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This paper mainly discussed the problem of a multiechelon and multiperiod joint policy of inventory and supply network.
According to the random lead time and customers’ inventory demand, the ðs, SÞ policy was improved. Based on the
multiechelon supply network and the improved, the dynasty joint model was built. The supply scheme in every period
with the objective of minimum total costs is obtained. Considering the complexity of the model, the improved particle
swarm optimization algorithm combining the adaptive inertia weight and grading penalty function is adopted to calculate
this model and optimize the spare part problems in various environments.

1. Introduction

As an important foundation of product maintenance, the
research on spare parts in product maintenance is increas-
ingly applied in industrial and military fields. Along with
more and more research, it becomes more and more mature.

In the last practice, many researchers have studied many
aspects in every field of spare parts. Sherbrooke in the estab-
lishment of the aviation spare for maximum availability con-
sidered the failure laws of a complex system and established
a spare part demand model under complex factors [1]. Hu
et al. analyzed the characteristics of various spare part inven-
tory policies and distinguished the best use conditions for
different inventory policies [2]. Ghobbar and Friend added
dynamic coordination to the study of multistage spare part
supply to improve the stability of the spare part supply pro-
cess and improve system efficiency [3].

With the deepening of the research, the research of spare
part work is not limited to one aspect and gradually begins
to deepen the research on the whole process of spare part
work. Among these, the researchers are more interested in
the joint optimization of spare part inventory and supply pro-
cess. In the study of joint optimization, it is resulting from the
flexibility and random factors of maintenance mode, to con-

sider multiperiod continuous process than to study spare part
strategy for a certain period which is more valuable.

In the research of inventory policy, considering the char-
acteristics of modern inventory, then the ðT , SÞ and ðs, SÞ pol-
icies are more in line with the actual inventory management
experience [4]. According to the ðT , SÞ policy, the capacity will
be replenished to S in the same time interval of time T [5]. As
for the ðs, SÞ policy, when the capacity decreases less than s, the
capacity is replenished whose capacity maximum is S. In con-
trast, the ðs, SÞ policy is more flexible and more complex in the
research of inventory policy so that the joint inventory policy
is less studied. This paper will make use of the characteristics
and advantages of the ðs, SÞ policy in joint optimization to
carry out joint optimization research [6].

In the project of joint optimization of inventory and supply,
researchers focus on balancing transportation costs and break-
down losses caused by insufficient inventory based on satisfy-
ing demand and then determining the supply lead time, to
achieve the purpose of maximizing benefits. In many previous
works of literatures, fixed supply lead time is used to calculate,
but in contrast to practical experience, this assumption is
impractical, so much literature began to consider details of this
aspect [7]. Reference [6] shows that the supply lead time set is
an empirical formula, which is assumed to satisfy Poisson
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distribution in the literature, but the lead time will change
dynamically according to the influence of realistic objective,
subjective, or random factors. Therefore, the lead time can still
be further researched. The joint optimization in this paper can
calculate the specific delivery time of each customer by opti-
mizing the supply distribution process. The system optimizes
the supply distribution process by adjusting the quantity of
spare parts transporting between different nodes. So, the counts
of the spare parts transporting between different nodes are
regarded as the decision parameters and the optimization fac-
tors. The system can reduce the cost while ensuring the inven-
tory consumption throughout the supply cycle as far as possible
by adjusting these parameters.

The problem discussed in this paper is a multiechelon
supply network optimization problem. This paper used an
improved optimization algorithm to solve the problem. An
adaptive particle swarm optimization (PSO) algorithm is
proposed in this literature [8]. Based on the optimization
framework of the traditional PSO algorithm, the improved
algorithm can detect and respond to the changes in the optimi-
zation environment. Otherwise, we jointed the new parameters,
such as the inertia weight and penalty function. The global
exploration and local development ability of the algorithm is
adjusted in time to improve the efficiency of the algorithm
and adopt an adaptive neighborhood search policy when the
environment changes.

The rest of this paper is arranged as follows: Section 2
outlines spare part supply, inventory policy, and joint opti-
mization. Section 3 provides a multiperiod spare part supply
optimization model based on product characteristics and
applying the ðs, SÞ policy. Section 4 introduces the proposed
improved PSO algorithm. Section 5 gave a numerical case to
analyze the corresponding results. Section 6 combined
numerical examples to analyze the sensitivity of the model
and compare it with the traditional policy. Conclusions
and future work were given in Section 7.

2. Literature Review

2.1. Supply Network Optimization. Many researchers study
supply networks for a long time. The main research objectives
are two aspects. The first one is the supply cycle. Most of
research tend to study the supply of spare parts in a single
echelon, while multistage supply should be studied in joint
optimization. Sherbrooke [9] firstly builds the metric model
by multiperiod resupply process. Vaughan studied the
multiperiod process of supply to build the ordering policy of
spare parts according to random failure possibility [10]. The
research on the supply cycle is developed to multiple periods.

Another one is the supply structure. Cachon [11] built the
two-echelon supply network. Kennedy et al. [12] research on
multiechelon supply process. The research on the supply
network structure began to develop from single-echelon to
two-echelon and multiechelon.

2.2. Inventory Policy. The inventory strategy, aiming at the
optimization goal, can be divided into two main aspects. On
the one hand, the periodic inventory strategy, which is mainly
represented by the ðT , SÞ and ðT ,QÞ inventory strategy,

regards the inventory time as the optimization object. This
kind of inventory strategy complements the inventory at the
specified time node which is a difference by one period T to
replenish the inventory capacity to S [13, 14]. On the other
hand, the other inventory strategy is mainly represented by
the ðs, SÞ and ðs,QÞ inventory strategy. According to the ðs, SÞ
and ðs,QÞ inventory strategy, when the capacity level is equal
to or less than s, the system will resupply the spare parts to
increase inventory up to S or resupply the stable quantity Q of
spare parts [6, 15, 16].

However, when analyzing the inventory strategy of the
second kind, the inventory cannot be monitored in real-time
under the actual situation, so the interval time of monitoring
is still considered in the research process. In the process of
optimization, more researchers’ points focused on the study
of time, so ðs, SÞ and ðs,QÞ which stand for the second kind
of inventory strategy are developed into ðs, S, tÞ and ðs,Q, tÞ
inventory strategy [17, 18]. What is more, the maximum
inventory in different nodes can be different.

2.3. Joint Optimization. For the research of joint strategy
optimization, more researchers focus on the joint optimiza-
tion of maintenance and inventory policy, and there are
relatively few joint optimization studies on inventory and
supply policy.

Federgruen and Zipkin [19] firstly began to consider the
joint of inventory and supply. In the present, the research of
inventory and supply joint model mostly starts from two
aspects. On the one hand, Spanjers et al. [16] used two eche-
lons in the structure of the joint model. Then, Aharon and
Boaz studied establishing multiechelon and multiperiod joint
models [17]. Furthermore, the joint model of decentralization
is established by Aggarwal and Moinzadeh [18].

On the other hand, many researchers begin to study
joint optimization through fixed-length check inventory
strategy, such as ðT , SÞ and ðT ,QÞ [14, 20]. However, with
the development of joint policy, the complexity of joint opti-
mization is getting deeper and wider. This kind of fixed-
length check strategy is not suitable for the developed joint
policy. So, some researchers change to another kind of
inventory strategy, such as ðs, SÞ and ðs,QÞ [10, 21].

2.4. Solution Algorithm. There are many algorithms that
emerged endlessly in the field of algorithm research. The
new intelligent algorithm which combined the advantages of
different algorithms has also been developed deeply [21–23].

Whether it is a traditional algorithm or a new intelligent
algorithm, there are mainly two types, namely, heuristic and
metaheuristic [24]. Among most supply models, particle
swarm optimization (PSO) is mostly used. The PSO algorithm
is a parallel algorithm, which makes use of the advantages of
parallel computing of current processors efficiently and greatly
improves the efficiency of optimization. Kennedy et al. [12]
firstly adopted this algorithm. However, considering the diver-
sity and complexity of the current supply model, the tradi-
tional PSO algorithm solves this kind of model problem for
a long time and cannot obtain the result even. In order to
improve this, many researchers begin to work. One hand is
that Clerc and Kennedy [25] adopted the contraction factor
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into the algorithm structure. Leong and Yen [26] adjust the
inertia weight according to the particles’ positions to speed
up the convergence rate. On the other hand, Mezura-Montes
and Coello Coello [27] improved the pental function in the
algorithm to improve the optimization ability.

