
Research Article
Securing Open Banking with Model-View-Controller Architecture
and OWASP

Deina Kellezi, Christian Boegelund, and Weizhi Meng

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark

Correspondence should be addressed to Weizhi Meng; yuxin.meng@my.cityu.edu.hk

Received 3 August 2021; Accepted 3 September 2021; Published 21 September 2021

Academic Editor: Ximeng Liu

Copyright © 2021 Deina Kellezi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In 2015, the European Union passed the PSD2 regulation, with the aim of transferring ownership of bank accounts to the
private person. As a result, Open Banking has become an emerging concept, which provides third-party financial service
providers open access to bank APIs, including consumer banking, transaction, and other financial data. However, such
openness may also incur many security issues, especially when the data can be exposed by an API to a third party.
Focused on this challenge, the primary goal of this work is to develop one innovative web solution to the market. We
advocate that the solution should be able to trigger transactions based on goals and actions, allowing users to save up
money while encouraging positive habits. In particular, we propose a solution with an architectural model that ensures
clear separation of concern and easy integration with Nordea’s (the largest bank in the Nordics) Open Banking APIs
(sandbox version), and a technological stack with the microframework Flask, the cloud application platform Heroku, and
persistent data storage layer using Postgres. We analyze and map the web application’s security threats and determine
whether or not the technological frame can provide suitable security level, based on the OWASP Top 10 threats and
threat modelling methodology. The results indicate that many of these security measures are either handled automatically
by the components offered by the technical stack or are easily preventable through included packages of the Flask
Framework. Our findings can support future developers and industries working with web applications for Open Banking
towards improving security by choosing the right frameworks and considering the most important vulnerabilities.

1. Introduction

Traditional banks often run their services independently and
maintain their own users, while it is hard to obtain the data
from other customers. Such data obstacle restricts many ser-
vices such as product and service innovations and business
operation across different banks (e.g., money transfer) [1].
From October 2005, a revised Payment Services Directive
(PSD2) has been adopted in Europe aiming to enhance the
development and use of innovative online and mobile pay-
ments through giving consumers more choice and higher
security for online payments in the EU. Open Banking refers
to the practice of securely sharing financial data, based on the
customer consent. The data exchange between the bank and
authorized third parties is enabled via Application Program-

ming Interfaces (APIs). With the radical transformation of
financial sector and new regulations, banks are demanded
to develop Open Banking APIs that enable the following
two properties: (1) securing access to bank account data
and information and (2) allowing transactions to be com-
pleted among different accounts. As a result, Open Banking
is an important sharing data solution with the aim of elimi-
nating barriers to data access while increasing the customers’
control over their data.

1.1. Motivation. One of the largest banks in the Nordics,
Nordea, released the first version of their Open Banking
API in January 2019. We notice that they also released a
sandbox version that allows potential third-party providers
to access the APIs in a test environment. Online banking

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 8028073, 13 pages
https://doi.org/10.1155/2021/8028073

https://orcid.org/0000-0003-4384-5786
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8028073

applications are one of the most lucrative targets for attacks,
although many have been mitigated through Nordea’s own
protocols, i.e., the production APIs require a multistep
authentication through nemID (a common log-in solution
for Danish Internet banks) when signing up. However,
breaking into an application, by gaining access to a user’s
password, can give intruders direct access to triggering
transactions. The application security itself, on a range of
different areas such as data storage, injections, and commu-
nication, should therefore be considered very important to
mitigate during development, as this can easily result in data
breaches.

After more investigation, we find that 3300 developers
are currently registered as developers for Nordea Open
Banking, but only one product has been realized so far.
The adoption of Open Banking exposes data to more actors
than ever before, especially new companies and startups, and
therefore, also an enlargement of the security risks that the
financial industry is facing, with existing risks being
increased and new risks being introduced [2]. Further, the
threat becomes higher when leveraging applications on a
web platform, with possibly insecure protocols that might
not be possible on a desktop or phone application.

1.2. Contribution. Due to the complicated process of obtain-
ing a financial license to use actual production data, in this
work, we collaborate with Nordea Bank (Denmark) and
delimit the problem by using only their sandbox version to
develop the solution of triggering transactions based on
users’ habits and model the potential risks and threats. In
this work, we first identify the background of a technology
stack that can be used for development support. Then, we
develop a web application that can enable persistent data
storage and a high level of security and explain the system
architecture and the API communication. The OWASP
Top 10 list of the Ten Most Critical Web Application Secu-
rity Risks methodology is used to investigate the potential
threats and risks. Based on the identified threats, we also
suggest the integration of Bcrypt algorithm [3] for storage
security, which uses a 128-bit salt and encrypts a 192-bit
magic value. Our contributions can be summarized as below.

(i) We investigate the Nordea Open Banking APIs by
collaborating with Nordea Bank in Denmark, regarding
access authorization, account information services, and pay-
ment initialization services

(ii) We then design a web application and introduce the
system architecture based on the Model-View-Controller
architecture (MVC), including three parts such as model,
controller, and view. Our approach can handle the API inte-
gration through an abstraction layer with the MVC

(iii) To identify potential risks and threats, we use the
methodology of OWASP Top 10 with a threat modelling
method for categorizing the threats in six different areas,
such as threat agents, exploitability, weakness prevalence,
weakness detectability, technical impacts, and business
impacts

(iv) Our results found that many security threats like
Broken Authentication can be handled automatically by
the components offered by the technical stack or can be eas-

ily preventable through included packages of the Flask
Framework. However, TLS Layer in Nordea’s Open Banking
API may cause some crashes with HTTPS

In comparison to the previous study [4], this work pro-
vides more information on Nordea’s Open Banking API,
such as sequence diagram, access authorization flow,
account information, and payment initialization, and intro-
duces the OWASP Risk Rating Methodology in more detail.

The rest of this work is organized as follows. Section 2
introduces the basic background of the Flask Framework,
cloud application platform, OWASP Top 10, database man-
agement, hashing and salting, and the Nordea’s Open Bank-
ing API. Section 3 reviews the related work, and Section 4
details our proposed web application, including the architec-
ture and object relational database. Section 5 identifies and
discusses the potential risks and threats of Nordea’s Open
Banking API and our proposed application by leveraging
the OWASP Top 10 list. We conclude this work in Section 6.

2. Background

In this work, we adopt the microframework for web devel-
opment, Flask (for Python) to develop our web application.
The Flask can mitigate many security threats by default, sup-
plemented by a number of renowned third-party extensions
and packages authenticated by the Flask community, which
can be customizable according to the demands. It also pro-
vides out-of-the-box abstraction layers for communicating
with the popular object relational database-PostgreSQL [5]
and the cloud application platform-Heroku [6] for
deployment.

2.1. The Flask Framework. A Flask application is initialized
by creating an application instance through the Flask class
with the application package as argument. The web server
then passes all received requests from clients, such as web
browsers, to this application instance. The logic is handled
by using the Web Server Gateway Interface (WSGI) as pro-
tocol, through constantly awaiting requests. The framework
is compliment with the WSGI server standard [7].

