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The traditional analysis method of train obstacle uses isomorphic sensors to obtain the state information and completes
detection and identification analysis at the remote end of a network. A single data sample and more processing links will
reduce the accuracy and speed analysis for subway encountering obstacles. To solve this problem, this paper proposes a
subway obstacle perception and identification method based on cloud edge cooperation. The subway monitoring cloud
platform realizes the training and construction of a detection model, and the network edge side completes the situation
awareness of track state and real-time action when the train encounters obstacles. Firstly, the railroad track position is
detected by cameras, and subway running track is identified by Mask RCNN algorithm to determine the detection area of
obstacles in the process of subway train running. At the edge of network, the feature-level fusion of data collected by
sensor cluster is carried out to provide reliable data support for detection work. Then, based on the DeepSort and
YOLOv3 network models, the subway obstacle detection model is constructed on the subway monitoring cloud platform.
Moreover, a trained model is distributed to the network edge side, so as to realize the fast and efficient perception and
action of obstacles. Finally, the simulation verification is implemented based on actual collected datasets. Experimental
results show that the proposed method has good detection accuracy and efficiency, which maintains 98.9% and 1.43 s for
obstacle detection accuracy and recognition time in complex scenes.

1. Introduction

Urban rail transit is one of the most popular means of trans-
portation for urban people, and its development speed is also
very rapid [1]. Among them, the technology of fully auto-
matic driverless metro train is a hot research content of
urban rail transit [2–4], and its most key link is the rapid
state analysis and emergency treatment when the train
encounters obstacles.

According to the statistics of rail train operation safety
accidents in recent years, there are many factors that will
affect the subway train operation safety, mainly including
management level, equipment reliability, and rail road-
blocks [5, 6]. At the same time, because the subway traffic
environment is mostly closed and low, the operating envi-
ronment and lighting conditions are not enough to sup-

port the traditional detection methods to realize the
identification of track obstacles. In addition, the fast run-
ning speed of subway trains poses a certain challenge to
the safe and stable operation of subway, resulting in
potential safety hazards during the running of trains [7].
Therefore, it is particularly important to develop a reason-
able and efficient subway obstacle perception and recogni-
tion method.

The traditional method adopts contact detection
method, and the train will be braked urgently only after
the obstacle collides with the detection beam. The contact
obstacle detection system can accurately find the target
ahead and stop the train. But at the same time, the target
was discovered, the rail train stopped running. The train
may also be subject to a greater impact, so that the safety
of subway and passengers cannot be guaranteed [8, 9].
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With the development of sensor technology, state data
acquisition is based on the installation of detection devices
on specific tracks [10]. For example, a certain radar or RF
device is installed at the front side of the subway train, which
can collect the status data of the running track before not
contacting the obstacles, upload it to the monitoring system
platform for analysis and decision-making, realize effective
and stable braking and deceleration, and greatly improve
the operation safety.

However, there are still some problems in the noncon-
tact train detection method: First, the detection device is a
state acquisition device. Because of the differences in the
nature of the sensors and the installation environment,
simultaneous interpreting of objects by a single sensor
can not guarantee the reliability of data and affect the
accuracy of detection [11]. Second, there are too many
links in obstacle identification and analysis. Relying on
the detection and analysis of subway monitoring platform
can improve the accuracy to a certain extent, but it can
not meet the requirements of track foreign object identifi-
cation for analysis speed.

2. Related Work

Due to the limited line of sight in the subway operation envi-
ronment, it is sometimes difficult to distinguish the foreign
objects in the track. The safety accidents caused by collision
with obstacles often have the characteristics of large loss and
serious harm. Therefore, it is particularly important to
develop a fast and accurate obstacle autonomous recognition
method for the safe operation of locomotive in case of
obstacles.

The traditional obstacle detection method uses the con-
tact obstacle detection system. The system installs a detec-
tion beam on the bottom of the train head and realizes the
detection function when detection beam touches obstacles.
The sensor detects deformation of the beam, and the train
system prompts the train to brake train urgently according
to sensors [12]. However, the contact obstacle detection sys-
tem must break the train when detection beam touches
obstacles. The speed of subway train is very fast. Although
obstacles are detected, it will also cause damage to the train
and cannot ensure the safety of train.