The improved algorithm in this paper combines the
nonlinear dynamic inertia weight and the penalty factor of
dynamic correction used to detect the global optimum.
Adjusting the convergence weight of particles in global and
local optimization adapts to the multiperiod iteration of
the model. It is suitable for solving the multiperiod continu-
ous optimization problem.

3. Modelling

3.1. Problem Description Assumptions. The three-echelon
spare part supply network consists of supply centers, distri-
bution points, and customers, and the organizational struc-
ture is shown in Figure 1. Spare parts are sent from the
first-echelon supply centers to the second-echelon reloading
points and then from the reloading points to the third-
echelon customers (the third-echelon customers include
the used machines and the storage storehouses). Spare part
transportation at all echelons does not affect the consump-
tion of spare parts at the third echelon. The used
machines at the third echelon are maintained by replace-
ment, and the failure rate of spare parts is determined.
The storage storehouses at the third echelon adopted the
ðs, SÞ policy [28].

Because the demand for spare parts is multiperiod and
the demand is intermittent, the purpose of the model is to
minimize the total cost under the previous condition of a
certain support rate. By adjusting the supply time of each
period, the number of spare part supplies in each period is
optimized and the optimal allocation scheme for each period
is found.

The plan formulation process is as follows:
First of all, according to the life distribution of parts, the

consumption of spare parts in time intervals can be calcu-
lated. Then, according to the requirements of the selected
inventory policy, calculating the spare part demand is possi-
ble in the corresponding periods. Secondly, aiming at the
minimum cost, the spare part supply network is constructed,
supplemented by the corresponding constraints (node dis-
tance, capacity, transportation cost, transportation capacity,
and others). According to the capacity level of each storage
storehouse to supply at the third echelon, the conditions
conclude the supply level of the system; above all, the opti-
mal spare part supply policy will be obtained.

Because the demand for spare parts is multiperiod and
the demand is intermittent, the purpose of the model is to
minimize the total cost under the previous condition of a
certain support rate. By adjusting the supply time of each
period, the number of spare part supplies in each period is
optimized and the optimal allocation scheme for each period
is found.

(1) Assumptions and conditions

(a) The capacity of supply centers at the first echelon is
unlimited

(b) The second-echelon reloading points only carry on
the spare part transshipment and do not store up

(c) This joint model only considers one key kind of
parts

(d) Customers at the third echelon have the same
importance degree

(2) Notions

i = 1, 2, 3⋯N : index of supply centers at first echelon.
j = 1, 2, 3⋯M: index of reloading points at second

echelon.
k = 1, 2, 3⋯O: index of customers at the third echelon.
τ = 1, 2, 3⋯ ψ: index of supply periods.
nk: the quantity of customer k’s machines at the third

echelon.
t0τ: arrival time of spare part resupply to a customer in

period τ.
Sk: the maximum inventory of customer k.
sk: the inventory node of customer k.
tτ: lead time of resupply in period τ.
Tkτ: the supply interval between period τ − 1 and period

τ for customer k theoretically.

Tkτ′: the time from arriving at customer k’s storage
storehouse in the previous period to it in period τ theoreti-
cally, as follows:

Tkτ ′ = tkτ−1 + Tkτ: ð1Þ

Tτ: the transporting time of system in period τ.
hð f Þ: failure probability density function of the equip-

ment resulting from the failure of the spare parts.
FðhÞ: failure cumulative distribution function of the

equipment resulting from the failure of the spare parts.
pk: supply support degree of the customer k at third

echelon.
Nk

Tkτ: consumption of customer k’s spare parts in the
supply interval of period τ.

First echelon Supply
center 1

Supply
center 2

Supply
center N

Reloading
point M

…

…

…

Reloading
point 2

Reloading
point 1

Customer 1 Customer 2 Customer 3 Customer O

Second echelon

Third echelon

Figure 1: Three-echelon supply network.
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Nk
tkτ: consumption of customer k’s spare parts in the

lead time of period τ.
Nkτ: consumption of customer k’s spare parts in period τ

.
Cij

p: unit transport cost from supply center i to reloading
point j.

Cjk
p: unit transport cost from reloading point j and

customer k.
Cp: total transport cost.
Ck

v: unit inventory cost of customer k at third echelon.
Ck

o: ordering cost of customer k at third echelon.
Cl
τ: total delay loss by no spare part.

Ck
l: delay loss for customer k at third echelon by no

spare part.
dτk: the quantity of resupply spare parts to customer k at

third echelon in period τ.
Tij

p: the time from supply center i at first echelon to
reloading point j at second echelon.

T jk
p: the time from reloading point j at second echelon

to reloading point k at second echelon.
wp: weight of unit spare part.
wc: limited weight of unit transport vehicle.
bNM

cτ: the count of transport vehicle from N supply
centers to M reloading points in period τ.

bMO
cτ: the count of transport vehicle from M reloading

points to O customers in period τ.

(3) Decision variable and notations

Xτ
ij: the count of the spare parts transporting from sup-

ply center i at first echelon to reloading point j at second
echelon in period τ.

Xτ
jk: the count of the spare parts transporting from

reloading point j at second echelon to customer k at third
echelon in period τ.

3.2. Calculation of Spare Part Requirements. First of all,
according to the principle of demand traction supply and
the life distribution of spare parts, within the limited time
range of each period, the replacement probability of spare
parts (spare part consumption is s) is as follows:

Px sð Þ = Fs hð Þ − Fs+1 hð Þ, ð2Þ

where FsðhÞ represents FðhÞ’s s-fold convolution [29].
The formula of supply support degree is as follows:

P = 〠
N

s=0
Px sð Þ = 〠

N

s=0
Fs hð Þ − Fs+1 hð Þ� �

: ð3Þ

At the same time, the consumption formula of parts with
different life distributions is given as follows:

(a) Assuming that the life of the part is exponentially
distributed from the failure rate λ, the consumption
is as follows:

λh + Zp

ffiffiffiffiffiffi
λh

p
, ð4Þ

where Zp is the quantile of the standard normal
distribution.

(b) Assuming that the life of the component follows the
normal distribution of mean μ and standard devia-
tion σ, the consumption is as follows:

h
μ
+ Zp

ffiffiffiffiffiffiffiffiffiffi
σ2h
μ3

:

s
ð5Þ

(c) Assuming that the life of the component follows the
Weibull distribution with shape parameter α, scale
parameter β, and position parameter γ = 0, the
expectation of consumption is as follows:

ZpΦ

2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZpΦ

2

� �2
+ h
E

s2
4

3
5
2

, ð6Þ

where the expectation E and the variance Φ are as Equa-
tions (7) and (8) in the following:

E = β ⋅ Γ 1 + 1
β

� �
, ð7Þ

Φ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 1 + 2/βð Þ

Γ 1 + 1/βð Þ2 − 1

s
: ð8Þ

Supply decision starts with spare part demand. Spare
part resupply in each period τ shall meet all spare part
consumption of the interval time from the former resupply
arriving time tτ−10 in period τ − 1 to the current resupply
arriving time tτ0 in period τ. According to the definition of
Tτ′, it can be divided into the counts of consumption in
supply interval Tτ and lead time tτ.

According to Equation (2), the spare part consumption
of customer k in the supply interval Tτ

k of the third echelon
is as follows:

NTkτ

k = nk ⋅ inf NTkτ

k ∣ pk ≥ 〠
NTkτ

k

s=0
Fs Tkτ′ − tτ−1
� �

− Fs+1 Tkτ′ − tτ−1
� �h i8<

:
9=
;:

ð9Þ

Spare part consumption during lead time tτ at the third
echelon is as follows:
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Ntkτ
k = nk ⋅ inf Ntkτ

k ∣ pk ≥ 〠
Ntkτ

k

s=0
Fs tτð Þ − Fs+1 tτð Þ� �8<

:
9=
;: ð10Þ

Therefore, according to Equations (9) and (10), the spare
part consumption of customer k in the period τ is as follows:

Nτ
k = nk ⋅ inf Nτ

k ∣ pk ≥ 〠
Nτ

k

s=0
Fs Tkτ − tτ−1 + tτ
� �

− Fs+1 Tkτ − tτ−1 + tτ
� �h i8<

:
9=
;:

ð11Þ

3.3. The Joint Optimization Model Based on the ðs, SÞ and
Supply Policy. In the decisions of spare part inventory and
supply, the model may involve the cost of transportation,
inventory costs, ordering costs, downtime loss, and so on.