The application instance also needs to know which part
of the logic has to run for each requested URL. This is done
through a mapping of URLs to the Python functions, which
handle the logic associated with a URL. This association is
called route between the URL and the handling function,
which can be defined by the @package.route decorator.
The return value of the function is the response that the cli-
ent received in the form of a template or a redirect.

2.2. Cloud Application Platform. Heroku [6] is one of the
first and largest PaaS (Platform as a Service) providers with
their Cloud Application Platform. The developer can deploy
an application to Heroku using Git to first clone the source
code from the developer branch and then push the applica-
tion to the Heroku Git server. The command automatically
triggers the installation, configuration, and deployment of
the application. The platform uses units of computing and
dynos to measure the usage of service and perform for differ-
ent tasks on the server. It also provides a large number of

2 Wireless Communications and Mobile Computing

plugins and add-ons for databases, email support, and many
other services. Heroku supports PostgreSQL [5] databases as
an add-on, created and configured through the command
line client.

2.3. Database Management. The Flask puts no restriction on
what database packages can be used and supports a number
of different database abstraction layer packages. The web
application can run on the PostgreSQL database engine sup-
ported by the Object Relational Mapping (ORM) and
SQLAlchemy. The selection is based on the following differ-
ent criteria:

(i) Easy Usage. Using a database abstraction layer
(object-relational mappers ORMs) such as SQLAlchemy
provides transparent conversion of high-level object-
oriented operations into low-level database instructions, in
comparison to writing raw SQL statements [8]

(ii) Performance. ORM conversions can result in a small
performance penalty, yet the productivity gain far outweighs
the performance degradation. The few outlying queries that
degrade the performance can be subsidized by raw SQL
statements

(iii) Portability. The application platform-Heroku can
support a number of different database engine choices,
where the most popular and extensible ones are Postgres
and MySQL [6]

(iv) Integration. The Flask includes several packages
designed to handling ORMs, such as Flask-SQLAlchemy
[9], which includes engine-specific commands to handle
connection

2.4. OWASP Top 10. The Open Web Application Security
Project (OWASP) [10] is a worldwide organization focused
on improving the security of software. The OWASP has
identified a list of the Ten Most Critical Web Application
Security Risks that can be used for vulnerabilities mapping,
which include:

(1) Injection. Injection flaws, such as SQL and ORMs,
occur when untrusted data is sent to a field as part of a com-
mand or query. The attacker’s hostile statements can trick
the backend into executing unintended commands

(2) Broken Authentication. Application functions related
to authentication and session management are often missed
or implemented incorrectly, allowing attackers to compro-
mise passwords or session tokens, or to exploit other imple-
mentation flaws to infer the user’s identity

(3) Sensitive Data Exposure. Many web applications and
APIs do not properly protect sensitive data, such as finan-
cial, healthcare, and personally identifiable information
(PII). Attackers may steal or modify such weakly protected
data to conduct credit card fraud, identity theft, or other
crimes without encryption

(4) XML External Entities (XXE). Many older or poorly
configured XML processors evaluate external entity refer-
ences within XML documents. External entities can be used
to disclose internal files

(5) Broken Access Control. Restrictions on what authen-
ticated users are allowed to do are often not properly
enforced. Attackers can exploit these flaws to access unau-

thorized functionality or data, such as other user’s accounts
or access rights

(6) Security Misconfigurations. Security misconfiguration
is the most commonly posed issue. This is commonly a
result of insecure default or manual configurations, open
cloud storage, misconfigured HTTP headers, and error mes-
sages or stack traces containing sensitive data

(7) Cross-Site Scripting (XSS). XSS flaws occur whenever
an application includes untrusted data in a new web page
without proper validation or escaping. XSS allows attackers
to execute scripts in the victim’s browser, which can hijack
user sessions, deface websites, or redirect the user to mali-
cious sites

(8) Insecure Deserialization. Insecure deserialization can
lead to remote code execution. Even if deserialization flaws
do not result in this, it can be used to perform a different
number of attacks suck as replay attacks, injection attacks,
and privilege escalation attacks

(9) Using Components with Known Vulnerabilities. Com-
ponents, such as libraries, frameworks, and other software
modules, run with the same privileges as the application. If
one of these is vulnerable and exploited, it can facilitate data
loss or server takeover. Applications and APIs using compo-
nents with known vulnerabilities may undermine applica-
tion defenses and enable various attacks and impacts

(10) Insufficient Logging and Monitoring. Insufficient
logging and monitoring, coupled with missing or ineffective
integration with incident response, allow attackers to further
intrude systems, maintain persistence, pivot to more sys-
tems, and tamper, extract, or destroy data

2.5. Hashing and Salting of Sensitive Data. When signing up
for the application, the user will need to provide a password
and load account data, inevitably sensitive information such
as account number. Generally, hash algorithm can be used to
securely saving passwords and account numbers on the
server side.

2.5.1. Hash Algorithm. Hash algorithm refers to a one-way
mathematical function that takes data with an arbitrary
length and maps it to a fixed length bit string. The purpose
of a hash algorithm is to store the sensitive data securely in
the database, simultaneously confirming that the provided
password or account number is correct. A good hash algo-
rithm should hold the following properties [11]:

(i) Preimage Resistance. For a given h in the output space
of the hash function, it is hard to find any message x with
HðxÞ = h

(ii) Second Preimage Resistance. For a given message x1,
it is hard to find a second message x2 ≠ x1 with Hðx1Þ =Hð
x2Þ

(iii) Collision Resistance. It is hard to find a pair of mes-
sages x1 ≠ x2 with Hðx1Þ =Hðx2Þ

There are a number of different hash algorithms, all with
different properties. A selected number of hashing algo-
rithms, for instance, the MD5 algorithm or the SHA1 algo-
rithm, are designed to be fast and efficient. This is
preferable when messages should be hashed quickly to check
for equality.

3Wireless Communications and Mobile Computing

However, in terms of passwords, account numbers, or
other sensitive information, fast hash algorithms are not
always optimal. If there is a security breach that allows
attackers gaining access to the data in the database, they
can quickly be breached using fast hash algorithms. In par-
ticular, MD5 is not recommended, as it is unsalted. This
can be done with a precomputed lookup table, also known
as a rainbow table. Further, these algorithms can be acceler-
ated significantly by using a GPU [3].

On the other hand, slower hash algorithms such as
bcrypt initially create a slower run time. However, when it
comes to precomputing hashing values, it is much more dif-
ficult, as the algorithm is designed to be slower by an order
of magnitude. Brute-forcing the data is therefore way more
difficult.