With the development of sensor technology, rail trains
began to use radar detection, radiofrequency detection, or
stereo camera to detect foreign objects. However, any
single-sensor technology has shortcomings: for example,
the detection effect of infrared camera is very poor when
the temperature is high, the stereo camera can hardly collect
data in bad weather, and the information collected by radar
is also poor when the external environment is poor. A vari-
ety of heterogeneous sensors form sensor clusters at the edge
of the network and fuse the actual data samples with each
other, which can overcome the shortcomings of single-
sensor technology, improve the detection results of the sys-
tem, and support the stable operation of the train.

Thanks to the development of intelligent algorithms and
big data technology, deep network technology is applied to
the analysis of subway operation status. Based on the state

data uploaded by sensors at the edge of network, through
the continuous training and learning of multilayer network
structure [13], the noncontact perception and recognition
of obstacles in the track is realized. Reference [14] proposed
a deep learning segmentation algorithm for railway detec-
tion based on RailNet network model. The multilayer net-
work structure can be used to continuously extract the
characteristics of a sample dataset to achieve noncontact rec-
ognition of foreign objects. Reference [15] improved the
deep convolutional neural network (CNN) to construct a
subway operation detection network. Besides, it used trans-
fer learning technology to train facility images in subway
tunnels to improve the performance of obstacle model detec-
tion. Reference [16] proposed a CNN-based railway area
detection method to achieve pixel-level classification of track
areas. Reference [17] combined the semantic segmentation
algorithm with CNN to realize the accurate recognition of
track area and forward train. Reference [18] introduced
LeNet-5CNN to realize rail transit obstacle detection and
provide intelligent early warning information for the train
control system. The above method can realize obstacle per-
ception and identification before the train comes into con-
tact with obstacles. However, only relying on the single-
state data uploaded by sensors to realize decision analysis
has the problem of single unreliable data sample and the
danger of missing valid data. On the other hand, overreli-
ance on the subway monitoring cloud platform for detection
can improve accuracy, but the real-time performance is not
high [19]. It may lead to a slower braking action when
encountering obstacles and the risk of car crashes and
deaths.

To solve the above problems, under cloud edge collabo-
ration architecture, this paper proposes a subway obstacle
perception and identification method using deep learning.
The innovations of this paper are as follows:

(1) Propose a track area identification method based on
the Mask RCNN network model to meet the demand
for autonomous and efficient identification of train
running tracks in actual scenarios

(2) Overcome the incomprehensiveness of single-sensor
data collection, realize feature-level data fusion of
sensor cluster data at the edge of network to enhance
the credibility of analysis data, and then improve the
reliability of entire detection network system

(3) Based on reliable dataset support, use the YOLOv3
and DeepSort algorithms to train and establish
detection network on the cloud analysis platform.
At the cloud edge, the detection network is used to
realize rapid perception and control, which greatly
improves the safety and reliability of train operation

3. Method Framework

3.1. Overall Framework. The method architecture proposed
in this paper combines cloud edge (metro monitoring cloud
platform) decision-making, and edge side (train) monitor-
ing. Under the condition of mutual cooperation between
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the cloud edge and edge side, the efficient perception and
identification of subway obstacles can be realized to support
the safe and reliable operation of rail subway [20]. Figure 1 is
the overall block diagram of the proposed method.

As shown in Figure 1, the method proposed in this paper
supports the reliable operation of rail subways by cloud edge
decision analysis-edge real-time control of cloud edge col-
laboration. First, the position of rails is detected by cameras.
Based on deep learning for rail identification, we determine
the detection area of obstacles in the process of subway
trains. The edge layer is responsible for fusing multisensor
data and executing the trained detection model issued by
the subway monitoring cloud platform to detect obstacles
in real time. The subway monitoring cloud platform is
responsible for using deep learning methods to train and
learn the track environment and obstacle characteristics in
various scenarios, generate detection models, and periodi-
cally send them to the edge layer for execution.

