Xt is an N × K-dimen-
sional matrix consisting of the K exogenous input variables
of the N production units at time t.W andM are N ×N spa-
tial weight matrices which are usually assumed to be differ-
ent. If W =M, λ1 and ρ cannot be distinguished by means
of the maximum likelihood method although they can be
effectively distinguished by the GMM method [19]. The var-
iables are stacked according to the section and time series in
the following matrix form:

Y = λ1 IT ⊗Wð ÞY + λ2 IT ⊗Wð ÞY ‐1 + γY ‐1 + XB + Ε,
Ε = ρ IT ⊗Mð ÞΕ + ε,
ε = v − eT ⊗ INð Þu,

ð2Þ

where ⊗ represents the Kronecker product of matrices, IT
and IN are, respectively, the identity matrices of orders T
and N , and eT is a T-dimensional column vector with all
the entries equal to 1. The parameter vector of the model
to be estimated is ðλ1, λ2, γ, Β, ρ, σ2v , σ2uÞ, and its dimension
is ðK + 6Þ, where Β is the parameters corresponding to the
K-dimension exogenous explanatory variables Xt . Β and λ1
, λ2, γ together constitute the structural parameters, and ρ,
σ2
v , σ2u are the error term parameters.

2.1.2. Model Assumption. The assumptions of the spatiotem-
poral stochastic frontier model are the following:

Assumption 1. The distribution of the error vector v is given
by v ∼Nð0, σ2vINTÞ.

Assumption 2. The inefficiency term u is time invariant, with
distribution u ∼N+ð0, σ2

uINTÞ.

Assumption 3. 0 < σ2v < bv <∞, 0 < σ2u < bu <∞, and v and u
have finite fourth moment.

Assumption 4. v and u are uncorrelated with X.

Assumption 5. The spatial weight matrices W and M satisfy
wii = 0 and mii = 0; i = 1, 2,⋯,N . For arbitrary ∣λ1 ∣ <1, ∣λ2
∣ <1, and ∣ρ ∣ <1, the matrices 1 − λ1W, 1 − λ2W, and 1 − ρ
M are all nonsingular matrices. For each of the matrices W
, M, 1 − λ1W, 1 − λ2W, 1 − ρM, ð1 − λ1WÞ−1, ð1 − λ2WÞ−1,
and ð1 − ρMÞ−1, the row sums and column sums are all
absolutely uniformly bounded.

Assumption 1 is a classic assumption of the spatial error
autocorrelation model. By Assumption 2, the same individ-
ual inefficiency term remains constant at different times.
When using GMM to estimate the structural parameters of
the model, the distribution of error terms can be ignored;
nevertheless, in order to improve the efficiency of computa-
tion, the half normal distribution for the inefficiency term is
usually assumed. Assumption 3 ensures the boundedness of
the variance of the error term in this model, which is an
important condition for the consistency of the estimator.
Assumption 4 is a classical assumption commonly used in
traditional regression analysis methods, and the moment
condition is set according to this assumption in the general-
ized moment estimation of this model. Assumption 5 is set
according to the space weight matrix of this model and the
properties of space station autoregressive coefficient and
space-time autoregressive coefficient, which also ensures
the consistency of parameter estimators.

2.2. Parameter Estimation

2.2.1. Estimation strategy. There is an endogeneity problem
in the model. For the spatial lag term λ1WYt in the model,
there is
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COV WYtð Þ, Εt½ � = COV WA−1 λ2WYt−1ð��
+ γYt−1 + XtΒ + ΕtÞ�, Εtg

= λ2COV WA−1 WYt−1ð Þ� �
, Εt

� �
+ γCOV

� WA−1Yt−1
� �

, Εt

� �
+ COV WA−1� �

Εt , Εt

� �
,

ð3Þ

where A = I − λ1W, and COVf½WA−1ðWYt−1Þ�, Εtg = 0,
COVf½WA−1Yt−1�, Εtg = 0, and COVfWA−1½XtΒ�, Εtg = 0
can be obtained from the assumptions of the regression
model, and COVf½WA−1�Εt , Εtg is quadratic. In spatial
econometrics, W is usually not a zero matrix, and so,
WA−1 is not a zero matrix. While taking into account the
expected value of the compound error term cannot be 0, it
can be considered that the quadratic form COVf½WA−1�Εt ,
Εtg is almost impossible to be equal to 0 (see Appendix A
for proof). Therefore, in the dynamic panel spatial stochastic
frontier models, there is an endogeneity problem which will
lead to the inconsistency of traditional estimators. So, we con-
sidered GMMas a goodway to solve the endogeneity problem.

The parameter vector to be estimated in the model is
ðλ1, λ2, γ, Β, ρ, σ2

v , σ2uÞ′, where λ1, λ2, γ, and Β are the struc-
tural parameters of the model, and ρ, σ2v , and σ2

u are the
error distribution parameter of the model. The estimation
of the model is completed in three steps:

Step 1. Using the GMM to estimate the structure parameter
ðλ1, λ2, γ, ΒÞ in the model.

Step 2. Making a moment estimation of the parameter ðρ,
σ2v , σ2uÞ that is included in the error term.

Step 3. Using the estimator obtained in Step 2 to modify the
result of Step 1.

2.2.2. Estimation of Structural Parameter ðλ1, λ2, γ, ΒÞ
(1) Difference Model and Level Model. Anderson and Hsiao
(1981) [24] proposed to use yi,t−2 as the instrumental vari-
able of Δyi,t−1, and then, 2SLS estimation is carried out. This
estimator is called “Anderson-Hsiao estimator.” According
to the same logic, lag variables of higher order are also valid
IV. Arellano and Bond (1991) [25] used all possible lag var-
iables as IV (the number of IVs is more than the number of
endogenous variables) to conduct GMM estimation. This
GMM estimator is called Arellano-Bond estimator or differ-
ence GMM. The disadvantage of difference GMM is that the
variable which does not change with time is eliminated, and
its coefficient cannot be estimated. If the series fyi,tg has a
strong persistence, that is, the first-order autoregressive coef-
ficient is close to 1, then the correlation may be very weak
and lead to the problem of weak instrumental variables. In
order to solve the above two problems, Arellano and Bver
(1995) [26] returned to the level equation and used fΔyi,t−1
, Δyi,t−2,⋯g as IV to estimate the GMM of the level equation,
which was called “level GMM.” Blundell and Bond (1998)
[27] combined difference GMM with level GMM and esti-
mated the difference equation and level equation as one

equation system for GMM, which was called “system
GMM.” The advantage of system GMM is that it can
improve the efficiency of estimation (small sample proper-
ties are better), and it can estimate the variable that does
not change with time (the system GMM contains the level
equation). In order to solve the endogenous problem of
dynamic panel data model, Arellano and Bond (1991) [25],
Arellano and Bover (1995) [26], and Blundell and Bond
(1998) [27], respectively, considered from the perspective
of difference model and level model, and different instru-
mental variables were selected.

