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Rail transit is developing towards intelligence which takes lots of computation resource to perform deep learning tasks. Among
these tasks, object detection is the most widely used, like track obstacle detection, catenary wear, and defect detection and
looseness detection of train wheel bolts. But the limited computation capability of the train onboard equipment prevents
running deep and complex detection networks. The limited computation capability of the train onboard equipment prevents
conducting complex deep learning tasks. Cloud computing is widely utilized to make up for the insufficient onboard
computation capability. However, the traditional cloud computing architecture will bring in uncertain heavy traffic load and
cause high transmission delay, which makes it fail to complete real-time computing intensive tasks. As an extension of cloud
computing, edge computing (EC) can reduce the pressure of cloud nodes by offloading workloads to edge nodes. In this paper,
we propose an edge computing-based method. The onboard equipment on a fast-moving train is responsible for acquiring
real-time images and completing a small part of the inference task. Edge computing is used to help execute the object
detection algorithm on the trackside and carry most of the computing power. YOLOv3 is selected as the object detection
model, since it can balance between the real-time and accurate performance on object detection compared with two-stage
models. To save onboard equipment computation resources and realize the edge-train cooperative interface, we propose a
model segmentation method based on the existing YOLOv3 model. We implement the cooperative inference scheme in real
experiments and find that the proposed EC-based object detection method can accomplish real-time object detection tasks
with little onboard computation resources.

1. Introduction

Over the years, the safety of railway transportation along the
line is highly valued, but it is threatened by the failure of rail-
way infrastructure, such as wrong signal light display, the
physical environment changes caused by bad weather, and
railway obstacles [1]. And the railway obstacles are especially
of high frequency. As one of the research directions of intel-
ligent rail transit, obstacle detection based on computer
vision (CV) can help to detect pedestrians, vehicles, and
other obstacles on the track and ensure safe operation of
train systems. In case of any train control system failure,

the obstacle detection system can assist manual driving
and enhance the emergency treatment ability of the system.

There are many kinds of obstacle detection methods
based on CV, but they are not fully applicable to rail trans-
portation. In [1], He et al. detect obstacle with improved
YOLOv4 on Jetson AgX with 256 CUDA cores and imple-
mented 93.00% MAP (mean average precision) and 139ms
inference time. In [2], Cong and Li’s method costs 670ms
in detecting pedestrians of one frame image with YOLOv2.
However, these methods involve many model parameters,
huge floating-point operations, and more memory. Because
the calculation and storage resources of on-board devices
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in rail transit are limited, GPU devices with high computing
power, high power, and high performance will not be config-
ured on the train, which fails to meet the need of real-time
obstacle detection.

In order to reduce the computation burden of on-board
devices, this paper proposes an EC-based method for rail
transit obstacle detection, which uploads the on-board com-
puting tasks to the edge computing server. The edge com-
puting architecture is a distributed and layered structure,
composed of cloud nodes, edge nodes, and edge devices
[3]. The use of edge computing architecture has three advan-
tages. First, the edge node can maintain data privacy. Sec-
ond, the data related to obstacle detection, like model
structure and model parameters, can be distributed to the
edge device on the train from the cloud. At the same time,
a large number of lines and trains can provide enough raw
data to supplement data set in the cloud nodes. Third, edge
computing can offload tasks in a regional network closer to
the data source, and data generated by the edge device can
be directly dealt on the edge node without being uploaded
to the cloud node, thereby reducing network delays and
communication costs.

At present, edge computing has many applications in
the field of urban transportation and others, like [4, 5]
for video analytics and [6] in urban transportation. And
in rail transit field, Wang et al. proposed a collaborative
cloud-edge system for real-time queries of large-scale sur-
veillance video streams [7]. And Tong et al. designed a
hierarchical tree hierarchy of geo-distributed edge cloud
architecture to efficiently utilize the cloud resources to
serve the peak loads from mobile devices. The ideas of
the above methods are basically through model compres-
sion methods, such as kernel thinning [8], pruning [9],
weight quantification [10], and network disintegration
[11]. The model compression method mainly operates
the parameters and structure of the model, which may
lead to the risk of nonconvergence of the model. However,
the core idea of our method is not task allocation, not
resource allocation, but model allocation like Figure 1.
By using the feature map as a link and retaining the com-
plete structure of the model, it will not affect the conver-
gence of network training and effect of inference.