3.2. Rail Perception Based on Deep Learning. Traditional
analysis methods have certain limitations, and it is difficult
to support the analysis requirements for autonomous rail
identification and dangerous area division of rail trains. In
this paper, the position of railroad track is detected by cam-
eras, and based on the deep learning algorithm on cloud
edge, the track area of subway train is drawn.

Firstly, the features of rail training samples are extracted
based on CNN; then, the region proposal network (RPN)
was used for training. Mask RCNN is responsible for rail
detection and identifying dangerous areas [21]; as shown
in Figure 2, a regional candidate network is selected to
extract candidate frames in order to improve efficiency.

RPN network is a full convolution network specially
used to extract candidate regions. It processes the previously
extracted feature map, looks for candidate frames that may
contain the target region, and predicts the category score
of each frame.

Using CNN to directly generate candidate area frames
is the core idea of the RPN network, which scans images
by the sliding of window. The RPN network produces
two outputs for each anchor point. One is the category
of anchor points, for all anchor point boxes generated.
After screening and filtering, the SoftMax classification
function is used to judge whether the anchor point

belongs to the foreground or the background; that is, it
is a railroad track or not a railroad track, so as to realize
the identification of the railroad track. At the same time,
the other is frame fine adjustment, which uses the bound-
ing box regression function to correct the anchor point
frame to form a more accurate candidate frame. After
being extracted by CNN, the obtained feature map is input
into RPN network, as shown in Figure 3.

The input of the RPN network is a picture of any size, and
the network output is a series of candidate frames for different
sizes. And the RPN network generates two outputs for each
candidate frame, which are the probability value of identifying
the target object and position information of target object
equivalent to pictures. RPN network uses a 5 × 5 sliding win-
dow and the output of CNN to complete the convolution
operation, and after the convolution operation, a low-
dimensional matrix is obtained. Each anchor point can gener-
ate fifteen candidate boxes, and these fifteen candidate boxes
are input to the regression layer and classification layer, which
are used for bounding box regression and classification,
respectively. The schematic diagram of the RPN structure is
shown in Figure 4, where the candidate frame k = 15.
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Figure 1: Overall framework of the proposed method.
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If the intersection over union (IoU) value of the predic-
tion box corresponding to the anchor point and the ground
truth box is the largest, it is marked as a positive sample. If
the IoU between the predicted frame and actual frame corre-
sponding to the anchor point is greater than 0.33, it is
marked as a positive sample. If the IoU is less than 0.33, it
is marked as a negative sample. The rest are neither positive
nor negative samples and do not participate in the final
training. The loss function selects cross-direction objective
function, and its expression is

C = −
1
n
〠
x

y lg a + 10 − yð Þ lg 10 − að Þ½ �, ð1Þ

where x represents the selected sample and n indicates the
number of samples selected.

Compared with the quadratic objective function, when
the training error is larger, the gradient is larger, and the
parameter adjustment speeds up, which makes the training
faster and faster. The reasons are as follows:

Find the gradient of parameter w:

∂C
∂wj

=〠
x

xjy σ zð Þ − yð Þ, ð2Þ

where σðzÞ − y represents the error between the output value
and the true value. In the same way, the gradient of b is

∂C
∂b

=〠
x

σ zð Þ − yð Þ: ð3Þ

The entire loss function is

L = L ti
∗f g, tif gð Þ, ð4Þ

where Lðfti∗g, ftigÞ is the loss function in Faster RCNN.
The main Lðfti∗g, ftigÞ should be composed of classification
loss function and regression loss function, ti represents the
four parameter coordinates of predicted candidate frame

and ti
∗ is the coordinate vector of selected frame when the

sample is positive, that is,

tx = x − xað Þ,
ty = y − yað Þ,
tx

∗ = x∗ − xað Þ,
ty

∗ = y∗ − yað Þ,

8>>>>><
>>>>>:

ð5Þ

where x and y, respectively, represent the center coordinates
and width and height of candidate frame predicted by the
RPN network. Besides, xa and ya are the center coordinates
and width and height of selection frame for positive samples.

