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With the improvement of living standard and the development of science and technology, Internet of Vehicle (IOV) will play an
important part in industrial transportation as a main research field of Internet of Things. As a result, it is very necessary to grasp
the location of vehicle. However, the traditional single global position system is easily affected by the external environment, so an
accessorial locating approach based on wideband direction of arrival (DOA) estimation in intelligent transportation is proposed.
First, model the array received signal on the road infrastructure. Then, by means of random forest regression (RFR) in the
supervised learning, upper triangle elements of the covariance matrix of each frequency and the actual DOA are, respectively,
extracted as the input features and output parameters; thus, the corresponding prediction coefficients are solved by training.
After that, the trained RFR model can be used to calculate the final direction using test samples. Finally, these vehicles can be
located according to the geometrical relation between the vehicle and the infrastructure. The proposed algorithm is not only
suitable for uncorrelated signals but also for uncorrelated and correlated mixed signals without wideband focusing. The
simulations show that compared with some sparse recovery algorithm, the prediction accuracy and resolution are effectively
improved.

1. Introduction

Nowadays, automobile traffic has become an indispensable
part of our modern industry, and vehicle-related technolo-
gies and industries are becoming increasingly mature [1–4].
At the same time, the development of technologies related
to the Internet of Vehicles is also promoting the evolution
of the traditional automobile industry to the new intelligent
vehicles, and the market demand and technological explora-
tion are mutually reinforce each other, including industrial
transportation, advanced traffic information system, and
travel technology, which can provide navigation and posi-
tioning, road status, parking instructions, safe driving assis-
tance, and other all-round services [5–8]. Industry consists
of two important aspects: production and transportation.
Large enterprises and logistics distribution centres often have
a large amount of cargo transportation, such as steel and
cement in industrial products and oil and coal in mineral
raw material transportation. The freight volume of these
goods is generally very large; sometimes multiple full load

transportations are required. After the vehicle completes a
freight task, it drives empty to the city where the task is not
performed to continue loading. If their locations are not
obtained, reasonable scheduling can not be realized, which will
reduce the utilization rate of vehicles, leading to the increase of
transportation cost. In addition, electronic commerce and cus-
tomer requirements are changing rapidly, requiring real-time
locating for vehicles too, so it is urgent to study the vehicle
positioning method in industrial transportation.

The rapid development and wide application of com-
puter technology, intelligent transportation system, and
especially Internet of Things technology provide compre-
hensive technical support for the industrial transportation.
Among them, the Internet of Vehicles (IOV) is a network
of wireless communication and information exchange based
on big data and agreed communication protocols, which
integrates a variety of key technologies such as on-board
positioning, wireless transmission, and cloud computing.
According to different application objects, IOV technology
can be divided into two categories on the whole: vehicle to
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infrastructure (V2I) [9–11] and vehicle to vehicle (V2V)
[12–14]. Of course, global position system (GPS) can obtain
their locations and surroundings. However, GPS are
extremely limited when vehicle comes to subways, tunnels,
and other hidden objects. Fortunately, the technology of
big data in IOV ensures that vehicles can communicate with
each other in real time and fuse various information, which
has a significant impact on road safety, such as intersection
mobility assistance and left turn assistance. The big data
has the features of scale, diversity, high speed, and authentic-
ity. We can calculate when and where traffic jams will occur
through analysing massive data, even track and trace the tra-
jectory of vehicles and persons. V2I architecture allows the
vehicle to transmit its position and speed data to the central
server through the infrastructure, so as to realize the data
exchange during the driving process and integrate overall
road and vehicle information to solve traffic congestion,
route planning, and accident; it also can provide high preci-
sion radio locating service for users through cloud comput-
ing platform and other advanced means [15, 16].

In general, radio locating is usually classified into rang-
ing and nonranging; the former needs to measure the actual
Euclidean distance or angle, such as received signal strength
indication (RSSI) [17, 18], time of arrival (TOA) [19, 20],
time difference of arrival (TDOA) [21–24], and their fusion
algorithms [25, 26], while the latter is based on topology
[27], connectivity [28], multihop [29], and fingerprint infor-
mation [30] of the network itself. Where the accessorial
vehicle positioning based on RSSI needs to know the spatial
attenuation characteristics of signals, which is difficult to be
accurately obtained due to the increasing complexity of
wireless channels, the TDOA and TOA algorithms are both
very sensitive to the measurement of time, which makes
them difficult to achieve high precision; hence, direction of
arrival (DOA) estimation has become a good choice. Com-
pared with algorithms based on RSSI, TDOA, and TOA,
the locating accuracy of this algorithm is only related to
DOA estimation, which can be easily obtained by the corre-
sponding superresolution direction finding technique.