The corresponding difference model and level model of
Equation (1) are simplified as

ΔYt = ΔZtθ + ΔΕt , ð4Þ

Yt = Ztθ + Εt: ð5Þ

(4) and (5) can also be collectively called spatial systemmodel,
where Equation (4) is the differencemodel, and Equation (5) is
the level model, Zt = ½WYt ,WYt−1, Yt−1, Xt�′ is the vector
composed of all explanatory variables, and θ = ½λ1, λ2, γ, B�′
is the vector composed of structural parameters. The expan-
sion of Equation (5) is Equation (1); the expansion of Equation
(4) can be expressed as follows:

ΔYt = λ1WΔYt + λ2WΔYt‐1 + γΔYt‐1 + ΔXtΒ + ΔΕt ,
Et = ρMΔEt + Δεt ,
Δεt = Δvt:

ð6Þ

(2) Moment Condition and Instrumental Variable. Since ΔXt
is a strictly exogenous variable, it is not related to the com-
pound error term ΔΕt , nor is it related to Εt . The moment
conditions for identifying B in the difference model and the
level model are as follows:

E ΔXt ′ΔΕt

� �
= 0, t = 3,⋯, T ,

E ΔXt ′Εt

� �
= 0, t = 3,⋯, T:

ð7Þ

The moment condition structure for identifying λ2 and γ
in the two models is as follows: since the spatial lag term and
time lag term of the dependent variable ΔYt are both endog-
enous variables, therefore, it is necessary to find a set of
instrumental variables that is related to time lag and space
lag and exogenous explanatory variables, but not related to
the difference error term ΔΕtðt = 3,⋯,TÞ. Arellano and Bond
(1991) [25] uses all possible level lag variables ðyt−2,⋯,y1Þ of
Yt as instrumental variables for the time-lag first-order dif-
ference term (ΔYt−1) of the dependent variable. These instru-
mental variables are related to (ΔYt−1), but not to ΔΕt . The
moment conditions corresponding to the difference model
and the level model are as follows:
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E Yt−s ′ΔΕt

� �
= 0, t = 3,⋯, T ; s = 2,⋯, t − 1, ð8Þ

E ΔYt−s ′Εt

� �
= 0, t = 3,⋯, T ; s = 2,⋯, t − 1: ð9Þ

The moment conditions for identifying λ1 in the two
models are as follows.

Construct a spatial lag item WYt as follows; Jacobs et al.
(2009) [19] provided a method of finding instrumental var-
iables, that is time lag terms of spatial lag dependent
variables, who also proved that the moment condition
obtained by this method was as valid as Equation (8). So,
corresponding to the difference model and the level model,
the following moment conditions can be listed:

E WlYt−s

n o
′ΔΕt

� �
= 0, t = 3,⋯, T ; s = 2,⋯, t − 1 ; l = 1,⋯, L,

E WlΔYt−s

n o
′Εt

� �
= 0, t = 3,⋯, T ; s = 1,⋯, t − 2 ; l = 1,⋯L,

ð10Þ

where l is the exponential of matrix W and the integer L is
the maximum order of spatial lag that can be used as the
instrumental variable.

In addition, based on the method provided by Kelejian
and Robinson (1993) [28], formula (1) shows that WYt
depends on WXt , so the instrumental variable WΔXt can
be selected by the first-order difference method for WΔYt .

Since ΔXt is a strictly exogenous variable, it is not related
to the compound error term ΔEt , so corresponding to the
difference model and the level model, the instrumental vari-
ables satisfy the following moment conditions:

E WlΔXt

n o
′ΔΕt

� �
= 0, t = 3,⋯, T ,

E WlΔXt

n o
′Εt

� �
= 0, t = 3,⋯, T:

ð11Þ

(3) GMM Estimation. When we estimate the parameters of
the spatio-temporal stochastic frontier model, we use the
system GMM method similar to the general dynamic panel
model to construct the spatial system GMM estimation.
Unlike the system GMM, the IVs of the spatial system
GMM are composed of time lag variable and spatial lag
variable.

For each period of t, the moment condition of J ≥ K + 2
can be given. The moment conditions corresponding to the
difference model and the level model can be abbreviated as

E HN ,ABt ′ΔΕt

� �
= 0,

E HN ,Lt ′Εt

� �
= 0:

ð12Þ

The matrices HN ,ABt and HN ,Lt are expressed as follows

Then, HN ,ABt = ½Yt−s,WYt−s,W2Yt−s,⋯,WLYt−s,WΔXt ,
ΔXt� and

HN ,Lt = ΔYt−s,WΔYt−s,W2ΔYt−s,⋯,WLΔYt−s,WXt , Xt

� �
t = 3,⋯,Tð Þ:

ð14Þ

That is, HN ,ABt and HN ,Lt are matrices with instrumental
variables as column vectors, and the subscript N means that
the matrix depends on the unit number of individuals. Let

HN ,AB andHN ,L be block diagonal matrices composed of block
HN ,ABt and HN ,Lt , respectively. In order to define the GMM
(Spatial Blundell Bond, SBB) estimator of the spatial dynamic
panel stochastic frontier model, the difference variables and
level variables are combined to define the matrix as follows:

Y∗N = ΔY′N , Y′N
h i

, Z∗N = ΔZ′N , Z′N
h i

, Ε∗N = ΔΕ′N , Ε′N
h i

:

ð15Þ

Yt−s =

y1 0 0 0 0 0 ⋯ ⋯ 0 0 ⋯ 0
0 y2 y1 0 0 0 ⋯ ⋯ 0 0 ⋯ 0
0 0 0 y3 y2 y1 ⋯ ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋯ 0 0 ⋯ 0
0 0 0 0 0 0 ⋯ ⋯ yt−2 yt−3 ⋯ y1

2666666664

3777777775
, Xt =

x3

x4

⋮

xt

2666664

3777775,

ΔYt−s =

Δy1 0 0 0 0 0 ⋯ ⋯ 0 0 ⋯ 0
0 Δy2 Δy1 0 0 0 ⋯ ⋯ 0 0 ⋯ 0
0 0 0 Δy3 Δy2 Δy1 ⋯ ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋯ 0 0 ⋯ 0
0 0 0 0 0 0 ⋯ ⋯ Δyt−2 Δyt−3 ⋯ Δy1