To achieve collaborative inference with edge computing,
this paper proposes a model segmentation method based on
YOLOv3, which has the backbone of darknet53 (53 convolu-
tional layers). And it uses k-means clustering to determine
bounding box priors and uses binary cross-entropy loss for
the class predictions [12]. According to the multiscale fea-
tures, this paper segments the backbone network of YOLOv3
into three parts and rebuilds two submodels with them.
These submodels can be allocated to edge node and on-
board equipment for inference. Therefore, the partial
computation burden is offloaded from on-board devices into
edge nodes.

Combining YOLOv3 model and edge computing, the
contributions of this paper are summarized as follows:

(1) We propose an edge computing architecture for dis-
tributed offload training and collaborative inference.

In this structure, the train and ground server can
cooperate to carry out inference

(2) We propose a method of segmenting model to split
the computational loads and realize collaborative
inference. Through this method, we can schedule
the segmented model according to the switch
strategy

(3) We evaluate training loss to verify the training
potential of the submodel. And we compare the
inference time on a single node with that on multi-
nodes by the method of segmenting model

The rest of this paper is organized as follows. Section 2
reviews the hierarchical edge cloud architecture for obstacle
detection. Section 3 provides a brief overview of the pro-
posed model segmentation method. Section 4 describes the
details of the training and inference process of submodel.
Section 5 shows the inference time and MAP of the segmen-
tation submodels.

2. Edge Computing Architecture Designed for
Object Detection

Although cloud-based solutions can ensure high accuracy by
using complex CNN models, they suffer from increasingly
unaffordable bandwidth cost and severe query latency due
to the transmission of explosively growing surveillance video
data [7]. In the meanwhile, most on-board devices are
resource-limited where only lightweight CNN models like
mobile net can be deployed. Thus, we choose to move the
most part of model from edge devices to edge nodes.

In the traditional edge computing structure proposed in
[13], all edge nodes share one model, but this is hindered by
delays in uploading data and downloading models. For edge
computing, there exist two ways to offload computation.
One is binary offloading, in which CNN models as a highly
integrated task cannot be partitioned and have to be exe-
cuted as a whole either locally at the edge device or offloaded
to the edge node server by binary offloading. The other is
partial offloading, and it allows the program to be parti-
tioned into two parts with one being executed at the edge
device and the other being offloaded for edge node execution
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Figure 1: Our method selects the appropriate submodel through
model segmentation to allocate the submodel for the train and
ground server, so as to achieve the balance of resource utilization
and detection time.
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[14]. Based on these two methods of edge computing, we
design a new computing architecture and use the segmenta-
tion method to allocate different model blocks to edge nodes
and on-board devices.

In our edge computing architecture shown in Figure 2,
ground servers near the base station act as edge nodes and
are responsible for model training and collaborative inference.
The cloud nodes are responsible for storing data sets, labeling,
and updating the model data. In the meanwhile, the cloud
nodes are also the brain of the whole architecture, and they
monitor the running status of edge nodes and record corre-
sponding logs. And the edge devices in the train mainly take
on the task of acquiring the original images and sending the
images and waiting for the detection results from the ground
servers. To maximize resource utilization when the servers
are idle, the ground servers of rail transit need to performmul-
tiple tasks. Therefore, when the train moves into the range of a
base station, the ground server assists the on-board devices to
detect obstacles. After the train is away from the base station;
the ground servers continue to perform other tasks.

The challenges that we have to face in our architecture
are high transmission delay, appropriate object detection
model, and model allocation method. Due to the develop-
ment of the 5G communication technology and the support
of millimeter wave (mm Wave), multiple-input multiple-
output (MIMO), and multiaccess edge computing (MEC),
the data peak rate can reach 1GB/s, and the transmission
delay is limited in the range of 1-5ms [15]. And communi-
cation transmission time can also be compensated by less
inference time of ground servers, so the influence of data
transmission can be reduced. As for the object detection
model, we reconstruct the YOLOv3 model, that is, a fast
one-stage model.