2.5.2. Salting a Hash. There is an observation that users may
often choose weak passwords due to the long-term memory
limitation [12, 13]. For example, top 10,000 passwords are
used by 30% of all users [14]. Even if one were to use bcrypt,
a slow hash algorithm, passwords can be quickly be compro-
mised via a parallel set of GPUs. Because of this, we need to
enhance the password strength. Salting is an effective tech-
nique for this purpose, which entails adding a random string
to the beginning or end of the password before hashing. In
practice, we have to make the password almost impossible
to crack with current technology. A short calculation shows
that it is infeasible to guess a salt of 12 characters. Even if we
constrict passwords to letters only (a-z and A-Z), of which
there are 52 characters, we are able to create: 1252 = 1:3 · 1
056 different salts. As a result, even with strong computer
power, it is infeasible to guess the salt even with the pass-
word. If we were able to check 100 billion salts per second,
it needs to cost us: 3:17 · 1037 years to guess it. In compari-
son, the age of the universe is around 1:38 · 1010.

2.6. The Nordea Open Banking API. The Nordea API pro-
vides access to a number of different endpoints in order to
facilitate the connection to the accounts of the user. Some
API endpoints must be used in order to authenticate the user
before changing the data, while other endpoints involve a
number of side effects, i.e., changing the balance on the
accounts [15]. We check a list of the relevant endpoints with
Nordea Bank (Denmark), and the following are the most
crucial ones:

(i) Access authorization
(ii) Account information services
(iii) Payment initialization services

2.6.1. Access Authorization. To leverage the functionality of
the API, the Client ID and Client Secret must be obtained.
The values can be retrieved by creating a project on the Nor-
dea Open Banking website. The Client ID and Client Secret
are parameters that are configured to the client, and they are
never exposed to the actual application user. Once the
account has been approved, we must obtain an access token
in order to gain access to the API.

Figure 1 describes access authorization flow required to
obtain the access token. The faded lines describe the OAuth

flow, handling the multifactor authentication [15]. This is
not part of the sandbox version of the API and will therefore
not be handled in our approach. It describes the authentica-
tion flow that would be present in a production environ-
ment, i.e., users with actual accounts using applications
that require a NemID authentication (NemID users are
assigned a unique ID number that can be used as a username
in addition to their CPR-Number or a user-defined
username).

2.6.2. Account Information. The account information API
includes the possibility to check the contents of the different
sample accounts in the sandbox version. We can create new
accounts, delete current accounts, and add funds to relevant
accounts. This can be done by sending a request to the
account endpoint [15]. Based on the URL and the type of
request, the function will be different as shown in Table 1.

The flow of account information API depends mainly on
which type of request is made. Figure 2 describes two scenar-
ios of requests made to the API. Both of them return a
response code with the requested information.

2.6.3. Payment Initialization. The payment initialization API
provides functionality to create payments directly in the
API, moving funds from one account to another [15].

Figure 3 shows the protocol for payments between the
two accounts provided in the request. The final response will
confirm whether or not the transaction has been made.

3. Related Work

3.1. Web-Based Solution. In the state-of-the-art, there is few
work regarding how web applications or the technical stack
can integrate with Open Banking APIs. This is due to two
main reasons as below:

(i) The novelty of most of the interfaces, including Nor-
dea’s Open Banking APIs

(ii) The requirements of developers need to be approved
by national financial authorities when using the APIs in
production

These factors have delimited the pool of possible
researchers to only a few authorized third parties or those
using the sandbox version. No official paper has dived into
integrating with Nordea’s Open Banking API as a third-
party provider, nor proposed a model for an architectural
model or stack that secures bank account information and
transaction functionality in a web application. Nevertheless,
a lot of work has generally been done in the field of web
application security overall, including several models to
identify, analyze, and mitigate possible security breaches
under a cyber attack [16]. One example is a study in the field
of web application security vulnerabilities detection that
conducts a security analysis and threat modelling based on
the OWASP Top 10 list and threat modelling [17].

The sandbox version of the Nordea Open Banking API
was officially released at the beginning of the project in Jan-
uary 2019. During the attempt to generate the access_token
for establishing connection before beginning the develop-
ment of the application, the error codes were limited to

4 Wireless Communications and Mobile Computing

generic server errors. The limited sample codes and lack-
ing documentation on possible error codes (“The error
messages are not descriptive at the moment, and this issue
is noted. The error messages will be improved over time.”)
made it difficult to correct. In order to find a solution, we
conducted a simulation with the API simulation tool
named Postman [18]. The connection was successful, and
the code in Postman worked and did not return any error
codes. This led to the conclusion that something was
wrong with our implementation of the API calls. To
understand the difference between the HTTP packages,
the difference between them was negligible. We contacted
the senior software architect of Nordea Open Banking.
The support team from Nordea Bank tried to assist us in
making the API work and assess the possible errors made
through logging of their own servers. Ultimately, they did
not succeed in resolving the issue. The origin of the error
was later found: the redirect URI, a crucial part of the
OAuth (OAuth is one of the leading protocols within
authentication) 2.0-process was set to an incorrect value.

We thus contributed to the community of developers by
using the Nordea Open Banking API and creating a pull
request (The PR can refer to: https://github.com/
NordeaOB/examples/pull/7). At the moment, the sample
code only works with version 2 of the API, while the
API has been updated to version 3 since then.

3.2. Blockchain-Based Solution. With the advent of block-
chain technology, it becomes a popular solution for secur-
ing Open Banking. For example, Xu et al. [1] first
identified some potential issues of Open Banking, i.e.,
mutual authentication is hard to be transparently man-
aged, and Access Control List (ACL) controlled by users
may pose privacy issues. Then, they introduced PPM, a
Provenance-Provided Data Sharing Model for open bank-
ing system via blockchain technology, which could employ
the programmable smart contracts as the middle witness
between users and third-party services to guarantee the
reliability and trust communication. Meanwhile, Dong
et al. [19] argued that Open Banking may cause a risk of
privacy leakage and personal information misconduct.
They then introduced BBM, a blockchain-based self-
sovereign identity system model, which allowed users to
provide their digital identities in the off-line world as same
as they use physical identities. Wang et al. [20] also intro-
duced a data privacy management framework based on the
blockchain technology, which could be used for Open
Banking and the financial sector.

Customer

Request consent

Client (flask)

Agree consent

Initiate session

Stage 1 credentials

Stage 2 credentials

Grant access

End session

Nordea

Request access

Acknowledge

Auth code

Token Exchange

Access token

Authenticate

Authenticate

User
authentication

Figure 1: Sequence diagram, access authorization flow.

Table 1: The request type and the URL with relevant functions.

Type URL Function

GET /v3/accounts Information about accounts

POST /v3/accounts Create new account

POST /v3/accounts/{ID} Create transaction

5Wireless Communications and Mobile Computing

https://github.com/NordeaOB/examples/pull/7
https://github.com/NordeaOB/examples/pull/7

Due to the benefits provided by Open Banking, its data
sharing model has been studied in other areas such as Elec-
tronic Health Records [21]. Hence, there is a great need to
further enhance its security.