The research for narrowband DOA estimation has devel-
oped rapidly over the past half-century; the most famous algo-
rithm is multiple signal classification (MUSIC) [31], which is
based on the new idea of orthogonality between signal steer
vector and noise subspace; it finds the target through searching
the whole angle space. Another one is estimation of signal
parameters via rotational invariance techniques (ESPRIT)
[32] which uses the characteristic of rotation invariance of
the signal subspace to calculate DOA, avoiding spectrum peak
searching. Subsequently, the appearance of maximum likeli-
hood estimation [33] is another important progress; although
very complex optimization and iteration are needed, it has a
higher precision; all of the three means can break Rayleigh
limitation. After that, more andmore corresponding improve-
ments with more functions have sprung up, such as propaga-
tor [34] and decorrelation method [35, 36]. Among these
algorithms, compressed sensing (CS) is a new signal process-
ing theory in recent years; since it was born, the relevant
research has been carried out continuously. It can be classified
into grid-division and grid-less methods; the first needs to par-

tition the airspace into multiple grids before signal recovery
[37–39], while the idea of grid-less originally presented by
Candes and Fernandez [40] can solve the DOA in continuous
domain; as a result, it has aroused great interests and atten-
tions [41–43], but the problem of positive semidefinite prob-
lem is inevitable, so the calculation is heavy.

In recent years, wideband signals have been promoted in
both civilian and military fields; compared with narrowband
signals, wideband echo carries more information and has
strong anti-interference ability, which is conducive to detec-
tion, parameter estimation, and feature extraction in multi-
ple targets [44–46], and narrowband DOA estimation
technology can also be expanded. Where the famous coher-
ent signal subspace method (CSSM) [47] focuses the data of
every frequency on a single reference point, then the pro-
cessing suitable for narrowband signal is employed; it both
adapts to correlated and uncorrelated sources, but preesti-
mation to DOA is needed. In order to improve the perfor-
mance of wideband signal processing, not only compressed
sensing but also approaches of discrete cosine transform,
Kalman filters, higher-order statistics, spatial-temporal anal-
ysis, fractional Fourier transform, especially support vector
regression [48, 49], and neural networks [50] in machine
learning are introduced into DOA estimation one after
another, and good results have been acquired.

As is shown in Figure 1, based on cloud platform, this
paper considers a kind of accessorial method for IOV
locating; we can calculate the DOA of the vehicle by ran-
dom forest regression (RFR), then determine its position
according to the geometrical relation between the vehicle
and the infrastructure. The paper mainly has the following
three contributions:

(1) tAt present, the mainstream global position system
(GPS) for outdoor positioning can not effectively
locate the vehicles in the presence of obstructions.
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Figure 1: Internet of Vehicles accessorial locating in industrial
transportation.
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Because of the high resolution of wideband signal,
this paper proposes a scheme to use wideband
DOA estimation to assist GPS for IOV locating. Bor-
rowing the cloud platform, we can estimate their
DOA and locate these vehicles according to geomet-
rical relationship of the signals and the infrastruc-
ture. It not only improves the accuracy but also
enhances the resolution for the target, which is very
suitable for multiple vehicles

(2) In this paper, signal information of different fre-
quencies is extracted as input feature, while DOA is
taken as the output for training; then, DOA of vehi-
cle is estimated by RFR; the prediction model can be
adjusted through parameter optimization. This pro-
cess is more intuitive and without complex parame-
ter settings and has good robustness, scalability, and
flexibility. Moreover, the RFR is especially suitable
for small snapshots

(3) In practical applications, multiple vehicles will be
possibly close to one another on the road, and mul-
tipath transmission often exists, leading to a large
number of correlated or even coherent signals in
the locating process. In such an environment, the per-
formance of traditional DOA estimation algorithms
will decline sharply, or even fail. The algorithm pro-
posed in this paper is suitable for uncorrelated signals,
as well as the two coexisting scenes of uncorrelated
and coherent signals without wideband focusing