3. Model Construction

In this section, this paper adjusts the existing YOLOv3 net-
work structure to adapt to the network segmentation
method proposed in this paper and adds appropriate cou-
pling structures to concatenate feature fusion module with
detection module. In the meanwhile, different segmentation
methods, including parallel and serial, are introduced in
detail. Serial is single input single output, and parallel is mul-
tiple input single output.

3.1. The Basic YOLOv3 Structure. In order to meet the real-
time requirements of train obstacle detection, we select a fast
and accurate real-time object detection algorithm called
YOLO (you only look once). YOLO is also one of the best
one-stage target detection models. The structure of YOLOv3
is shown in Figure 3. In order to visualize the allocation pro-
cess of sub models, we split the whole backbone network
into several dark blocks, and each darknet block consists of
one zero padding, one CBL (convolutional, batch normaliza-
tion, leaky_relu layers) module and N residual blocks. The N
equal to the Nth darknet block. The CBL module of each
darknet block achieves the effect of down sampling by set-
ting the step size of the convolution layer that reduces the
feature map dimension. YOLOv3 also abandons the full con-

nection layer, and thus, the whole YOLO network no longer
limits the size of the input image in theory.

For intuitive display, we summarize the remaining com-
ponents into feature fusion module and detector. In the fea-
ture fusion module, tensor concatenate and up sampling are
included. Up sampling means feature map of different scales
and sizes will be unified to the same shape. Then, YOLO
concatenates the feature maps with the same shape and
inputs it into the detector. In the detector, there include
one CBL module, one layer of convolution, and NMS (non-
maximum suppression).

The input of the complete YOLOv3 network is an image
with standard size of (416, 416, 3); otherwise, the image will
be extended or compressed into the size. After passing
through the darknet network of YOLOv3, the input image
is transformed into feature maps of three scales. Then, the
feature fusion module absorbs semantic information of dif-
ferent scales and outputs with new three feature maps.
Finally, after inputting these new feature maps, the detector
returns the coordinates of bounding boxes and the classes of
objects.
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Figure 2: Edge computing architecture designed for object
detection. The structure is composed of edge devices on the train
and ground server as edge node and cloud node in control center.
It is a distributed collaborative task execution architecture.
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is the whole backbone network of YOLOv3.
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According to YOLOv3’s unique network structure and
different scale feature maps, it is possible to adapt to the edge
computing architecture. We can connect the input and out-
put of different darknet blocks through feature maps, and
then, these feature maps can be input to the feature fusion
module and be output through the detector.

3.2. Future Fusion and Detector. In this section, we elaborate
the structure and function of the feature fusion module and
detector in Figure 4. The function of the former is to mainly
up sample the feature maps by a factor of 2 and concatenate
it with others of low scales, and the function of the latter is to
classify the object. The shapes of the detector’s output are (1,
13, 13, 3, 85), (1, 26, 26, 3, 85), and (1, 52, 52, 3, 85). The
value of first dimension is equal to the batch size, and the
value of batch size defaults to 1. (13, 13), (26, 26), and (52,
52) represent the division of grid cells. 3 represents the
sum of bounding boxes predicted for every grid cell. And
85 means the 80 classes of COCO data sets, the coordinate
of bounding boxes (x, y, width, height) and mask indicating
whether there is an object in the box. The combination use
of the feature fusion module and detector will output the
final detection results.

The final output of the model depends on the effect of
model training. And the process of model training needs to
be measured by loss function. The loss of YOLOv3 consists
of the loss of coordinate, loss of IOU, and the loss of classi-
fication.

Loss = Lossxy + Losswh − Lossobj − Lossclass: ð1Þ

In this loss function, (x, y, w, h) presents the predicted
coordinate of bounding boxes, and (x̂, ŷ, ŵ, ĥ) denotes the
labeled coordinate, means ground truth.

Lossxy = λcoord 〠
S2

i=0
〠
B

j=0
Iobjij 2 −wi × hið Þ,

xi − x∧ið Þ2 + yi − y∧ið Þ2� �
,

Losswh = λcoord 〠
S2

i=0
〠
B

j=0
Iobjij 2 −wi × hið Þ,

wi −w∧ið Þ2 + hi − h∧ið Þ2� �
:

ð2Þ

λcoord and λnoobj are constants which are used to increase
the loss from bounding box coordinate predictions and
decrease the loss from confidence predictions for boxes that

do not contain objects. Iobjij denotes if object appears in the j
th bounding box predictor of grid cell i [16].