3.3. Intrusion Detection Solution. To protect the web applica-
tion and open banking security, intrusion detection system
(IDS) is a basic and necessary mechanism. Based on the
detection approaches, it can be identified as either
signature-based or anomaly-based detection. For example,
an enhanced filter mechanism (EFM) [22] could be used to
provide a comprehensive protection, including a context-
aware blacklist-based packet filter, an exclusive signature
matching component, and a KNN-based false alarm filter.
Ma et al. [23] introduced a Distributed Consensus-based
Trust Model to evaluate the trustworthiness of IoT nodes,
against three typical attacks—tamper attack, drop attack,
and replay attack, by sharing certain information. Sohi
et al. [24] introduced RNNIDS that could enhance the detec-
tion performance by using Recurrent Neural Networks
(RNNs) to find complex patterns in attacks and generate

mutants of attacks as well as synthetic signatures. Further,
an IDS can work with other security mechanisms towards
an enhanced security level.

4. Our Proposed Approach

4.1. The Application Architecture. For defining the architec-
ture, we present a model based on the Model-View-
Controller architecture (MVC) specifically adjusted for web
development as proposed by Pop and Altar [25]. It was
found that developers often combine the HTML code with
server side programming languages during the web develop-
ment and create dynamic web pages and applications. This
may lead to highly entangled and unmaintainable code.
With an MVC pattern, it is possible to prevent cluttering
by separating three overall parts of a web application,
including model, controller, and view. The model will also
introduce how to handle the API integration through an
abstraction layer and how to include it in the MVC.

(i) Model. A persistent data storage layer through a data
centre or database

Flask Flask NordeaNordea

Post v3/accounts

Response-code Response-code

Delete v3/accounts/ (ID)

Figure 2: Sequence diagram of AIS-API.

Flask Nordea

Post v3/payment

Payment_ID

Confirm payment_ID

Payment confirmed

10s Update paymentstatus

Figure 3: Sequence diagram of payment initialization service.

6 Wireless Communications and Mobile Computing

(ii) Controller. The HTTP requests triggered by user
actions and general routing of different subpages

(iii) View. The HTML code and mark-up languages in
the templates rendered to the user as a result of a request

These main components will be built through a modular
approach, using blueprints as recommended by the Flask.
Figure 4 presents the proposed diagram for the adjusted
MVC, which can be further adjusted to include supplemen-
tary components for interacting with the API. This model
allows us to further propose how this fits into the Flask
Framework and an effective abstraction layer integration
with the API.

Figure 5 presents the schematic of the application archi-
tecture and how the MVC components are implemented.

4.1.1. The Model. As shown in Figure 5, the blue box shows
the modelling of the data objects and relationship. This is the
direct representation of the schema in the database. When-
ever the SQLAlchemy methods start either querying, updat-
ing, or deleting data, they are called on the defined data
objects in the model, and the database is updated accord-
ingly. This also provides simpler commands for establishing
connections to PostgreSQL through the URL of the database
as handled by the controller.

4.1.2. The Controller. As shown in Figure 5, the green box
shows the controller that is classified into three blueprints:

(i) auth_controller. Rendering the pages responsible for
signing up and authenticating users logging in

(ii) main_controller. Rendering the pages of specific user
session, containing URLs for creating habits, checking off
habits that are completed, overview over habits, and over-
view over accounts and settings. This is restricted to authen-
ticated users only

(iii) admin_controller. Rendering the pages of adminis-
tration content included for demonstration purposes that
allow to test the different API functionality. This is restricted
to users with admin rights only

The blueprints provide a clearer separation of different
states in the application, which could be done through appli-

cation dispatching, i.e., creating multiple application objects,
however, this would require separate configurations for each
of the objects and management at the server level (WSGI).
Blueprints instead support the possibility of separation at
the Flask application level, ensuring the same application
and object configurations across all controllers, and most
importantly, the same API access. This means that a Blue-
print object works similarly to a Flask application object,
but is not an actual application as it is a blueprint of how
to construct or extend the application at runtime [26]. When
binding a function with the decorator @auth.route, the blue-
print will record the intention of registering the associated
function from the auth package blueprint on the application
object. It will also prefix the name of the blueprint (given to
the Blueprint constructor) auth to the function.

Each blueprint handles initialization, routing, and execu-
tion in the application. The initialization entails creating a
Flask object instance by taking a specific set of configurations
for either development, testing, or production environment,
establishing connection to the API by obtaining the Client
ID and connecting to the database. For the routing, Flask
requires us to define routing functions for each of the URL
routes for the web application. This allows the Flask to map
the incoming request from the user to a specific response, trig-
gering change in the state of the application in the model and
rendering the template with the changed data. We have lim-
ited the requests to GET and POST methods, following a
POST/REDIRECT/GET pattern. Moreover, the controllers
are responsible for running the application instance through
the main method provided by the Flask.

4.1.3. The View. As shown in Figure 5, the orange box shows
the inheritance hierarchy of the templates that primarily
consist of HTML and CSS, built upon a number of frame-
works. The inheritance is supported by the Jinja2 Template
Engine, offered by the Flask, enabling all templates to inherit
from a base design, as well as register into their specific con-
troller through the aforementioned blueprints. This also
allows dynamic rendering of values provided as argument
to the templates when rendered [26].

Demand Data

Request
HTTP, CLI, etc.

ResponseController

Model
database, WS, etc.

View
templates, layout

API
abstraction

layer

Figure 4: MVC architecture for web application.

7Wireless Communications and Mobile Computing

4.2. Object-Relational Database. Ensuring that the applica-
tion data is stored in an organized and secure way requires
a database model. Databases can be modelled in different
ways, and we need a model that can effectively represent
the following information: users, the individual user’s habits,
and the individual user’s accounts. This constitutes an
object-relational database [27].

Figure 6 illustrates the entity-relationship diagram for
database. It is easy to change the schema for future feature

implementations, which will be relevant for further develop-
ment of the application. Moreover, it models the entity rela-
tions in the application domain in a simple way, i.e., as
shown in Figure 6, users that each own a number of habits
and a number of accounts, each represented as rows in a
table. The tables have a fixed number of columns with the
variable names related to the object and a variable number
of rows with values. Each table also has a column with a pri-
mary key, holding unique identifier for all rows stored in

User

Account
Habit

Parser

API

Base.html

Auth_controllerAdmin_controller
Main_controller

AdminMain Auth

App

...

...

...

....