3.3. Side-to-Side Multisensor Fusion. A single sensor has
detection limitations. This paper uses sensor clusters to col-
lect the train status when detecting rail train faults and
highly integrates multiple status data to realize global situa-
tional awareness of fault status. The use of multisensor fea-
ture data fusion can greatly improve the system’s ability to
perceive environment; this improves the intelligence of the
entire detection system platform [22].

As shown in Figure 5, the feature-level fusion used in
this paper is an intermediate-level data fusion. To extract
the feature vector contained in collected data, it can reflect
the attributes of monitored physical quantity, which is the
feature fusion of monitored objects. In the process of
feature-level fusion, the representative features extracted
from sensor data should be fused into a single feature vector.
Then, we use the method of pattern recognition to process,
and feature-level fusion realizes information compression,
which is convenient for real-time processing. In this paper,
the wavelet transform method is used to realize the data
fusion of heterogeneous sensor cluster datasets.

After precleaning the images collected by the multisen-
sor cluster before fusion, the data sample set is divided into
three bands R, G, and B according to the RGB model, and
the three bands are wavelet decomposed, respectively:

BandR = LLR4 + 〠
4

i=1
HLRi + LHRi +HHRið Þ,

BandG = LLG4 + 〠
4

i=1
HLGi + LHGi +HHGið Þ,

BandB = LLB4 + 〠
4

i=1
HLBi + LHBi +HHBið Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

Conv feature map
Sliding window

Intermediate layer

256-d

Regression
layer

ation
layer

2k scores4k coordinatesk anchor boxes

Figure 4: RPN structure.

Sensor 1 Feature extraction

Feature extraction

Feature extraction

Sensor 2Test
object

Feature
fussion

Sensor n

Figure 5: Feature-level fusion.

4 Wireless Communications and Mobile Computing



Take the low-frequency coefficients LLR4, LLG4, and LLB4
decomposed by BandR, BandG, and BandB and the ð∑HLi,
∑LHi,∑HHiÞ reflecting the image edge detail elements for
wavelet synthesis. The formula is as follows:

BandR′ = LLR4 + 〠
4

i=1
HLRi + LHRi +HHRið Þ,

BandG′ = LLG4 + 〠
4

i=1
HLGi + LHGi +HHGið Þ,

BandB′ = LLB4 + 〠
4

i=1
HLBi + LHBi +HHBið Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð7Þ

RGB three-channel synthesis is used for the three band
images to obtain the fused reliable dataset.

In the process of multisensor data fusion, sensor calibration
is particularly important. In order to simplify the calculation,
this paper selects the sensor coordinate system as a unified coor-
dinate system. We obtain the external parameters jointly cali-
brated by the camera and LIDAR, so as to realize the unity
between the two coordinate systems. In this paper, the point
cloud data of LIDAR ismapped to the image coordinate system,
which can complete the sensor spatial synchronization. Figure 6
is a schematic diagram of the joint calibration method.

The conversion formula for the joint calibration of
LIDAR and camera is as follows:

Xc

Yc

Zc

1

2
666664

3
777775 =

Rt Tt

0 1

" # Xt

Yt

Zt

1

2
666664

3
777775, ð8Þ

where ðXt , Yt , ZtÞ are the coordinates in the LIDAR coordi-
nate system and Rt and Tt represent the rotation matrix and
translation vector converted from LIDAR coordinate system
to the camera coordinate system, respectively.

The relationship between the LIDAR coordinate system
and pixel coordinates is as follows:

The joint calibration process is as follows:

(1) Run the camera and LIDAR node, start the camera
and LIDAR sensor, and record and save the joint file
of camera and LIDAR

(2) Restart the camera and LIDAR node and import the
parameter file obtained from the previous calibration

(3) Adjust the angle of view of point cloud and then
make sure that both the image and point cloud can
see the complete calibration board and obtain multi-
frame images and point clouds

(4) Align the point cloud with the image, that is,
extract the corresponding points in the point cloud
and image, and obtain the external parameters
jointly calibrated by the camera and LIDAR by
calculation

3.4. Obstacle Recognition Based on Deep Learning on Cloud
Edge. Based on the reliable dataset support provided by
edge side sensor cluster, this paper uses the YOLOv3
and DeepSort algorithms on the subway monitoring cloud
platform to iteratively learn the rail train status data in
each scene to construct and improve the detection net-
work model. The training network model is transferred
to edge side equipment to complete the real-time rapid
deceleration and avoidance operation when the train
encounters obstacles.