2666666664

3777777775
, ΔXt =

Δx3

Δx4

⋮

Δxt

2666664

3777775:
ð13Þ
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The instrument variable matrix is

HN ,BB = diag HN ,AB,HN ,L
� �

=
HN ,AB 0
0 HN ,L

" #
, ð16Þ

where HN ,AB is the instrumental matrix of spatial difference
GMM estimation, and HN ,L is the instrumental matrix of spa-
tial level GMM estimation. The weight matrix is

GN ,BB = diag GN ,AB, IT−2 ⊗ IN
� �

=
GN ,AB 0
0 IT−2 ⊗ IN

" #
:

ð17Þ

This diagonal of the matrix is composed of the weight
matrix defined in the process of spatial difference GMM
estimation and an identity matrix, where GN ,AB = IN ⊗G is
NðT − 2Þ ×NðT − 2Þ weight matrix which elements are

Gij =

2, i = j,
−1, i = j + 1,
−1, j = i + 1,
0, others:

8>>>>><>>>>>:
ð18Þ

This weight matrix is proposed by Arellano and Bond
(1991) [25] which is further define the weight matrix:

AN ,BB =
H′N ,BBGN ,BBHN ,BB

N

" #−1

: ð19Þ

Through the above process, combining the spatial differ-
ence equation with the spatial level equation, we get the
spatial system GMM estimation process. Get the objective
function of generalized moment estimation for spatial system
as follows:

1
N

H′N ,BBΔΕ∗N

� �
′AN ,BB H′N ,BBΔΕ∗N

� �
= 1
N

H′N ,BB ΔY∗N − ΔZ∗Nθð ÞN
h i

′AN ,BB

� H′N ,BB ΔY∗N − ΔZ∗Nθð ÞN
h i

:

ð20Þ

The one-stage SBB estimator of θ can be obtained by min-
imizing Equation (20):

bθSBB = Z∗′NH′N ,BBA∗NH′N ,BBZ∗N

� �
Z∗′NH′N ,BBA∗NH′N ,BBY∗N :

ð21Þ

Equation (21) can also be called the spatial system GMM
estimator.

(4) Improvement of Instrumental Variable Matrix. The
instrumental variable matrix constructed in accordance with
the above method has a high dimension and grows exponen-
tially as the values of T and L increase. In order to reduce the
dimension of the instrumental variable matrix and avoid
overfitting the instrumental variable, we can simplify it by
using the “condensing instrumental variable matrix” pro-
posed by Beck and Levine (2004) [29].

We still set s = 2 and L = 1 in the GMM instrumental
variable matrix of the space system, and the corresponding
condensed instrumental variable matrix is

H′N ,BB =
H1

AB ⋯ HN
AB

H1
L ⋯ HN

L

" #
, ð22Þ

where Hi
L (i = 1,⋯,N) is the instrumental variable quan-

tum matrix of the level model corresponding to the i
individual.

2.3. Estimation of Error Term Parameters

2.3.1. Estimation of ρ, σ2
v. After the estimator of the structural

parameter θN = ðλ1, λ2, γ, ΒÞ′ in model (1) is obtained in the

first stage, the model residual Ε̂t = Yt − Zt
bθN can be further

obtained, in which the Zt = ðWYt ,WYt−1, Yt−1, XtÞ is the
vector set composed of all explanatory variables in model

(1). Consistent GMM estimation can be obtained by using
residual Ε̂t and modifying the moment condition proposed
by Kapoor et al. (2007) [18]. The specific process is as follows.

According to the assumptions of the model, the individ-
ual effect of the model is the inefficiency term. According to
the covariance structure of the compound error term, it can
be known that

Hi
L =

Δy1 0 0 ⋯ WΔy1 0 0 ⋯ WΔX3 ΔX3

Δy2 Δy1 0 ⋯ WΔy2 WΔy1 0 ⋯ WΔX4 ΔX4

Δy3 Δy2 Δy1 ⋯ WΔy3 WΔy2 WΔy1 ⋯ WΔX5 ΔX5

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

2666664

3777775: ð23Þ
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Cov εε′
� �

= σ2u IN ⊗ JTð Þ + σ2
vINT : ð24Þ

Introduce transformation matrix:

Q0 = IT −
JT
T

� 	
⊗ IN ,Q1 =

JT
T

� 	
⊗ IN , ð25Þ

where IT and IN are the identity matrix of order T and
order N , JT = eTeT ′ is the matrix of order T × T , and the
elements of that are all 1. Properties of transformation
matrix Q0: (i) trðQ0Þ =NðT − 1Þ; (ii) Q0ðeT ⊗ INÞ = 0; (iii)
Q0ðIT ⊗ RNÞ = ðIT ⊗ RNÞQ0 (where RN is any N ×N
matrix). From the properties (ii), we can further deduce
the special properties (iv) Q0ε =Q0v of matrix Q0 in this
paper, where ε and ν are the corresponding error terms
in model (1).

Let

�Ε = IT ⊗Mð ÞΕ ; ��Ε = IT ⊗Mð Þ�Ε ; �ε = IT ⊗Mð Þε: ð26Þ

Then,

ε = Ε − ρ�Ε,�ε = �Ε − ρ��Ε: ð27Þ

Based on the above transformation and referring to the
first three of the six moment conditions given by Kapoor
et al. (2007) [18] and related properties, the following
three moment conditions are given in this paper:

E ε′Q0ε
� �

= σ2
vN T − 1ð Þ, E �ε′Q0�ε

� �
= σ2

vN T − 1ð Þtr M ′M
� �

, E �ε′Q0ε
� �

= 0:
ð28Þ

To further integrate the above moment conditions, we
can get that

E

1
N T − 1ð Þ ε′Q0ε

1
N T − 1ð Þ�ε′Q0�ε

1
N T − 1ð Þ�ε′Q0ε

0BBBBBBBB@

1CCCCCCCCA
=

σ2
v

1
N
σ2vtr M ′M

� �
0

0BBB@
1CCCA: ð29Þ

Substitute Equations (26) and (27) into Equation (29)
to obtain that

1
N
E

2
T − 1ð Þ

�Ε′Q0E −
1

T − 1ð Þ
�Ε′Q0�Ε 1

2
T − 1ð Þ

�Ε′Q0
��Ε −

1
T − 1ð Þ

��Ε′Q0
��Ε tr M′M

� �
1

T − 1ð Þ
�Ε′Q0

��Ε + �Ε′Q0�Ε
� �

−
1

T − 1ð Þ
�Ε′Q0

��Ε 0

0BBBBBBBBB@

1CCCCCCCCCA
ρ

ρ2

σ2v

0BBB@
1CCCA

= 1
N

1
T − 1ð Þ E′Q0E

1
T − 1ð Þ

�Ε′Q0�Ε

1
T − 1ð Þ E′Q0�Ε

0BBBBBBBBB@

1CCCCCCCCCA
:

ð30Þ

The residual Ε̂t = Yt − Zt
bθN estimated in the first stage

is substituted into �Ε and ��Ε in Equation (30) to obtain the
sample moment equation. In the sample moment equa-
tion, the estimated value bρ , bσ2

v of ρ and σ2v can be solved
by the following objective function:

bρ , bσ2
v

� �
= arg min GN ρ, ρ2, σ2v


 �
− gN

� �′ GN ρ, ρ2, σ2v

 �

− gN
� �n o

,

ρ ∈ −a, a½ �, σ2v ∈ 0, bv½ �,
ð31Þ

where

GN = 1
N

2
T − 1ð Þ

�Ε∧′Q0Ε̂ −
1

T − 1ð Þ
�Ε∧′Q0

�̂Ε 1

2
T − 1ð Þ

�Ε∧′Q0
�̂Ε −

1
T − 1ð Þ

�Ε∧′Q0
�̂Ε tr M ′M

� �
1

T − 1ð Þ
�Ε∧′Q0

�̂Ε + �Ε∧′Q0
�̂Ε

� �
−

1
T − 1ð Þ

�Ε∧′Q0
�̂Ε 0

0BBBBBBBBB@

1CCCCCCCCCA
, gN

= 1
N

1
T − 1ð ÞΕ∧′Q0Ε̂

1
T − 1ð Þ

�Ε∧′Q0
�̂Ε

1
T − 1ð ÞΕ∧′Q0

�̂Ε

0BBBBBBBBB@

1CCCCCCCCCA
:

ð32Þ

2.3.2. Estimation of σ2u. The fourth moment condition
given by Kapoor et al. (2007) [18] is

E ε′Q1ε
� �

=NTσ2u +Nσ2v =Nσ2
1, ð33Þ

where σ21 = Tσ2u + σ2
v . However, considering the character-

istics of the stochastic frontier model, the compound error
term ε obeys the asymmetric distribution of the expected
nonzero, so the moment condition (33) cannot be directly
applied, and the following formula can be proved:

COV ε′Q1ε
� �

=NTσ2u +Nσ2v =Nσ21: ð34Þ

7Wireless Communications and Mobile Computing



The estimator of parameter σ2
1 can be obtained by

combining Equation (34) with Equation (31):

bσ2
1 =

1
N
COV Ε∧ − ρ∧ �Ε∧


 �′Q1 Ε̂ − bρ �̂Ε� �h i
= 1

T − 1ð ÞCOV Ε∧′Q1Ε̂
� �

−
2

T − 1ð ÞCOV
�Ε∧′Q1Ε̂

� �
· bρ −

1
T − 1ð ÞCOV

�Ε∧′Q1
�̂Ε

� �
ρ∧2:

ð35Þ

Substitute bσ2
v and bσ2

1 into (33) to obtain the moment
estimator bσ2

u of σ2u.

2.4. Spatial Correction of Estimators. Although it can be
proved that the estimator (21) is a consistent estimator, it
can also be proved that the consistency of the GMM estima-
tor can be guaranteed even if the model has spatial error
autocorrelation. However, the estimator (21) cannot solve
the spatial dependence of the error term, and the variance
of the estimator is relatively large. After obtaining the con-
sistent estimator of ρ by Equation (31), the consistent esti-
mator can be obtained by a correcting transformation.
According to the spatial correction method given by Jacobs
et al. (2009) [19], the estimator obtained in the first step
was corrected.

The estimator bρ obtained from Equation (31) is used to
construct matrix I − bρM, and left the difference GMM and
the explained variables and the instrumental variables
matrix of the system GMM estimation, if

~Y = I − bρMð ÞY , Δ~YN = I − bρMð ÞΔYN , ~Y−1

= I − bρMð ÞY−1, ~WY = I − bρMð ÞWY , ~X = I − bρMð ÞX:
ð36Þ

The corresponding explanatory variable set Zt = ½WYt ,
WYt−1, Yt−1, Xt� is corrected as

~Z = I − bρMð ÞZ∗N , Δ~Z = I − bρMð ÞΔZN : ð37Þ

The instrumental variable matrix and weight matrix cor-
responding to the GMM estimation of the spatial system are
corrected as follows:

~HSBB = I − bρMð ÞHN ,BB,

~ASBB = ~H′SBB ~HSBB
� �−1

:
ð38Þ

Then, the corrected system GMM estimator is

eθSBB = ~Z′SBB ~HSBB~ASBB ~H′SBB~ZSBB
� �

~Z′SBB ~HSBB~ASBB ~H′SBB~YSBB:

ð39Þ

3. Results and Discussion

3.1. Properties of the Estimators

3.1.1. Properties of the Estimator eθSBB. According to the
Extremum Consistency Theorem [30] (see Appendix B),

the estimators bθSBB and eθSBB, obtained by Equations (21)
and (27), are consistent.

Proof. see Appendix C.

3.1.2. Properties of the Estimators bρ , bσ2
v , bσ2

u, and
eθSBB. It can

be proved that the estimators bρ , bσ2
v , bσ2

u, and
eθSBB are consis-

tent. The proof of the consistency of bρ , bσ2
v , and bσ2

u is similar
to that in Kapoor et al. (2007) [18], and it is omitted here.

The consistency of eθSBB can be derived from the consistency

of bρ , bσ2
v , and

bθSBB. Similar to the consistency of GLS esti-
mates, the correcting transformation does not affect the con-

sistency of the estimator eθSBB.
3.2. Crossvalidation Scheme and Selection of Spatial Weight
Matrix. In order to avoid affecting the accuracy of model esti-
mation due to the choice of spatial weight matrix, the optimal
spatial weight matrix was selected by crossvalidation. This is a
widely used model selection and generalization method in
machine learning. However, since the data used is panel data
and the model used is spatio-temporal model, the structural
features of spatio-temporal data may be destroyed if the
training set and validation set are generated by hold-out
method and LOOCV or K-folded crossvalidation. Therefore,
this paper considers a stratified crossvalidation approach. For
the spatio-temporal data, if N and T are assumed to be the
number of spatial individuals and the number of periods
contained in the observed samples, respectively, and the rest
of the conventions on independent variables and dependent
variables are the same as Equation (1), stratified crossvalida-
tion can include the following three forms.