Due to equipment failure and the reduction of spare part
inventory, it is necessary to resupply in advance to ensure
the spare parts during maintenance. Otherwise, the huge
cost of downtime brings a huge burden to customers.

The goal of the model is to reduce the equipment down-
time loss and inventory cost as far as possible and to make
the cost of the whole spare part inventory-supply process
lowest under a certain equipment availability. In the discus-
sion of this model, the functional model of spare parts is not
discussed.

According to the characteristics of the ðs, SÞ policy, the
cost of this model includes transportation cost, inventory
cost, order cost, and downtime loss. The objective function
is as follows:

min Cτ = Cp
τ + 〠

O

k

Cv
k 〠

M

j

Xτ
jk

 !
+ 〠

O

k

Co
k + Cl

τ: ð12Þ

Among them, the first item is the transportation cost, the
second item is the inventory cost, the third item is the order
cost, and the fourth item is the breakdown loss of machines.

According to the ðs, SÞ policy, the consumption of spare
parts during the period τ should be equal to the difference
between Sk and sk, as follows:

NTkτ
k = Sk − sk: ð13Þ

Combination with Equations (9) and (13) can be
expressed as follows:

nk ⋅ inf Nτ
k ∣ pk ≥ 〠

Nτ
k

s=0
Fs Tkτ − tτ−1 + tτ
� �

− Fs+1 Tkτ − tτ−1 + tτ
� �h i8<

:
9=
; = Sk − sk:

ð14Þ

According to Equation (14), the system supply time of
the third echelon in the period τ can be obtained, but in
the actual supply, the model generally adopts the unified
supply, and the supply time should be determined by the
supply level of inventory capacity in the third echelon. The
actual supply time should be the maximum theoretical time
in the third echelon:

Tτ =max Tkτ
� �

: ð15Þ

Therefore, Equation (14) can be adjusted to

nk ⋅ inf Nτ
k ∣ pk ≥ 〠

Nτ
k

s=0
Fs Tτ − tτ−1 + tτ
	 


− Fs+1 Tτ − tτ−1 + tτ
	 
� �8<

:
9=
; = Sk − sk ′:

ð16Þ

From Equation (16), the resupply nodes in customers’
inventories in fact is determined by which inventory reach-
ing the supply point at the latest.

The resupply quantity of spare parts during the period τ
should bring the inventory of each cunstomer back to the
maximum. When there are spare parts in store, the quantity
should be the difference between the maximum inventory
and the remaining inventory. When the spare parts are used
up, the quantity should be equal to the maximum. It should
be expressed as follows:

dτk = 〠
M

j

Xτ
jk =min Sk,Nτ

kð Þ: ð17Þ

Secondly, since the reloading points have no inventory
capacity, the output of spare parts should be equal to the
input of the reloading points, as follows:

〠
N

i

Xτ
ij = 〠

O

k

Xτ
jk: ð18Þ

Furthermore, the quantity of transport is limited and is
not higher than the maximum transfer capacity of each
reloading point, as follows:

〠
N

i

Xτ
ij ≤U j: ð19Þ

At the same time, in the resupply process of spare parts,
the part of downtime loss should be considered, as follows:

Cl
τ = 〠

O

k

Cl
knk −min sk −Ntkτ

k , 0
� �� �

: ð20Þ

When the remaining spare parts in inventory are suffi-
cient to meet the spare part consumption in the lead time
tτ, there is no downtime loss, as follows:

sk −Ntkτ
k ≥ 0: ð21Þ

When the remaining spare parts cannot do it, it is neces-
sary to bear the downtime loss of machines that cannot
replace spare parts, as in Equations (22) and (23) in the fol-
lowing:

sk −Ntkτ
k < 0, ð22Þ
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Cl
τ = 〠

O

k

Cl
knk sk −Ntkτ

k

� �
: ð23Þ

In the course of transport, taking into account the trans-
port limit of vehicles, the total weight transported by a single
means of transport shall not exceed the limit specified by the
means of transport, as in Equations (24) and (25) in the fol-
lowing:

bcτNM = 〠
N

i

〠
M

j

Xτ
ij ×

wc

wp

" #
, ð24Þ

bcτMO = 〠
M

j

〠
O

k

Xτ
jk ×

wc

wp

" #
, ð25Þ

where the Gaussian function is used in the above formu-
las, which is rounding up. When the resupply weight exceeds
the limit weight for a vehicle, an additional vehicle is needed.

The transport cost is related to the distance of transport
carrying out transport, as follows:

Cp
τ = bcτNM × Cp

ij + bcτMO × Cp
jk = 〠

N

i

〠
M

j

Xτ
ij ×

wc

wp

" #
× Cp

ij

 !

+ 〠
M

j

〠
O

k

Xτ
jk ×

wc

wp

" #
× Cp

jk

 !
:

In this model, it is one of the previous conditions that
spare parts can start to be delivered to customers only after
all spare parts arrive at the reloading points. For different
customers, the delivery time between supply centers and
reloading points is the same, but the delivery time between
reloading points and customers is determined by the time
of the spare parts arriving at the customers. Therefore, the
customer’s arriving time is different from each other, and
the span of the transportation time is related to the quantity
of spare parts transported.

In period τ, the lead time tτ for the entire system is as
follows:

tτ =max Xτ
ijT

p
ij

� �
+max Xτ

jkT
p
jk

� �
: ð27Þ

The lead time is determined by the amount of spare
parts transported between nodes and transportation time.
The system would not start the next resupply until the cur-
rent supply ends. So, the lead time should be equal to the
maximum resupply time between nodes.

At the same time, as shown in Equation (28) in the
following:

t0 = 0, ð28Þ

where the beginning of the system needs not a resupply.

There is a one more thing that the variable is the natural
number and positive number, as follows:

Xτ
ij, Xτ

jk ∈N
+: ð29Þ

Composed with the previous formulas, the multiperiod
joint model of inventory and supply is as follows:

min Cτ = 〠
N

i

〠
M

j

Xτ
ij ×

wc

wp

" #
× Cp

ij

 !
+ 〠

M

j

〠
O

k

Xτ
jk ×

wc

wp

" #
× Cp

jk

 !
+ 〠

O

k

Cv
k 〠

M

j

Xτ
jk

 !
+ 〠

O

k

Co
k,

s:t:Xτ
ij, Xτ

jk ∈N
+,

Nτ
k = nk ⋅ Nτ

k ∣ pk ≥ 〠
Nτ

k

s=0
Fs Tkτ − tτ−1 + tτ
� �

− Fs+1 Tkτ − tτ−1 + tτ
� �h i8<

:
9=
;,

dτk = 〠
M

j

Xτ
jk =min Sk,Nτ

kð Þ,

nk ⋅ inf Nτ
k ∣ pk ≥ 〠

Nτ
k

s=0
Fs Tτ − tτ−1 + tτ
	 


− Fs+1 Tτ − tτ−1 + tτ
	 
� �8<

:
9=
; = Sk − sk ′,

〠
N

i

Xτ
ij ≤U j,

〠
N

i

Xτ
ij = 〠

O

k

Xτ
jk,

tτ =max Xτ
ijT

p
ij

� �
+max Xτ

jkT
p
jk

� �
,

t0 = 0,

Ntτ
k = nk ⋅ inf Ntτ

k ∣ pk ≥ 〠
Ntτ

k

s=0
Fs tτð Þ − Fs+1 tτð Þ� �8<

:
9=
;,

i = 1, 2, 3⋯N ; j = 1, 2, 3⋯M ; k = 1, 2, 3⋯O ;
τ = 1, 2, 3⋯ ψ,
Xτ
ij, Xτ

jk ∈N
+:

ð30Þ

4. Proposed Algorithm

For calculating the proposed model, it is used the intelligent
algorithm in this paper. Because of the learning ability of
them, especially the PSO algorithm, it can make good use
of the existing resources to search the optional decision var-
iables fully, so the PSO algorithm is a good method to solve
it. So, we decide to adopt the PSO algorithm to solve this
problem.