+API:API

+API:API

+API:API

+Parser:parser
+Parser:parser

+Parser:parser

+Login () :
+Login_post () :
+Logout () :
+Signup () :
+Signup_post () :
+Loadaccount () :
+Loadaccount_post () :
+Confirm (token)

+Profile () :
+Deletehabit (id_)
+Deletehabit (id_) _post:
+Checkoff (id_) :
+Checkoff (id_) _post:
+Dashboard () :
+Index () :
+Habit (id_) :
+Createhabit () :
+Createhabit_post () :

+Setting_post()
+Setting ()

+Administriation () :
+Createaccount () :
+Createaccount_post () :
+Transaction () :
+Transaction_post () :

+Addtranscation_post () :
+Addtranscation () :

+Deleteaccount_post () :
+Deleteaccount () :

{% Endblock %}

{% Block content %}

{% Extend

base.html}
HTML Templates

+ID : int
+Name : string
+Frequency : int
+User_ Id : int
+Interval : int
+Amount : int
+Amount_saved : int
+Is_completed : boolean
+Startdate : datetime
+Days_left:int

+ID : int
+Hashed_acc_no : string
+Is_debitor : boolean
+Is_creditor : boolean
+User_id : int
+Name : string

+Set_hashed_account (account_no) : string
+Check_account (account_no, hashed) : boolean

+ID : int
+Full_name : string
+Email : string
+Hashed_pwd : string
+Acc_loaded : boolean
+Total_saved : float
+Email_confirmation_sent_on = datetime
+Email_confirmed : boolean
+Email_confirmed_on : datetime
+Habit : table
+Accounts : table

+Set_hashed_password (password) : string
+Check_password (password, hashed) : boolean

0..⁎

0..⁎

Figure 5: Class diagram for MVC.

User

Id : primary key

Id : primary key

Id : primary key

Full_name

Email

Hashed_pwd
Acc_loaded

Total_saved
Habits : foreign key
Accounts : foreign key

Account

Hashed_acc_no

Is_debitor

Is_creditor

User_id

Name

Habit

Name

Frequency

User_id
Amount

Amount_saved
Is_completed

Startdate

Days_left

Streak

Figure 6: Entity-relationship diagram for database.

8 Wireless Communications and Mobile Computing

that table. The foundation of the relational database model is
the foreign keys in the tables that reference the relationship
between users and their habits and accounts through lists.

4.2.1. API Abstraction Layer.We present two supplementary
APIs and Parser classes to the MVC model. These classes
work as abstraction layers for easing communicating with
the APIs and filtering out unnecessary data for the applica-
tion. The purpose is to avoid interacting directly with the
API and therefore avoiding unnecessary complexities and
errors by encapsulating complex requests in our methods
and handling responses accordingly. Figure 7 describes the
class diagram of API abstraction layer.

The user’s bank and account information can be
retrieved directly through the account information services
API as a JSON response. The calls to retrieve this response
are separated into several methods in the Parser class. The
response is first separated into a list object as a field in the
Parser and then indexed to extract the needed information.
It also consists of different conversion methods to convert
different account representations, as well as methods to hash
and check account numbers. The API class contains the
methods handling the payment initialization service API,
hence, triggering transactions between the bank accounts,
called whenever habits have been checked off. Through the
fields of the API class, we are also able to keep the access
token saved across web pages without having to reinstantiate
it. Both classes are created as instances for the controller.

4.2.2. Platform Architecture. In order for the application to
be deployed in production mode, we propose a platform
hosted on the cloud application platform-Heroku [6], with
the database connected through Heroku’s Postgres add-on.

Figure 8 shows the architecture of the platform where
the application is deployed onto. The Flask application itself
is as described run through a WSGI server during the devel-
opment. The application has therefore to be configured to
run through HTTP/HTTPS Server instead of running out-

side of the local host. We propose Gunicorn, a WSGI HTTP
server, as recommended by Heroku. The application will
send the ORM statements to the database through the data-
base driver psycopg2, which is the most popular for the
Python language.

5. Evaluation

In this section, in order to investigate the security and effec-
tiveness of our approach with Open Banking, we introduce
our evaluation methodology with the OWASP Top 10 and
discuss the identified attacks against application integrating
with the Open Banking API.

5.1. Methodology. Figure 9 shows the methodology for
applying the OWASP Top 10 to the described application
and its architecture, which entails systematically going
through the list from the most critical to the least critical
threat. The OWASP methodology provides a threat model-
ling method for categorizing the threats in six different areas,
which might result in the weighing of threats to change.

Four of these areas are predetermined in the model and
should be the basis of the top 10 ranking in the first place.
The categorizations for each element in the list can be
viewed from the OWASP documentation. However, by
observing the two areas of Threat Agents and Business
Impact, they can impact how critical a given threat is. If
the Threat Agent and/or Business Impact have a low threat
level, then, the threat can quickly become irrelevant.

The OWASP provides a comprehensive model for calcu-
lating the risk factor of Threat Agents and Business Impacts
[28]. However, the limitations imposed by using the sandbox
version indicate that we have a nonexisting user base, lack-
ing business context, and problems that arise as a result of
using the sandbox to prevent testing some of the factors. It
can therefore be difficult to reach feasible estimates of both
Threat Agents and Business Impact. The Threat Agents will
therefore simply be assumed high across all areas, since the

API

+ REDIRECT_URI: string
+ API_URI: string
+ CLIENT_ID: string
+ CLIENT_SECRET: string
+ Code: string
+ Access_token: string

+ Get_code ()
+ Generate_payload (code)
+ Generate_access_token (code)
+ Get_payload (amount, account, cred_account)
+ Get _headers (access_token)
+ Initiate_temp (amount, headers, debitar_id
creditor_id)
+ Initiate (headers, payload)
+ Quary (headers, payload, payment_id)
+Confirm (headers, payload, payment_id)
+ Add_transaction (amount, headers, account_id)
+ Delete_account (access_token, account_id)
+ Get_account_data (access_token)
+ Create_account (access_token, bban, acc_name,
amount, name)
+ bban_to_iban (bban, country)

Parser

+ Data_list: list
+ Length: int
+ Current: int

+ bban_to_iban (bban, country)
+ Get_credit_limit (acc_no)
+ Get account_name (acc_no)
+ Get_account)_no (acc_no)
+ Get_balance (acc_no)
+ Get_hashed_account (plain_text_password)
+ Check_account (plain_text_password, hashed_password)

Figure 7: Class diagram of API abstraction layer.

9Wireless Communications and Mobile Computing

financial industry is generally a critical target due to the pos-
sibility of financial rewards. The Business Impact estimation
needs to include factors such as financial damage, reputation
damage, noncompliance, and privacy violation, data that
requires an actual business context. We, therefore, conduct
a simple estimate of Business Impact, based on the factors
that are critical for the end users and their bank accounts:

(1) Low. Security is compromised in areas not containing
sensitive data, areas that do not trigger unintentional trans-
actions, or attempted attacks that do not affect the applica-
tion in any way

(2) Medium. Security is compromised such that the
attacker gains access to sensitive data in the form of bank
data or habits stored in the database

(3) High. Security is compromised such that the attacker
gains access to functionality using the payment initialization
service and can trigger unintentional transactions, leading to
either small, substantial, or large financial consequences

Each threat area in the top 10 list will be addressed, with
an emphasis on the areas that are estimated as highly for the
Business Impact.