3.2.1. Leave-One-Out Crossvalidation for the Time
Dimension (TLOOCV). Select the date t as the validation
set and the rest T − 1 of the date as the training set. Let C1
, C2,⋯, CT denote, respectively, the index values of the
observations contained in period t (t = 1, 2,⋯, T), and N1,
N2,⋯,NT the number of observations contained in period
t (t = 1, 2,⋯, T). Let n1, n2,⋯, nT denote the number of
the observations in part t. Do the above for each period t
= 1, 2,⋯, T in turn and calculate

CVT = 1
T
〠
T

t=1
MSEt , ð40Þ

where MSEt =∑Nt
i=1ðyit − y∧itÞ2/Nt , and ŷit is the fitting value

of the ith observed value in period Tyit .
This crossvalidation method is suitable when the num-

ber of periods T is not too large.

3.2.2. K-Fold Pooled Crossvalidation for the Spatial
Dimension (SK-Fold PCV). When the total number of
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periods T is large and the number of spatial individuals N is
also large, this method is suitable for use. All observed values
in each period t (t = 1, 2,⋯, T) were randomly divided into
K groups of equal size (i.e., the subsample size of each group
was N/K), and a group was randomly selected from each
period t (t = 1, 2,⋯, T) to obtain NT/K observed values
combined as the validation set and NðK − 1ÞT/K remaining
observed values in each period combined as the training set.
Do the above for each period sequence and calculate

CVK = 1
K
〠
K

k=1
MSEk, ð41Þ

where MSEk =∑Nt ,T
i=1,t=1Kðyit − y∧itÞ2/TNt , and ŷit is the fit-

ting value of the ith observed value in period Tyit .

3.2.3. Leave-One-Out Crossvalidation for the Spatial
Dimension (SLOOCV). When the crossvalidation method
presented in Section 3.2.2 and the condition K =N attached,
it can be called K-fold pooled crossvalidation for the spatial
dimension (SN-fold PCV) or stratified leave-one crossvali-
dation (SLOOCV). When the total number of periods T is
large and the number of spatial individuals N is small, this
method is suitable for use.

3.2.4. Determination of Weight Matrix and Industrial
Efficiency Measure. To discuss industrial efficiency from
the perspective of spatial statistics or spatial data mining, a
good spatial weight matrix should be determined first. In
this paper, the spatial lag production function is chosen as
the basic model, and the spatial weight matrix involved in
the construction of the model can take various alternative
forms. In a data-driven way, the training samples were
imported into the model for parameter estimation, and then,
the most appropriate spatial weight matrix was determined
by stratified crossvalidation. To determine whether the spa-

tial model is selected for analysis, the spatial correlation test
is further carried out. If there is a strong spatial correlation, a
spatial stochastic frontier model or a spatio-temporal sto-
chastic frontier model will be established; if the spatial corre-
lation is weak, an ordinary panel stochastic frontier model
will be selected. After the estimation is completed, the best
performing model is used to measure the technical effi-
ciency. The flow chart of the entire analysis process is shown
in Figure 1.

4. The Efficiency of the High and New
Technology Industries in China

China has developed high and new technology industries for
many years in order to transform the economic growth
mode, cultivating knowledge and technology intensive new
companies with great growth potential and low resources
consumption that provide a sustainable development. As
the technology of such industries disseminates, some issues
emerge, such as spatial technology spillover, continuity of
technological upgrade, and delay from research and devel-
opment to market acceptance. In this paper, we analyze the
efficiency of this kind of industries by the above analysis
process.

4.1. Introduction to the Model and Data. In the framework of
spatio-temporal model analysis, the spatial lag production
function model based on the Cobb-Douglas production
function is chosen as the basic model for weight selection.
The matrix form of the model is as follows:

ln Y = ρWN ln Y + ln k, ln l½ �Β + u, ð42Þ

where ln Y , ln k, and ln l are, respectively, the logarithm vec-
tors of the main business income, the assets investment, and
the mean number of employees of the high and new technol-
ogy industries in every province in China; WN is the spatial

(Image format:word)

Training data Spatial production function Stratified cross validation

Select the optimal weight
matrix

Spatial correlation
test 

Ordinary stochastic
frontier model

Spatial and temporal
stochastic frontier model

Using the optimal model to measure the technical effciency

Weak spatial correlation

Strong spatial
correlation

Figure 1: Spatio-temporal industrial efficiency measurement process.
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weight matrix of the 31 provinces in China. Among many
spatial weight matrices, we choose the three most commonly
used spatial weight matrices in economic problems and their
combination forms. Various weight matrices and their inter-
pretations are shown in Table 1.

Before the fitting, each weight matrix was row-standard-
ized, and the optimal weight matrix determined by crossva-
lidation was implemented to establish the stochastic frontier
model. Starting from the ordinary panel stochastic frontier
model and considering the spatial correlations, we construct
the static panel spatial stochastic frontier model and the spa-
tiotemporal stochastic frontier model. In order to determine
if the model variables present spatial correlation, we let them
go through a spatial correlation test, and to determine if
there should be a time lag term in the model, we test the sig-
nificance. Comparing the results of the three models and
selecting the one that provides the best fit, we estimate the
technology efficiency of the high and new technology indus-
tries in every province.

The matrix forms of the three models are as follows:
Ordinary panel stochastic frontier model:

ln Y = ln k, ln l½ �Β + v − u: ð43Þ

Static panel space stochastic frontier model:

ln Y = λ IT ⊗WNð Þ ln Y + ln k, ln l½ �Β + v − u,
v = ρ IT ⊗MNð Þv + ξ:

ð44Þ

Spatiotemporal stochastic frontier model:

ln Y = λ IT ⊗Wð Þ ln Y + π IT ⊗Wð Þ ln Y ‐1 + ln k, ln l½ �Β + Ε,
v = ρ IT ⊗MNð Þv + ξ,

ð45Þ

where v is a general vector of stochastic error, u is the inef-
ficiency term, IT is the identity matrix of order T , λ and ρ
are the spatial correlation coefficients of the corresponding
equations, π is the spatiotemporal time lag coefficient of
the spatiotemporal stochastic frontier model, and B is the
regression coefficient vector.

The development plan of high and new technology
industry in China started in 1988, but due to the relatively
slow progress in the beginning, the scale development of this
industry did not start until the beginning of the twenty-first
century. For this reason, we have chosen as research sample
the panel data of the high and new technology industries of
the 31 provinces in China from 2001 to 2018. The data of
capital and labor input factors have been taken from “China
high-tech industry yearbook.” Descriptive statistics are
shown in Table 2.