On the other hand, there are many assumptions and
conditions established in this article. Because of that, there
are many model constraints, and the target environment
structure is more complicated. As the number of data
increases, the solution of the PSO algorithm is likely to enter
the “local selection trap” and thus cannot obtain the global
optimal solution. Therefore, in order to solve this problem,
this paper used an improved PSO algorithm.

4.1. Traditional PSO Algorithm. Set the potential solution to
the optimization problem as a group of particles in space.
Suppose there are N particles in a D-dimensional search
space, and the vector of the ith particle in the D-dimen-
sional space is expressed as Equation (31) [30].

Xi = xi1, xi2, xi3 ⋯ xiDð Þ, i = 1, 2, 3⋯N: ð31Þ

Each particles have an adaptive value (fitness value)
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determined by its location and passing velocity. The “flying”
velocity is as follows:

Vi = vi1, vi2, vi3 ⋯ viDð Þ, i = 1, 2, 3⋯N: ð32Þ

Their location updates are as in Equations (33) and (34)
in the following:

vid t + 1ð Þ =w ⋅ vid tð Þ + c1 ⋅ r1 ⋅ pid − xid tð Þ½ � + c2 ⋅ r2 ⋅ pid − xid tð Þ½ �,
ð33Þ

xid t + 1ð Þ = xid tð Þ + vid t + 1ð Þ: ð34Þ
Among them, Pi

best is the i
th particle that so far obtained

the optimal position. The individual extreme point is
recorded as follows:

Pi
best = pi1, pi2, pi3 ⋯ piDð Þ, i = 1, 2, 3⋯N: ð35Þ

Gbest is the optimal position that the entire particle
swarm has searched so far. The global extreme point is
denoted as follows:

Gbest = gi1, gi2, gi3 ⋯ giDð Þ, i = 1, 2, 3⋯N: ð36Þ

For inertia weight w, it is used to represent the influence
of the initial state on the particle motion. The acceleration
degree ðc1, c2Þ and the acceleration weight coefficient ðr1, r2
Þ, which are composed of the last two terms of Equation
(33), represent the influence of the particle’s own historical
experience data and the collective historical data on the par-
ticle motion. Find the position of the optimal fitness value
particles, compare and adjust the local and global extremum
points. From then on, repeat Equations (33) and (34),
update the local and global extremum, and get the optimal
extremum of the system [31].

However, the PSO algorithm also has its disadvantages.
For an in-depth discussion of it, one of the biggest advan-
tages lies in the application of the algorithm. The adjustment
parameters are less, but they directly affect the performance
and convergence of the algorithm [32]. For the weight
parameter w, the traditional PSO algorithm can improve
the global search ability and reduce the local search ability
of the algorithm. Therefore, many researchers began to put
forward many programmers that improved the weight
parameter w, such as the adaptive weight method, the ran-
dom weight method, and the linear recursive weight
method.

4.2. Adaptive Weight Method. The adaptive weight method
mainly has two kinds of optimization directions. Firstly,
according to the early convergence degree of particle swarm,
and the value of population fitness, the change of inertia
weight w is determined, and the population is divided into
three subsets. It is known that the velocity of the algorithm’s
constringency depends on the dispersion degree of particles.
Therefore, when the dispersion degree of particles is a little
dispersed, the adaptive weight method reveals details that
decreasing the value of w does well in speeding up the veloc-

ity of algorithm’s constringency. On the other hand, it can
raise the value of w to decrease the degree of falling into
the “local optimal” trap either [32–34].

Secondly, there is also a method used in this paper to
adjust the inertia weight w for the global optimal distance
from the current position, as shown in Figure 2. Because
the PSO algorithm gets closer to the global optimal in theory
through optimization, it decreases w continuously with iter-
ations. On the contrary, it will increase w to strengthen the
ability of global research [35].

According to the former discussion, the nonlinear dynamic
inertia weight coefficient is determined by the current position.
The formula is as follows:

w =
wmin −

wmax −wmaxð Þ × fitness − fitnessminð Þ
fitnessavg − fitnessmin

, fitness ≤ fitnessavg,

wmax, fitness > fitnessavg,

8><
>:

ð37Þ

where fitness represents the current fitness value, fitnessmin
and fitnessavg represent theminimum and average of the fitness
values of all current particles. It can be seen from Equation (37)
that when the adaptation value difference of each particle is get-
ting larger, the inertia weight w will be dereasing. When the
adaptation value of each particle swarm is getting closer, the
inertia weight w will be increasing.

4.3. Fitness Function. In order to deepen the fluence of the con-
straints in the optimization, the penalty function is introduced
into the adaptive function. As a common method to deal with
constraints, the penalty function method can transform the
constraint optimization problem into an unconstrained

Begin
Input acceleration degree c1, c2

time of maximum iteration M
search space dimension D
number of individual groups N
inertia weight w

Set condition of stopping iteration
Initialize local extremum Pbest

i and global extremum Gbest
For condition of stopping iteration
Do for i ←1 to N

Do for j ←1 to D
Do initialize particle position x(i, j) randomly

initialize particle position v(i, j) randomly
For i ←1 to N
Do for j ←1 to D

Do calculate fitness value of each particle
If (fitness(x(i, j)) < fitness(Pbest

i))
Then [Pbest

i ← x(i j)]
If (fitness(Pbest

i) < fitness(Gbest))
Then [Gbest ← Pbest

i]
vid ← w∙vid + c1∙r1∙(pid - xid) + c2∙r2∙(pid - xid)
xid ← xid + vid

End

Algorithm 1: Traditional PSO algorithm.
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optimization problem. The punishment function method is
mainly divided into an internal punishment method and exter-
nal punishment method. Set the appropriate parameters
according to the constraint conditions and establish the penalty
function.

The adaptive function is composed of three parts, which
conclude the set variables, the optimized objective function,
and the variable constraint condition. The general formula is
as follows:

L x i, jð Þ, k½ � = fitness x i, jð Þ½ � + σ ⋅ P x i, jð Þ½ �, ð38Þ

where fitness½xði, jÞ� is the objective function, σ is the
penalty factor, and P½xði, jÞ� is the limit function.

A limit function is a set of nðn = 1, 2, 3⋯NÞ limiting
conditions, as follows:

P x i, jð Þ½ � = 〠
N

n=1
Gn x i, jð Þ½ �: ð39Þ

Among them, Gn½xði, jÞ� is the function of the corre-
sponding constraint condition, which is affected by the
constraint function, as follows:

P x i, jð Þ½ � = 〠
l

n=1
max 0, gn x i, jð Þ½ �f g + 〠

m

n=1
max 0, hn x i, jð Þ½ �j j − δf g,

ð40Þ

where m is the quantity of constraints and δ is the toler-
ance value of the equality constraint. It is the unequal con-
straint, when the condition is as follows:

gn x i, jð Þ½ � ≤ 0: ð41Þ

It is the equivalent constraint, when the condition is as
follows:

hn x i, jð Þ½ � = 0, δ⟶ 0ð Þ: ð42Þ

In most algorithms, a fixed penalty value method is
generally used. With the iterations of the particle swarm
algorithm, the parameters of the group will change. A
dynamic correction method whose penalty value changes
with the constraint value is shown in Reference [34]. The
general formula of the penalty function is as follows:

L x i, jð Þ, k½ � = fitness x i, jð Þ½ � + h kð Þ ⋅ P x i, jð Þ½ �: ð43Þ

Among them, the penalty factor hðkÞ is obtained with
the number of iteration k increases, and the limit function
P½xði, jÞ� is improved to satisfy the requirements of multi-
stage iterative changes, as follows:

P x i, jð Þ½ � = 〠
m

n=1
θ qn x i, jð Þ½ �f g ⋅ qn x i, jð Þ½ �γ qn x i,jð Þ½ �f g, ð44Þ

where qn½xði, jÞ�, θfqn½xði, jÞ�g, and γfqn½xði, jÞ�g are the
corresponding series of violation constraint function, multi-
iteration distribution function, and penalty function.

The search space of the constrained optimization prob-
lem is composed of feasible points and infeasible points.
The feasible points satisfy all the constraints, and the infea-
sible points violate at least one constraint. Penalty function
technology solves the constrained optimization problem
through penalty constraints. If the penalty value of penalty
function is too high, the optimization algorithm is easy to
converge to the local minimum solution. If the penalty value
is too low, it is difficult to find a feasible optimization solu-
tion. The penalty function is divided into fixed penalty value
and dynamic correction of penalty value. The penalty func-
tion depends on the constraint condition. The optimization
result obtained by the dynamic modification of the penalty
value with the change of the constraint value is better than
that of the fixed penalty value.