Lossobj = 〠
S2

i=0
〠
B

j=0
Iobjij Ĉi log Cið Þ + 1 − Ĉi

� �
log 1 − Cið Þ� �

+ λnoobj 〠
S2

i=0
〠
B

j=0
Inoobjij Ĉi log Cið Þ + 1 − Ĉi

� �
log 1 − Cið Þ� �

:

ð3Þ

The loss of object is to reflect confidence (C) error. The
confidence level announces whether there is an object, and
all the features of the whole object are included in the
framed box. In the code, we uses binary cross entropy
(BCE) instead of mean square error (MSE).

Lossclass = 〠
S2

i=0
〠

c∈classes
Iobjij p̂i cð Þ log pi cð Þð Þ½

− 1 − p̂i cð Þð Þ log 1 − pi cð Þð Þ�:
ð4Þ

The loss of class is to reflect classification error. piðcÞ
denotes the probability of the class in grid cell i.

We also use the loss function to measure the prediction
ability and robustness of the complete model and the sub-
models. The comparison results are shown in Section 5. At
the same time, in order to solve the size matching problem
between input and output of submodels by our model seg-
mentation method, we add corresponding interfaces and
reorganize the feature fusion and detector module like
Figure 5.

3.3. Segmentation Model for Serial Inference. In this section,
we will introduce the first segmentation method for edge
computing. For achieving the real-time detection of a high-
speed train, train and ground server cooperate to inference
which offloads the computation burden of on-board device.
Therefore, current obstacle detection task of train can be
interrupted and transferred to the ground server. As shown
in Figure 6, we call this method serial inference, and there
are two nodes participating in the serial cooperative
inference.

In order to properly allocate the computation burden of
train and ground server, we need data to reflect the amount
of computation. Thus, we use the sum of FLOPs (floating-
point of operations) and parameters to quantify the compu-
tation of each darknet block, and the computation amount
and parameter amount of each darknet block are counted
in Table 1 of Section 5. After being assigned an appropriate
submodel, the train with insufficient resources can load
model parameters successfully with less computation bur-
den. At the same time, the segmentation method can also
handle the temporary shortage of train resources. Without
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Figure 4: Feature fusion and detector. The grey squares are the
input or output interface of the two module functions. And NMS
is nonmaximum suppression.
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damaging the structure of the model, this method can still
maintain the accuracy of the complete model.

The specific implementation process is as follows: the
on-board device monitors its own status of GPU, memory
occupancy, and communication delay with the ground
server. Affected by these factors, high-speed train can choose
the proper strategy to offload the obstacle detection task to
the ground server. After receiving the feature map trans-
ferred from train, the ground server will match the shape
of received feature map and chooses suitable layer for input.
Of course, model segmentation method will update when
the resource state changes dramatically.

In our method, the extra cost is the communication
transmission delay of feature map. It is related to the size
of feature maps and the bandwidth. We follow this formula
for the specific calculation of transmission delay:

Tc =
Sizefile
Bd : ð5Þ

Tc represents the communication delay between train

and ground server. Sizefile represents the byte size of feature
map shown in Table 2. Bd represents the bandwidth. Then,
we can calculate the total inference time cost of segmenta-
tion model method for serial inference. The time cost of this
method is

Ti = Ti1 + Tc + Ti2 + T f d: ð6Þ

Ti represents total inference time cost. Ti1 represents the
inference time of the submodel in the first node. Tc denotes
the total transmission delay between train and ground
server. Ti2 represents the inference time of the submodel in
the second node. T f d represents the time cost of dealing
the feature maps in feature fusion and detector modules.

During the transmission of feature maps, we choose
pickle to serialize and covert the feature map into a file.
Pickle is a Python tool module and implements binary
protocols for serializing and de-serializing an object struc-
ture. Then, we use file transfer protocol (FTP) to send the
file to the ground server. The byte size and the transmis-
sion delay of the file are shown in Table 2 of Section 5.
And the experiment proved that this transmission method
is effective.