2. Signal Model

The array signal model for IOV locating can be seen from
Figure 2. K far-field wideband signals are arriving at the uni-
form linear array (ULA) on the infrastructure from θ = fθ1
, θ2,⋯, θKg; due to the multipath propagation, K = Ku + Kc
signals are made up of two parts; Ku and Kc are, respectively,
the numbers of uncorrelated and coherent signals, where the
former is formed by siðtÞði = 1, 2,⋯,KuÞ emitting from Ku
antenna on vehicles, and the latter is composed ofW groups
of coherent sources reflected by W original signals skðtÞðk
= Ku + 1, Ku + 2,⋯,Ku +WÞ; meanwhile, each group
includes pk multipath reflection, so their relations satisfy.

Kc = K − Ku = 〠
Ku+W

k=Ku+1
pk: ð1Þ

The first sensor is deemed as the reference; background
noise obeys Gaussian white distribution with zero mean and
variance σ2; then, the received data on the m-th sensor is

xm tð Þ = 〠
Ku

i=1
si t − τm θið Þð Þ + 〠

Ku+W

k=Ku+1
〠
pk

p=1
ζk,psk

� t − τm θk,p
� �� �

+ nm tð Þ,
ð2Þ

where τmðθiÞ represents the time delay between them-th array
element and the reference of the i-th uncorrelated source, τm
ðθk,pÞ is that between them-th array element and the reference
of the p-th coherent source in the k-th group, ζk,p means atten-
uation coefficient of the corresponding signal, and nmðtÞ
denotes the Gaussian white noise on the m-th sensor.

Because the wideband steering vector is associated with
DOA and signal frequency, so it is necessary to give the
model in frequency domain. During the observation time
T0, the signal is sampled L times with uniform interval in
time domain, and J discrete Fourier transform is performed
to each interval; then, the signal at frequency f j can be mod-
elled as follows.

Xl f j
� �

= X1,l f j
� �

, X2,l f j
� �

,⋯, XM,l f j
� �h iT

= 〠
Ku

i=1
a f j, θi
� �

Si,l f j
� �

+ 〠
Ku+W

k=Ku+1
〠
pk

p=1
a f j, θk,p
� �

� ζk,pSk,l f j
� �

+ N1,l f j
� �

,N2,l f j
� �

,⋯,NM,l f j
� �h iT

=A f j
� �

Sl f j
� �

+Nl f j
� �

,

ð3Þ

where Xm,lð f jÞ, Nm,lð f jÞ, Si,lð f jÞ, and Sk,lð f jÞ are separately
the received data and the noise on the m-th sensor, the i
-th uncorrelated source, the k-th group of coherent source
at the l-th snapshots, and

A f j
� �

= Au f j
� �

,Ac f j
� �h i

, ð4Þ

S f j
� �

= STu f j
� �

, STc f j
� �h iT

, ð5Þ

here the uncorrelated signal is

Su f j
� �

= S1,l f j
� �

, S2,l f j
� �

,⋯, SKu ,l f j
� �h iT

, j = 1, 2,⋯, J ,

ð6Þ

the coherent signal is

Sc f j
� �

= SKu+1,l f j
� �

, SKu+2,l f j
� �

,⋯, SKu+W ,l f j
� �h iT

,

j = 1, 2,⋯, J ,
ð7Þ
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Figure 2: Array signal model.
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the array manifold of uncorrelated signal is