Start

Initialize the position and 
velocity of particle random

Calculate fitness of each
particle

Store value of each particle 
fitness in individual

Compare individual 
extremum of each particle

Update positions and 
parameters of particles

Updated weight

Whether to 
compare with the distances 
between the new and best 

particles

Update value of each 
individual extremum

Y

Whether
 value of individual 
extremum is higher 

than global 
extremum

Store value of optimal 
fitness in global extremum

R

Whether to satisfy the 
cessation conditions

N

N

The best fitness 
and position

End

Y

Y

extremum

Figure 2: Adjusting the inertial parameter flow at the best global distance.

8 Wireless Communications and Mobile Computing



Above the former discussion, the rules of corresponding
parameter satisfied are as the following:

(1) When

qn x i, jð Þ½ � < 1, γ qn x i, jð Þ½ �f g = 1, n = 1, 2, 3⋯m ð45Þ

(2) When

qn x i, jð Þ½ � < 1, γ qn x i, jð Þ½ �f g = 1, n = 1, 2, 3⋯m ð46Þ

(3) When

qn x i, jð Þ½ � < 1, γ qn x i, jð Þ½ �f g = 1, n = 1, 2, 3⋯m ð47Þ

(4) When

0:001 ≤ qn x i, jð Þ½ � < 0:1, θ qn x i, jð Þ½ �f g = 20, n = 1, 2, 3⋯m

ð48Þ

(5) When

0:1 ≤ qn x i, jð Þ½ � < 1, θ qn x i, jð Þ½ �f g = 100, n = 1, 2, 3⋯m

ð49Þ

(6) When

qn x i, jð Þ½ � ≥ 1, θ qn x i, jð Þ½ �f g = 300, n = 1, 2, 3⋯m ð50Þ

It can be seen from the penalty function value corre-
sponding to the function value listed above that for different
limit function values, the penalty function is classified. The

closer the function value is, the smaller the penalty amount.
On the contrary, the farther the value is, the penalty the
larger the value of the function, the stronger the convergence
efficiency of the improved PSO algorithm mentioned in the
article.

4.4. Particle Coding. In this article, an integer coding method
is used to index each particle, and the variation of each
dimension of each particle represents the number of spare
parts transported between different nodes.

As shown in Figure 3, it represents the quantity of the
spare parts transferring to every second-echelon reloading
point in the first-echelon supply center i. Resulting from it,
x1 ~ xJ represent the number of spare parts transferred from
the first-echelon supply center 1 to the second-echelon
reloading points, xJ+1 ~ xJ×2 represent the number of spare
parts transferred from the first-echelon supply center 2 to
the second-echelon reloading points, and so on. While
xI×J+1 ~ xI×J+K are the quantity of transporting from
second-echelon reloading point 1 to the storage storehouses
of third-echelon customers, xI×J+K+1 ~ xI×J+K×2 are the quan-
tity of transporting from second-echelon reloading point 2
to the storage storehouses of third-echelon customers, etc.

4.5. Improved Algorithm Framework. To sum up, this paper
combined the inertial weight method and the multistage
allocation penalty function method to adjust the global opti-
mal distance from the current position and adopts the
improved PSO algorithm. The following is the main process
of the improved algorithm:

5. Case Analysis

5.1. Case Description. This paper will provide a case to show
the actual optimization effect and test the correctness of the
established model and algorithm. Data comes from a spare
parts supplier in 2019.

At present, a kind of machine has widely used in a cer-
tain area, so that there is a demand that 6 customers need
to be supplied spare parts to the three reloading points at
first echelon by one supply center at first echelon. When
the inventory level of spare parts’ capacity reaches the set
spare part supply level, the customers send out the required
supply information. The first-echelon supply center supplies
the same. In this case, all customers are factories assuming
that six factories use the machine in the area. Considering
the complexity of the distance and transportation
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Figure 3: Schematic diagram of particle code.
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conditions, the factories reserve spare parts for this kind of
machine, but because of the particularity of the parts using
this kind of spare parts, these kinds of parts can only be used
in the factory for the maintenance and replacement of the
machine. The lifetime distribution of parts is known, as
shown in Table 1.

According to the practice, the production environment
parameters, such as the number of machines put into pro-
duction, the number of spare parts stored, the maximum
inventory, and the supply support required by production
are different. At the same time, due to the influence of
regional, production products and policies, various factories
pay the cost of ordering, inventory, or breakdown losses
caused by spare parts differently. According to statistics,
the relevant parameters and costs are shown in Table 2,
among which the left five columns are production environ-
ment parameters, which are the number of machines put
into production in each factory, the supply level, the maxi-
mum inventory, and the supply support. The three in the
right are listed as economic costs, which are spare part stor-
age cost, order cost, and delay cost.

Transportation costs are one of the most important
aspects of the cost; as a result of transport conditions and
policies, the cost of transporting spare parts from the first-
echelon supply center to the second-echelon reloading
points and the second echelon to the storage storehouse of
third-echelon factories is different, as shown in Table 3.
What is more, the cost of transporting spare parts from the
second-echelon reloading point to the third-echelon factory
is lower than the cost of transferring spare parts from the
first-echelon supply center to the second-echelon reloading
point due to the impact of transport conditions and policies.
While the reloading points have their own limitations, the
maximum transportation volume is set to 100, 100, and 120.

In spare part supply, another very important parameter
is time. A large part of the time in the actual supply process
is determined by the volume of spare part transportation. So,
the transportation time of unit spare parts in the supply
structure is provided in Table 4 in the parameter setting.

In this paper, we divided the whole supply process into
five periods, ignoring the transmission time of spare part
information. At the same time, the supply process adopted

Begin
Input acceleration degree c1, c2

time of maximum iteration M
search space dimension D
number of individual groups N
inertia weight w

Set condition of stopping iteration
Initialize local extremum Pbest

i and global extremum Gbest
For condition of stopping iteration
Do for i ←1 to N

Do for j ←1 to D
Do initialize particle position x(i, j) randomly

Initialize particle position v(i, j) randomly
For i ←1 to N
Do for j ←1 to D

Do calculate fitness value of each particle according to ((26)) and ((27))
If (fitness(x(i, j)) < fitness(Pbest

i))
Then [Pbest

i ← x(i j)]
If (fitness(Pbest

i) < fitness(Gbest))
Then [Gbest ← Pbest

i]
Adjust inertial weight(w) according to ((24))
vid ← w∙vid + c1∙r1∙(pid - xid) + c2∙r2∙(pid - xid)
xid ← xid + vid

End

Algorithm 2: Improved PSO algorithm.

Table 1: Failure distribution of the discussed part.

Name Detail

Failure probability (λ) 0:6 × 10−4 time/hour

Failure distribution function F tð Þ = 1 − e−λt

Failure distribution convolutional function Fs tð Þ = 〠
s−1

n

1
n!

λtð Þne−λt
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road transportation which is widely used. The weight of spare
parts is 0.5 tons, and the carrying weight of transporting vehi-
cles is limited to 31 tons, without considering the highmedium
limit of transportation. The best supply scheme is obtained by
calculating the above parameters.

Finally, set the PSO algorithm parameter: the maximum
number of iterations M = 300, the number of individual
groups N = 200, and the penalty factor is as follows:

h kð Þ = k
ffiffiffi
k

p
, ð51Þ

learning factor c1 = 1:6962, c2 = 1:8962, and the range of
inertia weight ½wmin,wmax� = ½0:6, 0:8�.
5.2. Analysis Process. For the joint model in this paper, Equa-
tion (18) shows that the transferring quantity of spare parts
from first to second is the same as the quantity transferred
from first to third echelon. In the calculation of this case,
to decrease the decision parameters and programming space,
the code schematic can be simplified to encode the second-
level supply. The simplified code is shown in Figure 4.