Through the formula of time cost, we find out that time
cost is cumulative. This also means that the ground server
must wait for the train inference process to complete with
the serial method. This greatly increases the inference time
of serial segmentation method. Therefore, we also designed
a segment-model method for parallel inference to let the
ground server compete with the train for output.

3.4. Segmentation Model for Parallel Inference. In this sec-
tion, we will introduce another segmentation method
inspired by the idea of parallel rules. Although model seg-
mentation method for serial inference can deal with the
problems of emergency events and resource shortage, it is
influenced by the limitation of linear execution. In the
meanwhile, the ground server must wait for the feature
map from train; otherwise, it do not output. In order to min-
imize the influence of communication transmission delay
and maximize inference efficiency, we propose a model-
segmented method for parallel inference.

As shown in Figure 7, we try to reduce the time cost of
communication transmissions. And we input the image to
be detected to every node and record the time stamp at the
same time, so it is a competition between ground server
and train, and the result of competition is the final inference
time. The inference time of each one will be added to the
inference time of darknet block in Table 2 and sorted. These
sorted times become the indicators for switching strategy. If
the node with the shortest inference time is ground server, it
will be reassigned to a submodel with more computation.
That is to say, the first task of this segmented method is to
minimize both computation burden of on-board devices
and the total inference time.

Similar to part C, we measure the inference time by
recording the time when packets arrive at the feature fusion

def feture_fusion_and_detector(masks=yolo_ancher_masks,classes=80,cut_point=–1):
if cut_point  0:

if cut_point  1:

if cut_point  2:

x1 = input = Input([None, None, 1024])

x1 = input1 = Input([None, None, 512])

x1 = input1 = Input([None, None, 256])

x2 = input2 = Input([None, None, 512])

x2 = input2 = Input([None, None, 256])

x1 = YoloConv(512, name=ʹyolo_conv_0ʹ)(x1)

x1 = YoloConv(256, name=ʹyolo_conv_1)((x1, x1))

x1 = YoloConv(128, name=ʹyolo_conv_2)((x1, x1))

output = YoloOutput(512, len(masks[0]), classes, name=ʹyolo_output_0ʹ)(x1)

output = YoloOutput(256, len(masks[1]), classes, name=ʹyolo_output_0ʹ)(x1)

output = YoloOutput(128, len(masks[2]), classes, name=ʹyolo_output_2ʹ)(x1)

return = Model(input1, (x1, outoput), name=ʹdetector0ʹ)

return = Model((input1, input2), (x1, outoput), name=ʹdetector0ʹ)+str(cut_point))

Figure 5: Reorganized feature fusion and detector. To deal with
different inputs differently, the first is to adapt to the number and
shape of the input and choose convolutional layers with filters of
different size.
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Figure 6: Segmentation model for serial inference.

Table 1: Parameters and FLOPs of different darknet blocks.

Darknet_block, module 36 36-61 36-74 FD Total

Parameters(float)∗104 320 1168 2570 2136 6195

FLOPs∗104 642 2338 5144 4276 12400

Proportion 0.0518 0.1886 0.4148 0.3448 1
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module. The time cost of this segmented method is

Ti =max Ti1 + Tc, Ti2ð Þ + T f d: ð7Þ

Compared with segmentation model method for serial
inference, the method for parallel inference includes more
darknet blocks and occupy more resources. However, the
inference time will be less than that of serial inference due
to the competition between on-board devices and ground
servers, and this is the advantage of parallel inference.

4. Model Training and Inference Process

In this section, we train the YOLOv3 network after being
adjusted by our model segmentation methods and use the
network for inference. We will introduce some tips and pre-
cautions about the training model and the process of collab-
orative inference by multiple devices.

4.1. Model Training Process. In this section, this paper elab-
orates on the training process of the complete model and
three submodels. The first submodel consists of darknet
block 36. The second consists of darknet block 36 and 36-
61. And the third consists of all three kinds of darknet
blocks.