Au f j
� �

= a f j, θ1
� �

, a f j, θ2
� �

,⋯, a f j, θKu

� �h i
, ð8Þ

where að f j, θiÞ is the corresponding steering vector and the
m-th element is

am f j, θi
� �

= e−j2πf j m−1ð Þd sin θi/c, ð9Þ

the array manifold of coherent signal is

Ac f j
� �

=
h
AKu+1 f j

� �
EKu+1,AKu+2 f j

� �
EKu+2,⋯,

AKu+W f j
� �

EKu+W

i
,

ð10Þ

where

Ak f j
� �

= a f j, θk,1
� �

, a f j, θk,2
� �

,⋯, a f j, θk,pk
� �h i

,

k = Ku + 1,⋯, Ku +W,
ð11Þ

a f j, θk,p
� �

= 1, e‐j2πf jd sin θk,pð Þ/c,⋯, e‐j2πf j M−1ð Þd sin θk,pð Þ/ch iT
,

ð12Þ
and the attenuation coefficient matrix is

Ek = ζk,1, ζk,2,⋯, ζk,pk
h iT

: ð13Þ

3. Vehicle Locating Based on DOA Estimation

The general idea of vehicle locating based on DOA estima-
tion is summed up as follows: First, the feature data sample
related to DOA estimation is acquired. Then, model the RFR
algorithm. After that, the DOA is predicted by the trained
RFR. Finally, the vehicle can be located according to the
obtained DOA, the geometrical relation between the vehicle
and the infrastructure.

3.1. Data Preprocessing and Feature Selection. The covari-
ance matrix in frequency domain is

Rx f j
� �

=
1
L
〠
L

l=1
Xl f j
� �

XH
l f j
� �

, j = 1, 2,⋯, J , ð14Þ

since RFR can only handle real value matrix, but the array
receives complex data; it is necessary to convert them into
real matrices; consequently, we introduce the following two
matrices

Q2n =
1ffiffiffi
2

p
In iIn
Jn −iJn

 !
, ð15Þ

Q2n+1 =
1ffiffiffi
2

p
In 0 iIn
0T

ffiffiffi
2

p
0T

Jn 0 −iJn

0BB@
1CCA, ð16Þ

where Jn is the matrix whose elements on the back-diagonal
equal one and the others are all zero, and we have

n =

M
2
,M ∈ even

M − 1
2

,M ∈ odd

8>><>>: , ð17Þ

thus, Q2n or Q2n+1 can be used for changing Rxð f jÞ into real
matrix

R f j
� �

=QH
2nRx f j

� �
Q2n, ð18Þ

R f j
� �

=QH
2n+1Rx f j

� �
Q2n+1, ð19Þ

as Rð f jÞis symmetric, we select its upper triangular elements
of different frequencies as input features, that is

b f j
� �

=
�
R f j
� �

12
,⋯,R f j

� �
1M

,R f j
� �

23
,⋯,

R f j
� �

2M
,⋯,R f j

� �
M−1ð ÞM

�
,

ð20Þ

then the feature can be acquired by combining vectors of J
frequencies

b = b f1ð Þ, b f2ð Þ,⋯, b f j
� �

,⋯, b f J
� �h i

: ð21Þ

3.2. Random Forest Regression. As is shown in Figure 3, ran-
dom forest [51] is an ensemble learning method that uses
Bootstrap aggregating (Bagging) to assemble multiple unre-
lated decision trees and obtain final results by voting or aver-
aging. In other words, random forest is a strong learner that
uses classification tree, regression tree, and Bagging algo-
rithm for ensemble learning. The basic unit of random forest
is decision tree, which can be used for classification and
regression. The random extraction for samples with replace-
ment and random selection for features when constructing
decision tree ensure the randomness, so that the random
forest is not easy to fall into overfitting and has good gener-
alization ability. Furthermore, forest has multiple decision
trees for integration.

Design flowchart of RFR is given in Figure 4; in the
course of establishing regression tree, RFR will employ Boot-
strap resampling to extract parts of observations with
replacement from b randomly, then select specified variables
to determine the nodes of classification tree.

Thus, RFR can usually generate hundreds of trees, where
the average of outputs of all the trees is regarded as the final
result, so the process of establishing RFR is as follows:
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(1) Bootstrap is used to extract n training samples from
original data set b with replacement repeatedly; then,
n decision trees are established. While the samples
that are not extracted each time are deemed as test-
ing samples, they are called out of bag (OOB) data

(2) When constructing a decision tree, mtry independent
variables are randomly selected as the candidate
branch variables at the subnodes of each tree, then
determine the optimal branch according to Gini
coefficient [52]

(3) Each tree grows from top to bottom continuously for
recursive splitting; the set threshold is deemed as the
termination condition of tree growth

(4) The established n decision trees form the RFR model,
the average of outputs of all the trees is regarded as the
final result, and the performance is evaluated in line
with the estimation accuracy to the OOB data, that is
the mean square error of testing set, assuming the
number of OOB samples is m, then