The simplified code schematic transforms constraints
into logical relationships between decision parameters to
speed up the convergence rate. X1 ~ xK represent the num-
ber of spare parts transported from the second-echelon
reloading point 1 to the storage storehouses of third-
echelon customers, xK+1 ~ x2×K are the number of spare
parts transported from the second-echelon reloading point
2 to the storage storehouses of third-echelon customers,

etc. What is more, the sum of each group is the number of
spare parts transported to the second-echelon reloading
points at the corresponding first-echelon supply center, such
as the sum of spare parts which includes the number of
xK+1 ~ x2×K which is equal to the number of spare parts
transported to the second-echelon reloading points at the
first-echelon supply center 1.

5.3. Result Analysis. According to the improved PSO algo-
rithm proposed in this paper, the corresponding calculation
results are obtained in Table 5.

As shown in Figure 5, they are the change of the objec-
tive function, fitness function, and penalty function with
the number of iterations.

In Figure 5, the longitudinal axis represents the function
value, and the transverse axis represents the iteration period
and the number of iterations, where Figure 5(b)) represents
the change of the penalty function following the objective
function and Figure 5(c)) represents the convergence of the
objective function.

It is learning that the adaptive function and objective func-
tion tend to converge slowly with the increase of iteration

Table 2: The correlative parameters of third-echelon factories.

nk sk ′ Sk Pk Zp Ck
v (unit: ¥) Ck

o (unit: ¥) Ck
l (unit: ¥)

Factory 1 10 20 60 0.90 1.28 200 2000 15000

Factory 2 10 10 60 0.99 2.33 220 2000 25000

Factory 3 8 30 70 0.95 1.65 200 2000 20000

Factory 4 5 25 45 0.90 1.28 210 2000 15000

Factory 5 10 20 50 0.80 0.84 250 2000 10000

Factory 6 12 20 80 0.99 2.33 225 2000 10000

Table 3: The correlative parameters of third-echelon factories.

Supply center Factory 1 Factory 2 Factory 3 Factory 4 Factory 5 Factory 6

Reloading point 1 5700 600 480 540 480 480 570

Reloading point 2 6000 480 450 510 450 510 630

Reloading point 3 4800 510 330 570 600 510 480

Table 4: Transportation time of spare parts (unit: km).

Supply center Factory 1 Factory 2 Factory 3 Factory 4 Factory 5 Factory 6

Reloading point 1 13 5 2 2 4 3 2

Reloading point 2 17 3 6 1 1 2 3

Reloading point 3 16 1 1 3 2 2 4
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Figure 4: Simplified particle code schematic.
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period and times from Figures 5(a) and 5(c)). They tend to be
the same at the same time, which shows that the convergence
of the results is better, and the convergence of the first stage is
slow.

On the other hand, since the adaptive weights used in
this paper are closely related to the value of the objective
function, the curve of the penalty function in Figure 5(b))
is similar to the objective function. At the same time, the fit-
ting value when all periods are finished tends to 0, indicating
that the result is the minimized optimal solution.

The results of the decision variables are shown in Tables 5
and 6. As can be seen from Table 6, they are shown which are
inventory node, the cost of supply at each period, the total cost
of the system, and the quantity of spare part delays. Secondly,

in Table 5, columns 1-6 are the volume of transport from the
second-echelon reloading point 1 to the third-echelon facto-
ries, 7-12 are the volume of transport from the second-
echelon reloading point 2 to the third-echelon factories, and
13-18 are the volume of transport from the second-echelon
reloading point 3 to the third-echelon factories. According to
Equation (18) and the former discussion, the volume of trans-
portation from the first-echelon supply center to the second-
echelon reloading points can be calculated.

As shown in Table 7, compared to the last three columns
included in Table 6, the calculated volume of transport is
from the first-echelon supply center to the second-echelon
reloading points. Among them, column 19 is the sum of col-
umns 1-6, that is, the transfer volume of the transfer of the

Table 5: Results of calculation by improved PSO.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Period 1 6 4 0 8 17 9 0 8 24 8 12 9 0 12 19 8 16 43

Period 2 0 7 23 7 11 10 6 8 24 17 14 0 0 9 12 26 0 7

Period 3 0 8 12 10 12 4 0 0 0 20 13 0 0 0 42 9 0 9

Period 4 0 5 40 8 12 6 0 0 14 8 6 5 0 44 0 6 15 8

Period 5 35 0 15 7 15 5 0 8 0 11 12 1 0 12 0 10 14 8
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Table 6: Result of the best supply scheme.

Period 1 Period 2 Period 3 Period 4 Period 5

Cost (unit: ¥) 137967 139404 138765 138758 139907

Total cost (unit: ¥) 694801

Consumption [30,40,24,15,30,44] [30,39,24,17,30,48] [30,38,24,15,30,42] [30,38,24,14,30,48] [30,36,24,15,32,50]

Level of supply 40,50,34,35,30,44

Breakdown (unit: ¥) [0,0,0,0,0,0] [0,0,0,0,0,0] [0,0,0,0,0,0] [0,0,0,0,0,0] [0,0,0,0,0,0]

Table 7: Optimized and calculated optimal supply options.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Period 1 6 4 0 8 17 9 0 8 24 8 12 9 0 12 19 8 16 43 44 61 98

Period 2 0 7 23 7 11 10 6 8 24 17 14 0 0 9 12 26 0 7 58 69 54

Period 3 0 8 12 10 12 4 0 0 0 20 13 0 0 0 42 9 0 9 46 33 60

Period 4 0 5 40 8 12 6 0 0 14 8 6 5 0 44 0 6 15 8 71 33 73

Period 5 35 0 15 7 15 5 0 8 0 11 12 1 0 12 0 10 14 8 77 32 44

Table 8: Different optimization results of changing the failure degree.

λ 10−4
	 


Cost of each period (unit: yuan) Consumption Total cost (unit: yuan) Breakdown loss (unit: yuan)

0.6

137967 30,40,24,15,30,44

694801

0,0,0,0,0,0

139404 30,39,24,17,30,48 0,0,0,0,0,0

138765 30,38,24,15,30,42 0,0,0,0,0,0

138758 30,38,24,14,30,48 0,0,0,0,0,0

139907 30,36,24,15,32,50 0,0,0,0,0,0

0.8

144112 30,40,32,15,30,48

723862

0,0,0,0,0,0

144509 30,38,32,15,30,45 0,0,0,0,0,0

145219 30,38,30,15,30,48 0,0,0,0,0,0

143910 30,40,32,18,25,47 0,0,0,0,0,0

146112 35,37,30,15,28,48 0,0,0,0,0,0

1

186998 40,60,32,20,30,72

887221

0,0,0,0,0,0

170912 40,50,32,20,30,60 0,0,0,0,0,0

170455 40,50,32,20,30,60 0,0,0,0,0,0

186751 40,60,32,20,30,72 0,0,0,0,0,0

172106 40,50,32,20,30,60 0,0,0,0,0,0

1.2

199304 40,60,40,20,40,72

946741

0,0,0,0,0,0

185191 40,60,32,20,30,72 0,0,0,0,0,0

188756 40,65,32,20,32,72 0,0,0,0,0,0

185761 40,60,32,25,30,58 0,0,0,0,0,0

187729 38,60,35,20,30,66 0,0,0,0,0,0

1.4

3097202 40,70,48,20,40,84

3887792

0,0,0,0,0,480000

199658 40,60,40,20,40,72 0,0,0,0,0,0

198548 40,65,40,20,35,72 0,0,0,0,0,0

193576 40,60,32,20,40,72 0,0,0,0,0,0

198807 40,60,38,20,40,76 0,0,0,0,0,0
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first-echelon supply center to the second-echelon reloading
point 1; column 20 is the sum of columns 7-12, that is, the
transfer volume of the transfer of the first-echelon supply
center to the second-echelon reloading point 2; column 21
is the sum of 13-18, that is, the transfer volume of the
first-echelon supply center to the second-echelon reloading
point 3.

6. Result Analysis

6.1. Different Failure Degree (λ) Analysis. As shown in
Table 8, change the size and observe the different optimiza-
tion results of the model and algorithm.

As can be seen from Table 8, with the increasing failure
degree (λ), the consumption of the whole process is gradu-
ally increasing and the demand for spare parts is increasing.
As a result, the preset inventory node is difficult to meet the
consumption of spare parts during the process of supply.

When λ reached 1:4 × 10−4, there is a delayed loss, and in
the actual supply of spare parts, delay consumption should
be eliminated or avoided as far as possible.