Figure 2 is the histogram drawn by taking the intragroup
mean of data in each region according to year.

Figure 2 shows the difference in investment and average
development level of high-tech industries in different prov-
inces of China from 2001 to 2018. As can be seen from the
figure, Guangdong, Jiangsu, and Shandong provinces have

Table 1: Various weight matrices to be selected.

Expression Matrix name Meaning

W1 Position adjacency weight matrix

The weight matrix is constructed by rook, bishop, and queen position adjacence,
and queen adjacence matrix is selected in this paper.

Matrix element wij =
0 Region i and j are not adjacent
1 Region i and j are adjacent

(

W2
Geographical distance weight

matrix

The weight matrix is constructed by geographical distance between regions, and this
paper constructs the weight matrix by reciprocal distance between the centers of

provincial capitals in China.
Matrix element wij = 1/dij, where dij is the geographical distance between regions i and j

W3 Economic distance weight matrix

The weight matrix is constructed by the difference of economic level among different
regions, that is, the smaller the economic gap, the stronger the spatial correlation. In this
paper, the GDP of each province in China is used as the proxy variable of economic

development level to construct the matrix

Matrix element wij =
1/ GDPi −GDPj

�� �� i ≠ j

0 i = j

(
(GDPi represents the annual average

GDP of region i)

W4
Adjacency and distance

combination weight matrix
Matrix element wij =

0 Region i and j are not adjacent
1/dij Region i and j are adjacent

(

W5
Adjacency and economic
combination weight matrix

Matrix element

wij =
0 Region i and j are not adjacent
1/ GDPi −GDPj

�� �� Region i and j are adjacent

(

W6
Weight matrix of distance and

economy combination
Matrix element wij = 1/dij


 �
· GDPi/GDPj


 �
(where dij is the geographical distance

between region i and j; GDPi represents the annual average GDP of region i)
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the highest input and output levels of high-tech industries,
and the differences among these three provinces are also
very large. In the past 18 years, the average output value of
the high-tech industry of Guangdong, which ranks first,
reached 23.7 billion yuan, while that of Shandong, which
ranks third, reached only 6.997 billion yuan, less than one
third of that of Guangdong. In terms of the development
and distribution of high-tech industries nationwide, the
gap between provinces is even more obvious. The average
output value of the high-tech industries in Tibet, which
ranks the last, is only 0.085 billion yuan, less than 1/1000
of that of Guangdong.

4.2. Crossvalidation Results and the Selection of Weight
Matrix. According to the characteristics of the data
obtained, the time limit contained in the data is 18 years,
which is relatively short and smaller than the number of
regions. Therefore, the leave-one-out crossvalidation for
the time dimension (TLOOCV) method was chosen. Each
weight matrix in Table 1 was introduced into model (31),
the training set data were imported into the model one by
one for fitting, and then, Equation (40) was calculated to
obtain the CV statistics corresponding to each weight
matrix. The calculation results are shown in Table 3.

By comparing the calculation results of CV statistics of
validation set, it can be found to be the optimal spatial
weight matrix required by this paper.

4.3. Empirical Results. To ensure that spatial econometrics is
applicable to the problem we are studying, we need to test
the spatial correlation of the variables we are interested in.
The most popular method to measure spatial autocorrela-
tion is Moran’s index I (Moran’s I):

I =∑n
i=1∑

n
j=1wijðxi − �xÞðxj − �xÞ/S2∑n

i=1∑
n
j=1wij, where S2

is the sample variance, wij is the (i, j) element of the spatial
weight matrix (used to measure the distance between region
i and region j), and ∑n

i=1∑
n
j=1wij is the sum of all spatial

weights.
The value of Moran’s I is generally between -1 and 1,

and its greater than 0 indicates positive autocorrelation.
That is, the high value is adjacent to the high value and
the low value is adjacent to the low value. Less than 0
means negative autocorrelation. That is, a high value is
adjacent to a low value. If the Moran’s I is close to 0, then
the spatial distribution is random, and there is no spatial
autocorrelation.

To test the existence of spatial correlations in the vari-
ables of the high and new technology industry, we calculate
the global Moran’s I indices of the production values of the
industry from 2011 to 2018 (Table 4).

From the results of Moran’s I index calculation, we
found that the P value of the index is smaller than 0.01 for
every year, demonstrating that the index is significant below
1% for every year, and the average Moran’s I index is also
significant for every year. The Moran’s I index reached the
minimum value 0.286 in 2011 and the maximum value
0.340 in 2013. We observe that the production value of the
high and new technology industries of every province shows
significant spatial correlation for every year and conclude
that the production values of these industries of the prov-
inces in China have apparent spatial aggregating effects. Fur-
thermore, the testing of spatial correlation and the location
quotient calculation both demonstrated that the high and
new technology industries in different regions of China have
apparent spatial correlation. We therefore choose the panel
space stochastic frontier model for the analysis.

Table 5 presents the estimation results of the static, spa-
tiotemporal stochastic frontier model, where the static
model was further analyzed by considering fixed and sto-
chastic effects.

The spatial autoregressive coefficients λ and ρ of the
three models can all pass the significance test. From this
and the spatial correlation test, one can conclude that the
spatial stochastic frontier model is more reasonable. The
estimated spatial autoregressive coefficients of the three
models are all positive, which implied that the spatial effects
have a positive impact on the development of the high and
new technology industries. The negative value of the Haus-
man statistics of the static panel space model implies that
the random effect model should be chosen. The random
effect σ2u value of the static panel space stochastic frontier
model is far greater than the σ2v value, and the value of γ is
0.719, implying that there apparently exists technical ineffi-
ciency. Comparing the spatiotemporal stochastic frontier
model with the estimation of the static panel spatial random
effect, the spatiotemporal lag coefficient of the former can
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Figure 2: Histogram of the mean value of output value and factor
input of high-tech industries in each province.

Table 2: Descriptive statistics of output value and factor input
index of high-tech industry.