5.2. Evaluation on Nordea’s Open Banking API with
the OWASP

5.2.1. Injection and XSS, Threat Agents: 3, Business Impact: 1.
We propose a critical approach regarding user input to pre-
vent injection. A number of tests should be made:

(i) Input should be filtered
(ii) Output should be escaped by filtering input
All input fields from the user should be filtered from

code-like plain text or injecting raw SQL statements into
the database. Submitting unfiltered input into the database
can result in a large exposure to SQL injections. This can
be detrimental to the privacy of the data; potentially allowing
an attacker to access to view the bank information of a user.
No further measures need to be proactively taken to prevent
injections. ORM SQLAlchemy automatically filters the input
of the user, and the Flask Framework automatically escapes
output when inserting values into templates, mitigating
threats such as JavaScript injection or similar.

5.2.2. Broken Authentication-Threat Agents: 3, Business
Impact: 3. We propose a number of actions to mitigate bro-
ken authentication, as it is one of the most critical threats
against the application and the API:

(i) A set of criteria for the user credentials at sign up
(ii) Preventing that passwords are saved in plain text

Threat agents Exploitability Weakness
prevalence

Weakness
detectability

Technical
impacts

Business
impacts

App specific

EASY: 3EASY: 3 3
WIDESPREAD:

3 EASY: 3EASY: 3 SEVERE: 3SEVERE: 3

App/business
specificAVERAGE: 2AVERAGE: 2 COMMON: 2COMMON: 2 AVERAGE: 2AVERAGE: 2 MODERATE: 2

DIFFICULT: 1DIFFICULT: 1 1
UNCOMMON:

1 DIFFICULT: 1DIFFICULT: 1 MINOR: 1MINOR: 1

Figure 9: The OWASP Risk Rating Methodology.

Nordea open banking API

Account API Dynamic AIS
API

Payment API
SEPA credit

transfer

Payment API
domestic
tranfer

Cards API

Heroku platform

Gunicorn WSGI web server

Heroku flask app

psycopg2

PostgreSQL

Figure 8: Platform architecture.

10 Wireless Communications and Mobile Computing

(iii) Using multifactor authentication during either
signup and/or login

(iv) A user should only be allowed to enter URLs that
they are authenticated to enter

The user is required to provide a username and pass-
word at signup, and most applications nowadays provide
the possibility of signing up through email. That is, the com-
pany is able to authenticate and send information through a
mail integration. The username should therefore be a valid
email, so we are able to perform multifactor authentication
by sending a confirmation email to the address. The Flask-
Mail extension provides a simple interface to set up SMTP
with your Flask application and to send messages directly
from the controller. We also require the password to be at
least 10 characters long and include both lowercase and
uppercase letters, numbers, and a special sign. Most pass-
word breaches occurred as a result of weak password criteria,
and setting up a number of requirements for the password is
therefore an easy and very effective way of preventing bro-
ken authentication.

The authentication can also be broken by gaining access
to the database and extracting the plain text version of the
password. Therefore, only the hashed password will be
stored in the database. The bcrypt hash algorithm, combined
with salting, is one of the most effective ways to permit brute
force attacks. A salt with a length of 12 characters will result
in millions of different combinations, making it almost
impossible for an attacker to decode. It does have a larger
penalty on the time complexity compared to other hash
functions. However, there is still a need to make a trade-off.

The Flask-Login extension provides user session man-
agement for Flask and allows us to restrict views through a
simple decorator to only authenticated users. The Flask
Framework therefore provides an easy way of restricting
specific URLs.

5.2.3. Sensitive Data Exposure-Threat Agents: 3, Business
Impact: 3. We propose only storing the most important data
in the database for the application to run. The remaining
data will be exposed during run time from the API response,
retrieved by the API abstraction layer. The information
stored in the database includes a hashed version of the
account number and the name of the account. The rest of
the information of that specific account can be retrieved at
run time by checking the hashed account number against
all the user’s accounts in the API. The idea is to keep as
much information as possible from an attacker that gains
access to the database without compromising functionality.

5.2.4. XML External Entities-Threat Agents: 3, Business
Impact: 1. The application accepts no uploads or XML, and
therefore, an attack of this nature has no Business Impact.
It is therefore not relevant to address.

5.2.5. Broken Access Control-Threat Agents: 3, Business
Impact: 3. We propose ensuring that the functionality of
the application is only exposed to the specific legitimate user,
who is able to check off a number of habits and actions,
resulting in automatically transferring funds. It is therefore

necessary to ensure that it is not possible to gain access to
this POST request from other sources. For instance, the cur-
rent user ID in the POST request to the URL would enable
an attacker accessing from the outside, since the request
could easily be faked. Thus, we need to ensure that it is in
fact the legitimate user who performs the check off, and to
check the user owning the habit up against the user that is
currently in the session. If an attacker is not allowed to check
off a habit, but attempts to do it anyway, they are redirected
to an error page. We also need to record this attempt in our
logging system, which allows us to have an overview of
potential security issues and discover possible threat agents.

In order to further strengthen the application, we have
implemented protection against Cross-Site Request Forgery
(CSRF) with the Flask package CSRFProtect. This is done
by adding a hidden field to all forms. This results in the user
having to fill out the form on the website in order to have
their request accepted, thus, creating a defence against a
myriad of automatic scripts. As an additional security mea-
sure, CSRF also requires a secret key to sign the token.

5.2.6. Security Misconfiguration-Threat Agents: 3, Business
Impact: 2. Misconfiguration can have a number of different
sources that can bring disruption to the application, some
of which include:

(i) Revealed stack traces or overly informative error
messages

(ii) Improperly configured permissions
(iii) Incorrect values for security settings across servers,

frameworks, libraries, or databases
We propose using large parts of the security packages

and settings offered by the different parts of the technical
stack. Flask provides a number of ways to handle custom
error messages to the user in order to prevent showing stack
traces or overly informative error messages to users. We pro-
pose a combination of the following. Message Flashing, that
can be included in the templates, is making it possible to
record a custom message at the end of a request and access
it in the next request and only the next request. The Python
logging package also provides the possibility of printing cus-
tom messages and stack traces to the console, limiting the
information from showing specific request methods and
URLs. However, in 2014, as Flask eliminated error and stack
traces from application started running in production mode
(https://github.com/pallets/flask/issues/1082), it is no longer
necessary to create custom error messages.

To mitigate improperly configured permissions, the
selected cloud service provider will not allow open default
sharing permissions to the Internet or other users. This
ensures that sensitive data stored within cloud storage is
not accessed by illegal users. Heroku PaaS is a large service
provider and regular audits with the aim to ensure that per-
mission breaches does not occur.

Lastly, the included Flask packages provide a number of
security settings. One example is the Flask LoginManager
package, from which it is possible to choose from different
levels (none, basic, or strong) of security against user session
tampering. The latter ensures that Flask-Login keeps track of
the client IP address as well as browser agent during

11Wireless Communications and Mobile Computing

https://github.com/pallets/flask/issues/1082

browsing. If a change is detected, the user will automatically
be logged out.