6.2. Different Quantity of Inventory to Supply Analysis. As
can be seen from Table 9, when the inventory node is
reduced, the consumption of spare parts is increasing con-
tinuously, the same as the failure degree, and the cost of each
period is also increased. On the other hand, the reduction of
the inventory node leads to insufficient advance supply time.
Eventually, there is a breakdown loss when the inventory
node drops to 20,20,10,25,10,8.

6.3. Compared with Results of Traditional ðs, SÞ Policy. In
order to test the effect of the model and algorithm optimiza-
tion, the model is compared with the traditional ðs, SÞ policy
based on different inventory nodes.

Table 9: Different optimization results of quantity of inventory to supply.

No.
Quantity of inventory to

supply
Cost of each period (unit:

yuan)
Consumption

Total cost (unit:
yuan)

Breakdown loss (unit:
yuan)

1

60
80
50
45
50
80

137967
139404
138765
138758
139907

30,40,24,15,30,44
30,39,24,17,30,48
30,38,24,15,30,42
30,38,24,14,30,48
30,36,24,15,32,50

694801

0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0

2

30
40
26
30
30
32

170619
144536
144443
145630
144931

40,50,32,20,30,60
30,40,32,15,30,48
30,40,32,17,30,46
30,35,32,20,30,50
30,37,32,23,30,48

750160

0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0

3

30
40
18
30
20
32

183044
178905
170547
177920
178959

40,50,40,20,40,60
40,50,32,20,40,60
40,50,32,20,30,60
40,50,32,20,40,60
40,55,32,28,30,72

889374

0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0

4

20
30
18
25
20
20

209023
199406
198954
199432
200665

50,60,40,25,40,72
40,60,40,20,40,72
40,65,40,35,40,72
40,60,44,38,35,72
40,60,40,20,40,64

1007481

0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0

5

20
30
10
25
20
20

215198
210139
209519
209863
209379

50,60,48,25,40,72
50,60,40,25,40,72
50,65,40,32,40,72
50,60,40,25,40,70
50,55,40,30,40,72

1054098

0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0

6

20
20
10
25
10
8

3112742
3114210
3110595
3114297
3111409

50,70,48,25,50,84
50,70,48,25,60,78
50,70,60,25,50,80
50,70,50,25,50,82
50,80,48,25,50,84

15563254

0,0,0,0,0,480000
0,0,0,0,1000000,0
0,0,1600000,0,0,0
0,0,0,0,0,240000

0,2500000,0,0,0,480000
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Table 10 is the model optimization comparison results
based on the inventory node sk = ½60,80,50,45,50,80�. It can
be seen from the table that the consumption of the adjustment
model is lower so that the cost of the traditional model is lower
than that of the improved model in this paper. However, from
the comparison optimized results based on the inventory node
sk = ½20,20,10,25,10,8� in Table 9, the consumption of the
adjustmentmodel proposed in this paper is lower. At the same
time, when the inventory node is in this state, the traditional
model cannot meet the consumption in the supply period
because the consumption of spare parts is not considered. This
leads to delays and breakdown loss.

Although the cost of the traditional model is lower than
that of this paper when setting lower supply nodes, considering

the fault tolerance and stability of the whole model, the model
proposed in this paper canmeet the lower demand of inventory
nodes while ensuring the stable supply of spare parts. It is in
order to ensure that there are no delays and delay losses as
much as possible and make it more stable and reliable.

6.4. Comparison between Improved Algorithm and Traditional
Algorithm. In order to analyze the effect of the improved algo-
rithm, the joint model is also calculated by the traditional PSO
algorithm. The comparison result is shown in Table 11.

From Table 11, it is very obvious that the results of the
first and second calculation through the traditional algo-
rithm are in the position of local optimization. The system
calculates the final result only once. Even the third result is

Table 10: Comparison of No. 6 supply node with the traditional ðs, SÞ policy.
Cost of each period (unit: yuan) Consumption Total cost (unit: yuan) Breakdown loss (unit: yuan)

Traditional model

3078278 50,70,48,25,50,84

15395954

0,0,0,0,0,480000

3078580 50,70,60,25,60,82 0,0,160000,0,100000,240000

3079982 55,70,52,30,50,82 0,0,320000,0,0,240000

3079691 50,76,48,40,53,80 0,0,0,0,300000,0

3079422 50,70,48,25,48,84 0,0,0,0,0,480000

Improved model

199304 40,60,40,20,40,72

946741

0,0,0,0,0,0

185191 40,60,32,20,30,72 0,0,0,0,0,0

188756 40,65,32,20,32,72 0,0,0,0,0,0

185761 40,60,32,25,30,58 0,0,0,0,0,0

187729 38,60,35,20,30,66 0,0,0,0,0,0

Table 11: Comparison between the improved algorithm and the traditional algorithm.

Cost of each period (unit: yuan) Consumption Total cost (unit: yuan) Breakdown loss (unit: yuan)

Improved algorithm

137967 30,40,24,15,30,44

694801

0,0,0,0,0,0

139404 30,39,24,17,30,48 0,0,0,0,0,0

138765 30,38,24,15,30,42 0,0,0,0,0,0

138758 30,38,24,14,30,48 0,0,0,0,0,0

139907 30,36,24,15,32,50 0,0,0,0,0,0

Traditional algorithm

1

288765 70,40,24,15,30,35

982756

150000,0,0,0,0,0

279907 30,38,24,15,64,58 0,0,0,0,140000,0

138569 30,37,24,15,30,42 0,0,0,0,0,0

137659 30,38,25,14,50,48 0,0,0,0,0,0

137856 30,36,24,15,32,40 0,0,0,0,0,0

2

186998 40,50,40,20,40,60

867222

0,0,0,0,0,0

160912 30,50,32,20,40,60 0,0,0,0,0,0

160455 30,50,32,20,30,60 0,0,0,0,0,0

186751 40,50,32,20,40,60 0,0,0,0,0,0

172106 40,55,32,28,30,72 0,0,0,0,0,0

3

139967 30,37,26,17,30,46

696718

0,0,0,0,0,0

139204 30,36,24,15,30,50 0,0,0,0,0,0

138765 30,38,24,15,30,42 0,0,0,0,0,0

139258 30,38,24,15,31,48 0,0,0,0,0,0

139524 32,39,24,17,30,48 0,0,0,0,0,0
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higher than the result of improved algorithm. However, with
the effect of algorithm error, the final results of them can be
seen as the same.

7. Conclusion

In this paper, the joint policy combines the inventory policy and
spare part supply network. In the joint model, the multiperiod
and multiechelon supply network is built, and the ðs, SÞ policy
is improved by the random lead time and different customers’
maximum inventory. Due to the nonlinear, nonmonotonic,
and multiperiodic changes of the established model, an
improved PSO algorithm is proposed. The algorithm used in
this paper is optimized by adding adaptive inertia weight and
penalty function to speed up the optimization efficiency and
improve the convergence effect. A case is given. The optional
supply scheme is obtained by the proposed algorithm. The
sensitivity analysis is used to discuss the influence of important
parameters on the model cost. The statistical characteristics of
the model are summarized to provide a reference for the next
intelligent decision. Except that, the comparison results con-
cluding the traditional ðs, SÞ model and the traditional PSO
algorithm are analyzed. We hope that the joint policy and used
method can provide a reference for the spare part supply in
industry and military.

In this paper, the parameters in the inventory policy are
given as known, which can regard as optimized objects in
the future research. In addition, it can continue to study
the supply of multikind spare parts under different lifetime
distribution and so on.
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The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] C. C. Sherbrooke, “VARI-METRIC: improved approximations
for multi-indenture, multi-echelon availability models,” Oper-
ations Research, vol. 34, no. 2, pp. 311–319, 1986.

[2] Q. Hu, S. Chakhar, S. Siraj, and A. Labib, “Spare parts classifi-
cation in industrial manufacturing using the dominance-
based rough set approach,” European Journal of Operational
Research., vol. 262, no. 3, pp. 1136–1163, 2017.

[3] A. A. Ghobbar and C. H. Friend, “Evaluation of forecasting
methods for intermittent parts demand in the field of aviation:
a predictive model,” Computers & Operations Research.,
vol. 30, no. 14, pp. 2097–2114, 2003.

[4] R. Min, Q. Chen, and Z. Shen, Spare Parts Supply Science,
National Defense Industry Press, 2013.