Variable Average Standard deviation Median Maximum

Y 30.283 53.712 13.615 237.170

k 31.682 54.757 15.884 241.980

l 39.477 75.530 18.817 372.000
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pass the 10% significance test, obtaining that the spatiotem-
poral lag term in the model has a significant function. The
distance statistic of the spatiotemporal stochastic frontier
model pass the 5% significance distance test, proving that
the spatiotemporal stochastic frontier model is globally sig-
nificant. Moreover, the estimation of the γ value of the spa-
tiotemporal stochastic frontier model is higher than that of
the static panel spatial stochastic frontier model, demon-
strating that the inefficiency term of the spatiotemporal sto-
chastic frontier model has a more significant function. All

the impact factor variables of the technical inefficiency terms
of the analysis of the two models can at least pass the 5% sig-
nificance test, and the signs of the regression coefficient of
the two models are consistent, the numerical values are rel-
atively close. Taken together, the above results all demon-
strate that the analysis of the spatiotemporal stochastic
frontier model is more reasonable and the development of
the high and new technology industry has positive correla-
tions in space and time. Due to space limitation, this paper
does not report the annual technical efficiency of the high-

Table 3: CV statistics corresponding to various weight matrices.

Weight matrices W1 W2 W3 W4 W5 W6

CV statistics 526.932 403.9296 333.7308 157.5527 320.589 104.8576

Table 4: Moran’s I indices among the production values of the high and new technology industry.

Index P value Index P value Index P value Index P value

Year 2011 2012 2013 2014

Moran I 0.286 P ≤ 0:01 0.321 P ≤ 0:001 0.340 P ≤ 0:001 0.302 P ≤ 0:01
Year 2015 2016 2017 2018

Moran I 0.312 P ≤ 0:01 0.298 P ≤ 0:01 0.305 P ≤ 0:01 0.317 P ≤ 0:01

Table 5: Estimation results by the static panel space and spatiotemporal stochastic frontier model.

Dependent variable Ln y
Model

Static panel spatial stochastic
frontier

Spatiotemporal stochastic
frontier

Variable
Fixed effects Random effects

Coefficients P value Coefficients P value Coefficients P value

ln k 0.397∗∗∗ 0.001 0.401∗∗ 0.001 0.405∗∗ 0.008

ln l 0.686∗∗∗ 0.008 0.713∗∗ 0.017 0.718∗∗∗ 0.005

λ 0.435∗∗ 0.012 0.576∗∗∗ 0.002 0.369∗∗∗ 0.005

π — — — — 0.205∗∗ 0.011

ρ 0.551∗∗∗ 0.007 0.698∗∗ 0.013 0.585∗∗ 0.017

σ2u 2.65E-05 0.337 0.656

σ2v 0.387 0.132 0.180

γ 6.850E-04 0.719 0.786

Hausmanstatistics -39282.77 D statistics 10.668∗∗

In the table, ∗∗ indicates those that can pass the test with 5% significance level.

Table 6: Average technological efficiency of high-tech industries in 31 provinces.

Province TE Province TE Province TE Province TE

Anhui 0.817 Guizhou 0.818 Hunan 0.812 Ningxia 0.786

Beijing 0.985 Hainan 0.876 Jilin 0.835 Qinghai 0.733

Chongqing 0.912 Hebei 0.786 Jiangsu 0.951 Sichuan 0.851

Fujian 0.936 Heilongjiang 0.835 Jiangxi 0.792 Shandong 0.876

Gansu 0.932 Henan 0.752 Liaoning 0.931 Shanghai 0.966

Guangdong 0.755 Hubei 0.851 Neimenggu 0.872 Shǎnxi 0.795

Guangxi 0.785 Shānxi 0.787 Tianjin 0.975 Xinjiang 0.651

Tibet 0.668 Yunnan 0.815 Zhejiang 0.952

Data source: calculated based on pattern II stochastic effects model of a function.
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tech industries of each province. The spatial-temporal sto-
chastic frontier model is used to calculate the average techni-
cal efficiency of the high-tech industries of each province
from 2001 to 2018 as follows.

It can be seen from the calculation results in Table 6 that
the average technical efficiency value of the high-tech indus-
tries in all provinces in China is less than 1, which indicates
that the actual output of the high-tech industries in all prov-
inces has not reached the most effective output level, and
there is technological inefficiency in production. The five-
year national average technical efficiency level was 0.837,
and there are obvious regional differences in the technical
efficiency values presented in Table 4. Nine provinces (Bei-
jing, Chongqing, Fujian, Gansu, Jiangsu, Liaoning, Shanghai,
Tianjin, and Zhejiang) achieved an average technical effi-
ciency of more than 0.9, seven provinces are located in the
eastern region, one in the central region, and one in the
western region. There are 11 provinces with average techni-
cal efficiency below 0.8, namely, Guangdong, Guangxi, Gui-
zhou, Hebei, Henan, Jiangxi, Ningxia, Qinghai, Shaanxi,
Xinjiang, and Tibet. Only one of the provinces is in the east,
six in the central region, and four in the west.

5. Conclusion

In this paper, taking into account that the variables to be
explained might be affected by the time lag term and the
space-time interaction, we develop a dynamic model within
the framework of the panel spatial stochastic frontier model.
Due to the apparent endogeneity of the model, we use the
systematic GMMmethod to estimate the parameters, choose
suitable tool variables according to the model assumptions
and variable characteristics, and construct the suitable spa-
tiotemporal stochastic frontier model. We use the extreme
value consistence theorem and the uniform law of large
numbers (ULLN) to prove the consistency of the structural
parameter estimators and of the estimators of the error term
distribution parameters. Aiming at the selection of spatial
weight matrix of spatio-temporal model, a stratified crossva-
lidation method is designed to select the most appropriate
spatial weight matrix in a data-driven way according to the
characteristics of spatio-temporal data. Although the spatial
weight matrix selected by supervised learning may not be
suitable for analyzing all problems, this data-driven model
selection method is undoubtedly valuable and efficient.

From the analysis of the stochastic frontier model of
high-tech industries in China and the measurement of their
technical efficiency, we can draw the following conclusions.

There is a spatial positive correlation in the development
of high-tech industries between different regions of China.
The positive correlation between the output values of these
industries in different regions has been obtained by calculating
the Global Moran’s I index in each year. The estimation of the
spatial panel stochastic frontier model also indicates that the
spatial autoregressive coefficient is positive, proving the exis-
tence of such a positive correlation which has a positive impact
on the development of high-tech industries. There is also a
spatial agglomeration effect and a spatial and temporal lag
effect in these industries, illustrating that both static spill over

and dynamic continuity occur in the development of the high-
tech industries in China. The technical efficiency of high-tech
industries is relatively low. The strategic emerging industries
started earlier in eastern region, but developed more slowly
than in the central and western regions.