5.2.7. Components with Known Vulnerabilities-Threat
Agents: 3, Business Impact: 3. The components we used have
no major known vulnerabilities. The Flask Framework is one
of the most popular Python microframeworks and therefore
has a number of requirements to ensure adequate security.
Moreover, the wide community of developers and contribu-
tors can ensure that measures are taken to maintain this
security level by frequently updating the most popular and
renowned packages. The PostgreSQL database [5] is also
addressed at several levels:

(i) Database File Protection. All files stored within the
database are protected from reading by any account other
than the PostgreSQL superuser account

(ii) Connections from a client to the database server are,
by default, allowed only via a local Unix socket, not via
TCP/IP sockets

(iii) Client connections can be restricted by IP address
(iv) Client connections may be authenticated via other

external packages
(v) Each user in PostgreSQL is assigned with a username

and a password
(vi) Users may be assigned to groups, and table access

may be restricted, for instance, through admin privileges
Furthermore, as mentioned previously, there are many

problems with the deployment of the application to Heroku
PaaS. Heroku is not known to have any known vulnerabil-
ities itself. However, the server routinely crashes in produc-
tion mode with no useful error messages when enforcing
HTTPS on Heroku. We suspect that this is caused by prob-
lems with the TLS Layer, with error messages that stem from
Nordea’s Open Banking API. Hence, we suspect that the
errors stem from how the API handles the TLS Layer in
the sandbox version. This imposes a high risk for the pack-
ages sent between the application and the API to be inter-
sected. However, no sufficient documentation explains how
to mitigate this issue in Nordea’s documentation. This will
be an interesting topic for future enhancement.

5.2.8. Insufficient Logging and Monitoring-Threat Agents: 3,
Business Impact: 2. As mentioned previously, whenever a user
attempts to check off the habit, or perform any other actions in
the application, of another user, it is added to the log. The log is
handled through a logging package offered by the Python
library. We propose also including logging for IP addresses
and alarms whenever a user is logged in from a different
country.

6. Discussion

Applying the OWASP Top 10 Threats and Risk Modelling
Framework to our web application and Nordea’s Open
Banking API shows that it can mitigate a large part of the
most critical threats to the application. The threats posed
by Broken Authentication, the most critical in terms of Busi-
ness Impact, is now largely protected from breaches that
could cause the user to lose account funds. The same applies

for Sensitive Data Exposure and Broken Access Control that
were also categorized as very critical threats.

However, the OWASP framework also exploited that the
components with known vulnerabilities posed a high threat
to the application, especially Nordea’s APIs. The problems
with the TLS Layer in Nordea’s Open Banking API force
us to use HTTP in production mode to avoid the routinely
crashes occurred with HTTPS. This means that the packages
sent from the API to the application are encrypted. Packages
that can contain access tokens, client IDs, or secret keys
might give access to Nordea’s infrastructure. This vulnera-
bility is impossible to handle without more documentation
of the API, since it does not stem from the application itself.
Below are some main challenges on open banking security.

(i) How to securely share data when transforming the
relationship between customers and banks

(ii) How to transparently manage mutual authentication
(iii) How to secure data privacy when enabling users to

control and share personal data by customizing the Access
Control List (ACL) [1]

7. Conclusion and Future Work

Currently, Open Banking has received much attention, which
refers to the process of using APIs to open up consumers’
financial data to third parties. This concept is believed to be
secure by enforcing that only the customer and data owner
can authorise any connection between the bank and a regu-
lated third party. However, such openness may also incur
some kind of security issue. In this work, we proposed a tech-
nical stack and an architectural model that can easily integrate
and secure Nordea’s Open Banking API. In the evaluation, we
applied the OWASP Top 10 threats and threat modelling
methodology to identify the most prevalent threats regarding
the application data and the functionality of the APIs.

The results showed that many of these security measures
were either handled automatically by the components
offered by the technical stack or were easily preventable
through included packages of the Flask Framework. How-
ever, it also shows that the application faces a high risk
due to the compromised handling of the TLS Layer in the
API, causing the production server to routinely crash when
using HTTPS. These risks may propagate upwards in the
architecture, resulting in high risks for the user’s account
data and funds. Since the server loggings show that the
errors stem from the API itself, it is most likely not due to
the choices of any of the cloud application platform, pack-
ages, libraries, database, or frameworks. It is also found that
adding an API abstraction layer can facilitate the communi-
cation when developing the API, and that it can be imple-
mented as a modification to the MVC for web applications.

For future work, we plan to keep gaining more data and
information on the TLS Layer handling by cooperating with
the support team from Nordea Bank in Denmark, especially
the sandbox documentation. With more Open Banking
Team code samples, we believe it can help make more prac-
tical contributions to the documentation. In addition, it is
another interesting and important direction to apply other

12 Wireless Communications and Mobile Computing

threat models to examine the threats and risk compared with
the current results with OWASP.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This is a full version of our paper published in Proc. 13th
International Conference on Network and System Security
(NSS), pp. 185-198, 2019 [4]. To differentiate our current ver-
sion from the previous one, we have improved the article in
the following aspects. (1) In the conference version, there are
mainly two diagrams, while in this version, we have 9 dia-
grams to describe our approach inmore detail. (2) In addition,
in this full version, we provide more information on Nordea’s
Open Banking API, such as sequence diagram, access authori-
zation flow, and account information. (3) In this full version,
we also provide more information and details on the OWASP
Risk Rating Methodology, which can facilitate readers to
understand how this methodology works. The authors would
like to thank the help from Nordea Bank in Denmark, and
WeizhiMeng was partially supported byH2020 CyberSec4Eu-
rope under project no. 830929.

References

[1] Z. Xu, Q.Wang, Z.Wang, D. Liu, Y. Xiang, and S. Wen, “PPM:
a provenance-provided data sharing model for open banking
via blockchain,” in Proceeding of ACSW, pp. 1–8, Melbourne,
Australia, 2020.

[2] S. Kiljan, K. Simoens, D. D. Cock, M. C. J. D. van Eekelen, and
H. P. E. Vranken, “A survey of authentication and communi-
cations security in online banking,” ACM Computing Surveys
(CSUR), vol. 49, no. 4, pp. 1–35, 2017.

[3] N. Provos and D. Mazieres, “A future-adaptable password
scheme,” Proceedings of USENIX Annual Technical Confer-
ence, , pp. 81–91, FREENIX Track, 1999.

[4] D. Kellezi, C. Boegelund, andW. Meng, “Towards secure open
banking architecture: an evaluation with OWASP,” in Proceed-
ings of the 13th International Conference on Network and Sys-
tem Security (NSS), pp. 185–198, Sapporo, Japan, 2019.

[5] PostgreSQL, The world’s most advanced open source databa-
sehttps://www.postgresql.org/.

[6] Heroku: Cloud Application Platformhttps://www.heroku.com/.
[7] Pallets Team, Flask’s Documentationhttp://flask.pocoo.org/

docs/1.0/.
[8] The SQLAlchemy authors and contributors2019 https://docs

.sqlalchemy.org/en/13/.
[9] Pallets Team2010 https://flask-sqlalchemy.palletsprojects

.com/en/2.x/.
[10] OWASP, Top Ten Web Application Security Riskshttps://

owasp.org/www-project-top-ten/.
[11] P. Rogaway and T. Shrimpton, “Cryptographic hash-function

basics: definitions, implications, and separations for preimage

resistance, second-preimage resistance, and collision resis-
tance,” Proceedings of FSE, , pp. 371–388, Springer, 2004.