MSEOOB =
∑m

z=1∑
K
i=1 θi zð Þ − bθ i zð Þ
� �
m

, ð22Þ

σ2θ =
∑m

z=1∑
K
i=1 θi − bθ i zð Þ
� �
m

, ð23Þ

R2
RF = 1 −

MSEOOB
σ2
θ

, ð24Þ

where θiðzÞ is the actual value of i-th signal in the z-th
OOB sample, θi represents the DOA average of i-th

signal in all OOB samples, bθ iðzÞ means the predictive
value obtained by the RFR, σ2θ denotes the correspond-
ing variance, and R2

RF is the coefficient of determina-
tion and derived from mathematical statistics; it
indicates the fitting effect of a predicted value on the
truth; the closer its value is to 1, the better themodel is.

3.3. IOV Locating. The relative position between two infra-
structures and the target vehicle is demonstrated in
Figure 5; for the sake of simplicity, the two infrastructures
are deployed on X-axis; the first one is set at the origin,
and the other one locates at ðxB, 0Þ. The array structure of
each infrastructure is the same and given in Figure 2; it
can be seen that the two infrastructures, respectively, receive
the radio signal generated from the vehicle; then, cloud plat-
form calls the proposed algorithm based on RFR; thus, θA
and θB can be calculated. In addition, we can set up the

Begin

Data preprocess

RFR 

Error small enough?

Yes

DOA prediction

Compute OOB
error 

Modify
parameters

Data to be
prediction 

No

Select related DOA
features
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Figure 4: Design flowchart of RFR.
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Figure 5: IOV locating.
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Figure 3: RFR model.

5Wireless Communications and Mobile Computing



following equation according to their geometrical relation-
ship.

x̂ =
xBctgθB

ctgθA + ctgθB
,

ŷ =
xBctgθBctgθA
ctgθA + ctgθB

:

8>>><>>>: ð25Þ

Thus, the position of the vehicle ðx̂, ŷÞ is obtained. Obvi-
ously, it is also appropriate for evaluating positions of multi-
ple vehicles.

3.4. Computation. Next, wideband DOA estimation based on
linear interpolation sparse Bayesian learning (LI-SBL) [53]
and grid interpolation sparse Bayesian learning (GI-SBL)
[54] are compared with the proposed RFR; for the sake of
simplicity, we only compute the main steps. LI-SBL, GI-
SBL, and RFR all calculate covariance matrix of each fre-
quency. LI-SBL requires focusing and grid division, then
searches spectrum peaks by iteration and estimate the quanti-
zation errors; the complexity is about OðGðM2LJ +M �N2 +
M2N +M �NJðL + KÞÞÞ, where G is iteration times and �N is
tthe number of grid division. GI-SBL needs signal power pre-
estimation and focusing; then, coarse search is used for deter-
mining the scope of off-grid value; thereby, DOA can be
evaluated through small step size searching; the computation
is nearly OðG1ðM2LJ + ðM + 1ÞM �NÞ + ðM2 +MÞKJN0ÞÞ,
where G1 means iteration times of preestimation to signal
power and N0 represents coarse search times. By compari-

son, we model RFR by multiple decision trees and select fea-
tures randomly, then average their outputs to obtain the final
result, so the complexity is almost OðM2LJ +NhdÞ, where N
denotes number of samples, d is that of features, and hmeans
depth of decision tree.

4. Simulations

In the simulations, number of the array sensors M = 6,
SNR = 20dB, the centre frequency of the sources f c = 1
GHz, relative bandwidth is 40%, and five frequency points
are selected. Assuming there are four wideband signals inci-
dent on this array, the first two are uncorrelated signals, and
the others are coherent, assuming that source number is
known. They are, respectively, expressed as θ1, θ2, θ3, and
θ4, and the angle difference between adjacent signals is Δθ
= 5°; that is, θ2 − θ1 = θ3 − θ2 = θ4 − θ3 = Δθ. As θ ∈ ½−90°,+
90°�, we can get.

θ1 = −90° +D,

θ2 = θ1 + Δθ,

θ3 = θ2 + Δθ,

θ4 = θ3 + Δθ,

ð26Þ

where D varies from 0° to 165° and step size is 1°. In each
scenario, 100 snapshots are sampled, and 80% of them are
randomly selected as the training set; the rest are used for
prediction. Both CART decision tree [52] and RFR use the
same data set for model training, number of trees n = 80,
and the maximum depth of the decision tree is 11.