The Chinese economy is at a critical stage of replacing
old drivers of growth with new ones and transforming and
upgrading industries. The new round of technological and
industrial revolution 5.0 has given rise to new technologies,
new industries, new forms of business, and new models. In
this study, the data mining algorithm based on stochastic
frontier is used to calculate industrial efficiency, which is
not only suitable for high-tech industry but also helpful to
further enrich the research on the efficiency of new industry
and new mode and has certain practical significance to pro-
mote the steady development of the new round of scientific
and technological revolution of industry 5.0.

Appendix

A. Proof

Et = ½E1t ,⋯,ENt �′ is an n-dimensional nonzero composite
random error term vector, and Et is set as interindividual
nonautocorrelation according to classical econometric
assumptions for simplicity.

COV WA−1� �
Εt , Εt

� �
=〠

i

〠
j

δij cov Εit , Εjt


 �
=〠

i

δii var Εitð Þ,
ðA:1Þ

where δij is the element of the matrix WA−1. For any Εit ,
var ðΕitÞ > 0, then the sufficient and necessary condition
for the above formula to be 0 is WA−1 = 0, which is obvi-
ously inconsistent with the assumption of spatial weight
matrix in this paper. Therefore, it is proved that

COV WA−1� �
Εt , Εt

� �
≠ 0: ðA:2Þ

B. Extremum Consistency Theorem

If (1) (identification) QðθÞ is uniquely maximized at θ0,
(4) (compactness) the parameter space Θ is compact, (8)
(continuity) QðθÞ is continuous, and (9) (uniform conver-

gence in probability) sup
θ∈Θ

∣ Q̂ðθÞ −QðθÞ ∣ ⟶p 0, then bθ =

arg max
θ∈Θ

Q̂ðθÞ⟶p θ0.

C. Proof

From (25), we let ĤðθÞ = ð1/NÞ½H′N ,BBðΔY∗N − ΔZ∗NθÞ�
and HðθÞ = E½H′BBðΔY∗−ΔZ ∗ θÞ�, which are continuous
functions of the corresponding parameters constructed by
sample and global moment conditions, respectively. Â =
AN ,BB and A = ABB = E½H′BBGBBHBB�

−1
are the weight matrix

sample constructed and global constructed, respectively,
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where θ = ðλ1, λ2, γ, ΒÞ′ is the structural parameter vector of
the model. The above settings satisfy the following conditions:

(i) When θ = θ0, HðθÞ = E½H′BBðΔY∗−ΔZ ∗ θÞ� = 0,
and Â and A are both positive definite matrices

(ii) Θ, the parameter space of θ, is compact, and θ0 ∈Θ
(iii) For an arbitrary point θ ∈Θ, HðθÞ is a continuous

function

(iv) E sup
θ∈Θ

kHðθÞk <∞. Let

Q̂ θð Þ = −Ĥ θð Þ′ÂĤ θð Þ,
Q θð Þ = −H θð Þ′AH θð Þ

ðC:1Þ

We first prove uniqueness of the maximum value ofQðθÞ.
As Hðθ0Þ = 0, one has Qðθ0Þ = 0, which is the maximum

value of QðθÞ given that A is a positive definite matrix. From
the uniqueness of the true parameter value, for θ ≠ θ0, it is
satisfied that

H θð Þ ≠ 0,Q θð Þ = −H θð Þ′AH θð Þ < 0, ðC:2Þ

and therefore, θ = θ0 is the unique maximum of QðθÞ.
According to the uniform law of large numbers (ULLN),

when conditions (ii), (iii), and (iv) hold, E½HðθÞ� and QðθÞ
are continuous functions, and sup

θ∈Θ
kĤðθÞ −HðθÞk⟶p 0.

Noticing the structure of the weight matrices Â and A, and
the fact that the instrumental variable matrices H′N ,BB and
H′BB can be regarded as ĤðθÞ and HðθÞ under the condition
ΔY ∗ −ΔZ ∗ θ ≡ 1, one has Â⟶p A.

Q̂ θð Þ −Q θð Þ�� �� = Ĥ θð Þ′ÂĤ θð Þ −H θð Þ′AH θð Þ�� ��
= Ĥ θð Þ′ Â − A + A


 �
Ĥ θð Þ −H θð Þ′AH θð Þ�� ��

= Ĥ θð Þ′ Â − A

 �

Ĥ θð Þ + Ĥ θð Þ′AĤ θð Þ��
−H θð Þ′AH θð Þ�� = Ĥ θð Þ′ Â − A


 �
Ĥ θð Þ��

+ H∧ θð Þ −H θð Þ +H θð Þ½ �′A Ĥ θð Þ�
−H θð Þ +H θð Þ� −H θð Þ′AH θð Þ��

= Ĥ θð Þ′ Â − A

 �

Ĥ θð Þ + H∧ θð Þ½��
−H θð Þ�′A Ĥ θð Þ −H θð Þ� �

+ 2 H∧ θð Þ½
−H θð Þ�′AH θð Þ +H θð Þ′AH θð Þ
−H θð Þ′AH θð Þ�� = Ĥ θð Þ′ Â − A


 �
Ĥ θð Þ��

+ H∧ θð Þ −H θð Þ½ �′A Ĥ θð Þ −H θð Þ� �
+ 2 H∧ θð Þ −H θð Þ½ �′AH θð Þ��,

ðC:3Þ

where in the last line, we have applied the triangle inequality.

≤ Ĥ θð Þ′ Â − A

 �

Ĥ θð Þ�� �� + H∧ θð Þ −H θð Þ½ �′A Ĥ θð Þ���
−H θð Þ��� + 2 H∧ θð Þ −H θð Þ½ �′AH θð Þ�� �� ðC:4Þ

Taking supreme on both sides of the above inequality,
we obtain

sup
θ∈Θ

Q̂ θð Þ −Q θð Þ�� �� ≤ sup
θ∈Θ

Ĥ θð Þ′ Â − A

 �

Ĥ θð Þ�� ��
+ sup

θ∈Θ
H∧ θð Þ −H θð Þ½ �′A Ĥ θð Þ −H θð Þ� ��� ��

+ 2 sup
θ∈Θ

H∧ θð Þ −H θð Þ½ �′AH θð Þ�� ��
≤ sup

θ∈Θ
H∧ θð Þ′

 

2 Â − A



 


+ sup

θ∈Θ
H∧ θð Þ‐H θð Þk k2 Ak k

+ sup
θ∈Θ

Ĥ θð Þ‐H θð Þ

 


+ 2 sup

θ∈Θ
Ĥ θð Þ −H θð Þ

 

 · Ak k

· sup
θ∈Θ

H θð Þk k⟶p 0

ðC:5Þ

According to the Extremum Consistency Theorem, we

have bθSBB ⟶
p θ.
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