[12] W. Meng and Z. Liu, “TMGMap: designing touch movement-
based geographical password authentication on smartphones,”
Proceedings of the 14th International Conference on Informa-
tion Security Practice and Experience (ISPEC), , pp. 373–390,
Springer, Cham, 2018.

[13] W. Meng, L. Zhu, W. Li, J. Han, and Y. Li, “Enhancing the
security of FinTech applications with map-based graphical
password authentication,” Future Generation Computer Sys-
tems, vol. 101, pp. 1018–1027, 2019.

[14] M. Burnett, 10,000 Top Passwordshttps://xato.net/10-000-top-
passwords-6d6380716fe0.

[15] Nordea Open Banking Team, 2019, https://developer
.nordeaopenbanking.com/app/documentation?api=
Accounts%20API.

[16] A. Sapan, B. Oztekin, E. Unsal, and A. Sen, “Testing OpenAPI
banking payment system with model based test approach,” in
2020 Turkish National Software Engineering Symposium
(UYMS), Istanbul, Turkey, 2020.

[17] S. Rafique, M. Humayun, B. Hamid, A. Abbas, M. Akhtar, and
K. Iqbal, “Web application security vulnerabilities detection
approaches: a systematic mapping study,” in 2015 IEEE/ACIS
16th International Conference on Software Engineering, Artifi-
cial Intelligence, Networking and Parallel/Distributed Comput-
ing (SNPD), pp. 469–474, Takamatsu, Japan, 2015.

[18] Post Learning Centerhttps://learning.getpostman.com/docs/
postman/api_documentation/intro_to_api_documentation/s.

[19] C. Dong, Z. Wang, S. Chen, and Y. Xiang, “BBM: a blockchain-
based model for open banking via self-sovereign identity,” in
International Conference on Blockchain, pp. 61–75, Springer,
Cham, 2020.

[20] H. Wang, S. Ma, H. N. Dai, M. Imran, and T. Wang, “Block-
chain-based data privacy management with nudge theory in
open banking,” Future Generation Computer Systems,
vol. 110, pp. 812–823, 2020.

[21] A. Stranieri, A. N. McInnes, M. Hashmi, and T. Sahama,
“Open banking and electronic health records,” in 2021 Aus-
tralasian Computer Science Week Multiconference, Dunedin,
New Zealand, 2021.

[22] W. Meng, W. Li, and L. Kwok, “EFM: enhancing the perfor-
mance of signature-based network intrusion detection systems
using enhanced filter mechanism,” Computers & Security,
vol. 43, pp. 189–204, 2014.

[23] Z. Ma, L. Liu, and W. Meng, “Towards multiple-mix-attack
detection via consensus-based trust management in IoT net-
works,” Computers & Security, vol. 96, article 101898, 2020.

[24] S. M. Sohi, J. P. Seifert, and F. Ganji, “RNNIDS: enhancing net-
work intrusion detection systems through deep learning,”
Computers & Security, vol. 102, p. 102151, 2021.

[25] D. P. Pop and A. Altar, “Designing an MVC model for rapid
web application development,” Procedia Engineering, vol. 69,
pp. 1172–1179, 2014.

[26] M. Grinberg, Flask Web Development: Developing Web Appli-
cations with Python, OReilly, California, USA, 2014.

[27] IBM Informix, 2011, https://www.ibm.com/support/
knowledgecenter/hu/SSGU8G_11.50.0/com.ibm.gsg.doc/ids_
gsg_416.htm.

[28] The OWASP Foundation, 2017, https://www.owasp.org/index
.php/OWASP_Risk_Rating_Methodology.

13Wireless Communications and Mobile Computing

https://www.postgresql.org/
https://www.heroku.com/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
https://docs.sqlalchemy.org/en/13/
https://docs.sqlalchemy.org/en/13/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://xato.net/10-000-top-passwords-6d6380716fe0
https://xato.net/10-000-top-passwords-6d6380716fe0
https://developer.nordeaopenbanking.com/app/documentation?api=Accounts%20API
https://developer.nordeaopenbanking.com/app/documentation?api=Accounts%20API
https://developer.nordeaopenbanking.com/app/documentation?api=Accounts%20API
https://learning.getpostman.com/docs/postman/api_documentation/intro_to_api_documentation/s
https://learning.getpostman.com/docs/postman/api_documentation/intro_to_api_documentation/s
https://www.ibm.com/support/knowledgecenter/hu/SSGU8G_11.50.0/com.ibm.gsg.doc/ids_gsg_416.htm
https://www.ibm.com/support/knowledgecenter/hu/SSGU8G_11.50.0/com.ibm.gsg.doc/ids_gsg_416.htm
https://www.ibm.com/support/knowledgecenter/hu/SSGU8G_11.50.0/com.ibm.gsg.doc/ids_gsg_416.htm
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

	Securing Open Banking with Model-View-Controller Architecture and OWASP
	1. Introduction
	1.1. Motivation
	1.2. Contribution

	2. Background
	2.1. The Flask Framework
	2.2. Cloud Application Platform
	2.3. Database Management
	2.4. OWASP Top 10
	2.5. Hashing and Salting of Sensitive Data
	2.5.1. Hash Algorithm
	2.5.2. Salting a Hash

	2.6. The Nordea Open Banking API
	2.6.1. Access Authorization
	2.6.2. Account Information
	2.6.3. Payment Initialization

	3. Related Work
	3.1. Web-Based Solution
	3.2. Blockchain-Based Solution
	3.3. Intrusion Detection Solution

	4. Our Proposed Approach
	4.1. The Application Architecture
	4.1.1. The Model
	4.1.2. The Controller
	4.1.3. The View

	4.2. Object-Relational Database
	4.2.1. API Abstraction Layer
	4.2.2. Platform Architecture

	5. Evaluation
	5.1. Methodology
	5.2. Evaluation on Nordea’s Open Banking API with the OWASP
	5.2.1. Injection and XSS, Threat Agents: 3, Business Impact: 1
	5.2.2. Broken Authentication-Threat Agents: 3, Business Impact: 3
	5.2.3. Sensitive Data Exposure-Threat Agents: 3, Business Impact: 3
	5.2.4. XML External Entities-Threat Agents: 3, Business Impact: 1
	5.2.5. Broken Access Control-Threat Agents: 3, Business Impact: 3
	5.2.6. Security Misconfiguration-Threat Agents: 3, Business Impact: 2
	5.2.7. Components with Known Vulnerabilities-Threat Agents: 3, Business Impact: 3
	5.2.8. Insufficient Logging and Monitoring-Threat Agents: 3, Business Impact: 2

	6. Discussion
	7. Conclusion and Future Work
	Data Availability
	Conflicts of Interest
	Acknowledgments