In the first example, signals are coming from (10°, 15°,
20°, 25°); RFR and CART decision tree algorithms are used
for the DOA estimation, where 10° and 15° are coherent sig-
nals and the other two are uncorrelated; we carried out 200
Monte-Carlo experiments; the results are shown in Table 1.

Table 1 shows that both the two algorithms can estimate
these DOA; although RFR takes longer time than CART, the
precision of the former is significantly higher than the latter.
For IOV location, improving precision is more important,
and the efficiency of RFR can also be accepted.

Then, the second example shows about DOA estimation
precision of uncorrelated sources versus SNR and snapshots;
in the first scenario, the signals from (10°, 15°, 20°, 25°) are
independent with one another; the estimation error versus
SNR when the snapshots L = 100 is given in Figure 6, while
that versus snapshots is shown in Figure 7 when SNR is
10 dB. We can see that RFR algorithm makes full use of
the information of every frequency without more transfor-
mation, so it is more accurate than LI-SBL and GI-SBL. By
contrast, both of the other two algorithms need to cope with

Table 1: The DOA estimation results of two models.

Algorithm Estimation results Training time(s) Prediction time(s)

RFR (9.94°, 14.94°, 19.94°, 24.94°) 1.207 0.017

Decision tree (9.59°, 14.59°, 19.59°, 24.59°) 0.026 0.005
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Figure 6: Estimation error versus SNR for independent signals.
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wideband signals by DOA preestimation and the process of
focusing, which will lead some error, especially at the cir-
cumstances of small snapshots. While GI-SBL uses twice
hyperparameter estimation to enhance the ability of sparse
recovery, so it is more precise than LI-SBL.

Then, in the second scenario, supposing 10° and 15° are
coherent and the other two are independent, Figures 8 and 9
present the results at this time. We can see that compared
with the first scenario, the performance of all the three algo-
rithms is not significantly reduced. This demonstrates that
the focusing courses of the LI-SBL and GI-SBL have weak-

ened the coherence between the signals greatly; meanwhile,
the correlation has little effect on the proposed algorithm.

In the final example, there are four wideband signals θ1,
θ2, θ3, and θ4 with near intervals, where θ1 = 5°, θ2 = θ1 + Δθ,
θ3 = θ2 + Δθ, θ4 = θ3 + Δθ, and the angle interval Δθ is chan-
ged from 1°~10°; then, the data of the four signals with each
interval are trained, respectively. SNR = 10°dB, L° = 100, and
200 Monte-Carlo experiments are performed under each
condition. Figures 10 and 11 separately indicate the estima-
tion performance versus DOA interval when the signals are
independent and mixed. It can be seen that as LI-SBL and
GI-SBL both import a little errors by DOA preestimation
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Figure 8: Estimation error versus SNR for mixed signals.
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Figure 9: Estimation error versus snapshots for mixed signals.
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Figure 10: Estimation error versus interval for independent signals.

20 40 60 80 100 120 140 160 180 200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Snapshots

Es
tim

at
io

n 
er

ro
r (

de
gr

ee
)

LI-SBL
GI-SBL
RFR

Figure 7: Estimation error versus snapshots for independent
signals.
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and wideband focusing, the RFR still has a better DOA res-
olution on the whole, with the increase of DOA interval; all
errors of the three algorithms are reduced, but due to the
smaller snapshots, they can not estimate the DOA precisely,
and the performances of two scenarios are still nearly the
same. Subsequently, RFR also has a better performance for
IOV locating.

5. Conclusions

The emergence of supervised learning provides a new idea
for direction finding; therefore, this paper proposes a new
locating method based on DOA estimation; upper triangular
elements of covariance matrix of different frequencies are
taken as input features, while the directions are taken as out-
put; then, signal DOA is estimated through RFR model; con-
sequently, these vehicles can be located according to the
geometrical relationship between the vehicle and the infra-
structure. The algorithm proposed in this paper is still effec-
tive under the circumstance of small snapshots, and it is
suitable for dealing with the scene where coherent and
uncorrelated signals exist at the same time without wide-
band focusing.
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