And YOLOv3 uses feature pyramid networks (FPN) to
integrate multiscale feature information and achieve the
detection of different size objects [12]. The construction of
pyramid we use involves a top-down pathway. The top-

down pathway hallucinates higher resolution features by
up sampling spatially coarser, but semantically stronger, fea-
ture maps from higher pyramid levels [17]. Thus, we can
detect obstacles of different sizes, and the unique pyramid
feature structure makes it possible for model segmentation
and distributed training three submodels.

However, only through individual training submodels,
we cannot obtain and update the weights of the convolution
layers in feature fusion and detector modules. Feature maps
of different scales need to pass a layer of convolution before
concatenating. When evaluating loss, three feature maps
need to pass through two convolution layers (the compo-
nents of detector). When the submodels are trained sepa-
rately, the coupling structure among the submodels, such
as the feature fusion module, contains part of the weight
parameters. Therefore, the outputs of different scales are
coupled or related, and the weight parameters of convolu-
tion layers before concatenating and the classification detec-
tor should be trained in advance. Thus, we freeze the weights
of feature fusion modules and detector after training the
whole YOLO model. Next, we try to train three submodels,
which are composed of different darknet blocks and the loss
of training data will be given in Section 5.

As for the allocation of training tasks, there are two solu-
tions in our edge computing architecture. One is that the
cloud nodes are responsible for training the whole model,
and each edge node loads its own submodel weights through
the weight of complete model. The other is that different
submodels share the parameters of a complete model, which
is trained locally and collected in the cloud, like federal
learning. Of course, in order to offload cloud pressure and
reduce the time of model training, we can train three submo-
dels in parallel with solution 2. But their weights are not
shared, and the parameters of feature fusion module
between submodels will not be updated; we do not recom-
mend the solution 2. At last, we select the solution 1 to train
the model.

4.2. Model Inference Process. In this section, we will intro-
duce the process of inference in detail and the strategy of
allocating submodels. For better describing the segmentation
method of the model, three cut points are inserted before the
output of each darknet block. The cut-points are numbered
by 2, 1, 0, and -1 as shown in Figure 8. The number of each
cut point represents the following meaning:

(i) -1 means outputting all feature maps

(ii) 0 means outputting small-scale feature map, which
is the third cut point

(iii) 1 means outputting medium-scale feature map,
which is the second cut point

Table 2: The byte size of output feature map and cost inference time.

Cut point num Bytes MB
Transfer
time

Mean inference
time

Cutpoint2 2769060 2.64 62ms 26ms

Cutpoint1 1384612 1.32 31ms 38ms

Cutpoint0 692388 0.66 16ms 44ms

Feature fusion and
detector

/ / / 31ms

Complete model / / / 75ms

Darknet_36 Darknet_36

Darknet_
36-61

Darknet_
61-74

Darknet_36 Darknet_36

Darknet_
36-61

Feature fusion

Detector

Feature fusion

Detector

Darknet_
36-61

Darknet_
61-74

Figure 7: Segmentation model for parallel inference. The so-called
parallelism means that multiple edge nodes receive the same input
and infer at the same time. And the node where the feature fusion
and detector modules are located is responsible for the output
result.

Cutpoint2
Model layers

Cutpoint1
Cutpoint0

Cutpoint10Cutpoint21

Figure 8: The numerical meaning of cut point.
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(iv) 2 means outputting big-scale feature map, which is
the first cut point

We also use 21, 10, or 20 to intercept the middle layers of
the complete model. And the inference process is divided
into 4 parts. First, appropriate initial strategy S0 is needed
to select the cut point of the complete model. The influenc-
ing factors of the strategies include max performance of
server, resource occupation, and communication delay.
The initial strategy is distributed from cloud nodes to edge
nodes and on-board devices, and we call it cloud edge collab-
oration. Second, on-board device and ground server load
initial model according to initial strategy, and ground server
waits for the feature map transferred from train after load-
ing. The whole inference process is triggered when the train
collect the images. Third, if on-board device uses resources
excessively during inference, it will select the nearest cut
point to exit the current inference process and send the fea-
ture map inheriting task progress to ground server. Of
course, if all goes well, the equipment and train will continue
to implement the established strategy. Last, after detecting
an image, the inference time will be collected by the cloud.
The calculation of inference time is based on the formulas
in Section 3. And the data will have an effect on updating
the next strategy S2.