The traditional CNN network has the problem of long
detection time when processing a large amount of computa-
tional data. The YOLOv3 network model has a faster pro-
cessing speed than the CNN model and is often used in
real-time detection and analysis research. The YOLOv3
algorithm uses a network structure diagram that combines
a multilayer convolutional network with a pooling layer
and a fully connected layer. The input picture size has been
expanded to 448 × 448 and then entered into the YOLOv3
network structure. After convolution feature extraction,
pooling dimensionality reduction, and fully connected out-
put, the predicted position and category probability of the
target are obtained.

The YOLOv3 algorithm divides the input image into
S × Srasters, and the output data of each raster is ðB × 5 + CÞ
dimension. Among them, B × 5 is actually B × ð4 + 1Þ, and
the 4-dimensional data in ð4 + 1Þ refers to x, y, w, and h
as the predicted target position. The 1-dimensional data in
ð4 + 1Þ refers to the confidence score. The C-dimensional
data is a conditional class probability. Finally, the output is
an S × S × ðB × 5 + CÞ-dimensional tensor.

The YOLOv3 algorithm divides the input image into
grids. If there is a detection target in a detection grid, the
detection grid is responsible for detecting the object. Each
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Figure 6: Joint calibration of the camera and radar.
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grid cell predicts B regression frames and the scores of these
regression frames. The score represents the predicted value
of the output of the detection grid, predicting whether there
is a target in the detection grid and the probability that the
target belongs to a certain category. The score confidence
is defined as

Confidence = Pr Objectð Þ ∗ IOUtrath
pred : ð9Þ

If the target does not fall into the detection grid,
Confidence = 0. If the target falls into the detection grid,
the confidence is the IOU between the regression frame
and the real area of the target. In other words, if the
detection grid contains a target, Pr ðObjectÞ = 1; otherwise,
Pr ðObjectÞ = 0. IOU is the intersection area between the
predicted regression frame and the real area of the object.

In the S × S grids divided by the image, the probability of
each grid prediction condition category: Pr ðClassijObjectÞ.
Pr ðClassijObjectÞ represents the target attribute and its
probability value predicted to fall into the grid. In the test
phase, we multiply the conditional category probability of
each grid by the confidence of each regression frame:

Pr Classi Objectjð Þ ∗ Pr Objectð Þ ∗ IOUtrath
pred

= Pr Classið Þ ∗ IOUtrath
pred :

ð10Þ

In this way, the confidence score of the specific category
of each regression frame can be obtained. This product not
only contains the probability information of the classifica-
tion predicted in the regression frame but also reflects
whether the regression frame contains objects and the accu-
racy of the coordinates of the regression frame.

The steps of using YOLOv3 for target detection are
shown in Figure 7:

Step 1: input the input left-eye image frame into
YOLOv3 network after size transformation and divide it into
5 × 5 raster Biði = 1, 2,⋯⋯ , 49Þ.

Step 2: after each raster is processed by the YOLOv3 net-
work, two prediction frames Re ðx, y, ConfidenceÞ are
output.

Step 3: determine whether the object falls into the grid. If
the object does not fall into the grid, set Confidence to 0. If
the object falls into the grid, the predicted Confidence value
will be output, and the prediction frame Re ðx, y,
ConfidenceÞ will be updated.

Step 4: compare the predicted Confidence value with
threshold T to remove the redundant window and retain
high confidence value position window.

Step 5: determine whether the input target position of
previous module falls into the reserved position window. If
it falls into the reserved position window, output the recog-
nition result. If it does not fall into the reserved position
window, discard it.