[5] R. P. Covert and G. C. Philip, “An EOQ model for items with
Weibull distribution deterioration,” A I I E Transactions.,
vol. 5, no. 4, pp. 323–326, 1973.

[6] S. Bashyam and M. C. Fu, “Optimization of (s, S) inventory
systems with random lead times and a service level constraint,”

Management Science., vol. 44, no. 12-part-2, pp. S243–S256,
1998.

[7] S. Osaki, “An ordering policy with lead time,” International
Journal of Systems Science., vol. 8, no. 10, pp. 1091–1095, 1977.

[8] M. Issa, A. E. Hassanien, D. Oliva, A. Helmi, I. Ziedan, and
A. Alzohairy, “ASCA-PSO: adaptive sine cosine optimization
algorithm integrated with particle swarm for pairwise local
sequence alignment,” Expert Systems with Applications,
vol. 99, pp. 56–70, 2018.

[9] C. C. Sherbrooke, “Metric: a multi-echelon technique for
recoverable item control,” Operations Research, vol. 16, no. 1,
pp. 122–141, 1968.

[10] T. S. Vaughan, “Failure replacement and preventive mainte-
nance spare parts ordering policy,” European Journal of Oper-
ational Research., vol. 161, no. 1, pp. 183–190, 2005.

[11] G. P. Cachon, “Exact evaluation of batch-ordering inventory
policies in two-echelon supply chains with periodic review,”
Operations Research, vol. 49, no. 1, pp. 79–98, 2001.

[12] W. J. Kennedy, J. Wayne Patterson, and L. D. Fredendall, “An
overview of recent literature on spare parts inventories,” Inter-
national Journal of Production Economics., vol. 76, no. 2,
pp. 201–215, 2002.

[13] U. S. Rao, “Properties of the periodic review (R, T) inventory
control policy for stationary, stochastic demand,” M&SOM.,
vol. 5, no. 1, pp. 37–53, 2003.

[14] Y. Wang and Q. Shi, “Improved dynamic PSO-based algo-
rithm for critical spare parts supply optimization under (T,
S) inventory policy,” IEEE Access., vol. 7, pp. 153694–153709,
2019.

[15] M. C. Reade, A. Delaney, M. J. Bailey et al., “Prospective meta-
analysis using individual patient data in intensive care medi-
cine,” Intensive Care Medicine, vol. 36, no. 1, pp. 11–21, 2010.

[16] L. Spanjers, J. C. W. van Ommeren, and W. H. M. Zijm,
“Closed loop two-echelon repairable item systems,” OR Spec-
trum, vol. 27, no. 2-3, pp. 369–398, 2005.

[17] B.-T. Aharon, G. Boaz, and S. Shimrit, “Robust multi-echelon
multi-period inventory control,” European Journal of Opera-
tional Research., vol. 199, no. 3, pp. 922–935, 2009.

[18] P. K. Aggarwal and K. Moinzadeh, “Order expedition in multi-
echelon production/distribution systems,” IIE Transactions.,
vol. 26, no. 2, pp. 86–96, 1994.

[19] A. Federgruen and P. Zipkin, “A combined vehicle routing and
inventory allocation problem,” Operations Research, vol. 32,
no. 5, pp. 1019–1037, 1984.

[20] J. Shu, C.-P. Teo, and Z.-J. M. Shen, “Stochastic
transportation-inventory network design problem,” Opera-
tions Research, vol. 53, no. 1, pp. 48–60, 2005.

[21] A. K. Saha, A. Paul, A. Azeem, and S. K. Paul, “Mitigating
partial-disruption risk: a joint facility location and inventory
model considering customers’ preferences and the role of sub-
stitute products and backorder offers,” Computers & Opera-
tions Research., vol. 117, p. 104884, 2020.

[22] S. Ekinci, D. Izci, and B. Hekimoğlu, “Optimal FOPID speed
control of DC motor via opposition-based hybrid Manta ray
foraging optimization and simulated annealing algorithm,”
Arabian Journal for Science and Engineering, vol. 46, no. 2,
pp. 1395–1409, 2021.

[23] J. F. Farfán and L. Cea, “Coupling artificial neural networks
with the artificial bee colony algorithm for global calibration
of hydrological models,” Neural Computing and Applications,
vol. 33, no. 14, pp. 8479–8494, 2021.

16 Wireless Communications and Mobile Computing



[24] A. S Sakthivel, A. D Mary, R. Vetrivel, and V. S. Kannan,
“Optimal location of SVC for voltage stability enhancement
under contingency condition through PSO algorithm,” Inter-
national Journal of Computer Applications, vol. 20, no. 1,
pp. 30–36, 2011.

[25] M. Clerc and J. Kennedy, “The particle swarm - explosion, sta-
bility, and convergence in a multidimensional complex space,”
IEEE Trans. Evol. Computat., vol. 6, no. 1, pp. 58–73, 2002.

[26] Wen-Fung Leong and G. G. Yen, “PSO-based multiobjective
optimization with dynamic population size and adaptive local
archives,” IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B (Cybernetics), vol. 38, no. 5, pp. 1270–1293, 2008.

[27] E. Mezura-Montes and C. A. Coello Coello, “An improved
diversity mechanism for solving constrained optimization
problems using a multimembered evolution strategy,” in
Genetic and Evolutionary Computation–GECCO 2004, K.
Deb, Ed., pp. 700–712, Springer, Berlin Heidelberg, Berlin,
Heidelberg, 2004.

[28] Q. Hu, J. E. Boylan, H. Chen, and A. Labib, “OR in spare parts
management: a review,” European Journal of Operational
Research., vol. 266, no. 2, pp. 395–414, 2018.

[29] M. Z. Ruan, Q. M. Li, Y. W. Peng, E. S. Ge, and A. L. Huang,
“Model of spare part fill rate for systems of various structures
and optimization method,” Systems Engineering and Electron-
ics., vol. 33, pp. 1799–1803, 2011.

[30] A. Mahor and S. Rangnekar, “Short term generation schedul-
ing of cascaded hydro electric system using novel self adaptive
inertia weight PSO,” International Journal of Electrical Power
& Energy Systems., vol. 34, no. 1, pp. 1–9, 2012.

[31] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of ICNN’95- International Conference on Neural
Networks, IEEE, pp. 1942–1948, Perth, WA, Australia, 1995.

[32] K. Deep, “Madhuri: application of globally adaptive inertia
weight PSO to Lennard-Jones problem,” Proceedings of the
International Conference on Soft Computing for Problem Solv-
ing (Soc ProS 2011) December 20-22, 2011, K. Deep, A. Nagar,
M. Pant, and J. C. Bansal, Eds., , pp. 31–38, Springer India,
India, 2012.

[33] H. Shao and G. Zheng, “Boundedness and convergence of
online gradient method with penalty and momentum,”Neuro-
computing, vol. 74, no. 5, pp. 765–770, 2011.

[34] P. Sincak, “Intelligent technologies-theory and applications:
new trends in intelligent technologies,” IOS Press, Ohmsha,
Amsterdam; Washington, DC: Tokyo, 2002.

[35] A. C. Nearchou, “The effect of various operators on the genetic
search for large scheduling problems,” International Journal of
Production Economics., vol. 88, no. 2, pp. 191–203, 2004.

17Wireless Communications and Mobile Computing


	A Joint Optimization Model of s,S Inventory and Supply Strategy Using an Improved PSO-Based Algorithm
	1. Introduction
	2. Literature Review
	2.1. Supply Network Optimization
	2.2. Inventory Policy
	2.3. Joint Optimization
	2.4. Solution Algorithm

	3. Modelling
	3.1. Problem Description Assumptions
	3.2. Calculation of Spare Part Requirements
	3.3. The Joint Optimization Model Based on the s,S and Supply Policy

	4. Proposed Algorithm
	4.1. Traditional PSO Algorithm
	4.2. Adaptive Weight Method
	4.3. Fitness Function
	4.4. Particle Coding
	4.5. Improved Algorithm Framework

	5. Case Analysis
	5.1. Case Description
	5.2. Analysis Process
	5.3. Result Analysis

	6. Result Analysis
	6.1. Different Failure Degree (λ) Analysis
	6.2. Different Quantity of Inventory to Supply Analysis
	6.3. Compared with Results of Traditional s,S Policy
	6.4. Comparison between Improved Algorithm and Traditional Algorithm

	7. Conclusion
	Data Availability
	Conflicts of Interest