5. Results and Analysis

We carried out the experiment on GTX 1660ti and used
GPU acceleration. The basic program environment includes
tensorflow-gpu-2.0, cuda-10.0, and cudnn-10.0. The focuses

of our experiment are the influence of various segmentation
methods and whether collaborative inference can be realized
without sacrificing precision.

Table 1 shows that different blocks of backbone net have
different FLOPS and parameters. With the data, the idle
resources can be reasonably matched with the correspond-
ing parameters to maximize the efficiency of obstacle detec-
tion. In this table, darknet block 36-74 takes up the most
resources, and the next is future fusion and detector mod-
ules. Thus, our strategy allocates these two blocks to the
ground servers as much as possible.

In Table 2, we measured the size of different scale feature
map, their transfer time by the network bandwidth of
500Mbps, and their corresponding average inference time.
It is found that the inference time of two same GPU devices
is only 13% more than that of a single device. If the perfor-
mance of one device is better, the time gap will be narrowed.
The conclusion shows that it is feasible to offload the calcu-
lation pressure of on-board devices by increasing part of
inference time.

During the training process, we evaluated the prediction
ability of the complete model according to the loss function
of part B in Section 2. As shown in Figure 9, there are three
different outputs of different scales, and we found that the
complete model we trained has pretty good prediction abil-
ity and robustness.

At the same time, we compare the inference time and
resource occupancy of train and server shown in Figure 10.
We find that parallel model segmentation schemes cost less
inference time than that of parallel model segmentation
schemes. But the parallel scheme takes up more train
resources than the serial scheme. In general, model

Input: Sk = (Strain, Sserver),
Input_size = (416, 416, 3)
featuremap_size= [(13, 13, 1024),(26, 26, 512),(52, 52, 256)]
Output: Tk, k=0,1,2,3...
k=0
model⟵ switch_sub_model(Sk);

1

load_init_weights(model, full_model_weights);
while node received images do
Record the time of receiving image;
if shape(images) = Input_size then

f eaturemap⟵ inference(model, images)2;
use FTP to send featuremap to next node;

else
if shape(images) in featuremap_size then

f eaturemap⟵ images;
end

end
if length(f eaturemap)=3 then

feature_fusion_and_detector(f eaturemap);3

Record the time of outputing detection result;
Tk=t2-t1
k=k+1

end
end

Algorithm 1: The inference process of on-board device and ground server.
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segmentation method can effectively offload the computa-
tion burden of on-board devices at the cost of increasing
inference time. If the GPU performance of the ground server
is better, the total inference time can be reduced.

At last, we tested some trackside scenes with the third
model segmentation method for parallel inference shown
in Figure 11. The image in the lower right corner is taken
from one frame of the video stream, and others are ordinary
images. The results show that the segmentation model can
detect small-scale, medium-scale, and multiple objects well.

6. Conclusion

Research shows that the performance of the complete model
in on-board devices is lower than that of collaborative infer-
ence. In the edge computing architecture, we have designed
different model segmentation method models for collabora-
tive inference and proved the validity of these methods.

We have offer two kinds of viable model-cutting
methods to combine edge computing with object detection.
One is for serial inference, and it takes up the same comput-
ing power as the original model. Thus, we can get the infer-
ence result with the least resource cost. And the other is for
parallel, and it allows on-board devices and ground servers
to do competitive inference to minimize the inference time.

The possible future work is to combine reinforcement
learning or other similar methods with the model segmenta-
tion method of this paper and determine the execution of
the segmentation strategy based on the performance of the
detection effect. While maximizing the use of train and
ground server resources, it also improves detection
efficiency.

Data Availability

Image data sets for model training and testing reported in
this manuscript have been deposited with the Microsoft
COCO and PASCAL VOC. Copies of these data can be
obtained free of charge from https://pjreddie.com/projects/
pascal-voc-dataset-mirror/ and https://cocodataset.org/
#home. And the specific versions of utilized data sets are
PASCAL VOC 2012 and COCO 2017.
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Figure 11: Object detection results. We used the open-source coco
data set with 80 classes to train the model, and the images to be
detected only include trains and people two classes.
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