However, it should be noted that rail trains are generally
in high-speed motion. Adding the DeepSort algorithm
framework to the obstacle recognition network, using the
motion model and apparent information for data associa-
tion, can achieve end-to-end multitarget visual fast tracking.

This enables the vehicle target to obtain a good tracking
effect under complex conditions such as illumination, fast
movement, and occlusion [23, 24].

The DeepSort algorithm has deep association features
and is based on the improvement of Sort algorithm. Its
tracking effect is based on the existing accurate detection
results. The prediction module uses Wiener filtering, and
the update module uses IOU to match the Hungarian algo-
rithm. The tracking process is shown in Figure 8.

In order to prevent a target covering multiple targets
or multiple detectors detecting a target in multitarget
tracking, the DeepSort algorithm uses an eight-
dimensional state space ðu, v, γ, h, _u, _v, _γ, _hÞ to define the
tracking scene, where ðu, vÞ is the center position of
bounding box, γ is the target rectangle aspect ratio, h is
the height of rectangular frame, and ð _u, _v, _γ, _hÞ is the
motion information. The algorithm uses a linear observa-
tion model and standard Wiener filtering of uniform
velocity model to predict the target trajectory in the next
frame and uses a boundary coordinate ðu, v, γ, hÞ as the
direct observation of the object state. For each track k,
the number of frames between the last successfully
detected frame picture and the currently detected frame
picture is recorded as ak. This counter is incremented dur-
ing Wiener filtering prediction period and is set to 0 when
the trajectory is associated with the measurement. When
ak exceeds threshold Amax, it is deemed that the track
has left the scene and is deleted. When there is a detection
in the detector that cannot be matched with the existing
trajectory, a tentative trajectory is generated first, and if
the trajectory cannot be rematched in three frames, it is
deleted.

Start

The image frame is divided into 5⨯5 network
Bi(i=1.49)

Each Bi grid predicts two frames Re ()

Setting Re (x,y, confidence)

Confidence T

Keep position window

Output identification
results

Abandon

End

Remove redundant
windows

Figure 7: Flow chart of YOLOv3 target detection.
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The Mahalanobis distance indicates the degree of devia-
tion of the detection target from the average position of target
trajectory; the Mahalanobis distance can be used to measure
the degree of matching between the target state predicted by
Wiener filtering and detection value. We use yi to represent
the target prediction frame position of the i tracker, and dj

as the j detection frame position. Si is the covariance matrix
between the detection position and tracking position. The for-
mula for calculating Mahalanobis distance is

d i, jð Þ = dj − yi
� �TSi dj+1 − yi+1

� �
: ð11Þ

The left and right detected targets are screened by the
Mahalanobis distance, and threshold t = 11:526 is set. If the
associated Mahalanobis distance d is less than the threshold,
the set motion state association is successful, and the indicator
function is

bi,j = l d i, jð Þ < t½ �: ð12Þ

When the motion uncertainty is very low, the Mahalanobis
distance can be a good measure of the relationship between the
detected target and trajectory. But when the camera shakes vio-
lently, the association method fails. Thus, CNN is introduced
for correlation. We obtain feature vector r j of each detection
target dj, and krjk = 1.

The trained YOLOv3 detector is used for train obstacle
detection in complex environments, and the obstacle detection
model trained by YOLOv3 is used. The abnormal target detec-
tion result is used as the real-time input of DeepSort tracker,
thus making up for the own shortcomings of DeepSort.

4. Experiment and Comparative Analysis

In order to verify the feasibility and accuracy of the proposed
method for the detection and identification of subway track
obstacles, this paper uses references [15], [17], and [18] as
comparison methods. The proposed method and the com-
parison method are set in the same experimental scene for
simulation verification. The experimental scene settings are
shown in Table 1.

The experimental dataset uses the actual subway opera-
tion dataset of a city in China in 2020. The dataset randomly
extracts the rail train operating status data on a certain day
in July. The data sample parameter is 30 frames/s, and pixel
size is 1080 × 720. The dataset format was converted to VOC
format, then the format labeling information to a TXT file in
YOLO format. The recognition category in YOLOv3.cfg file
is changed to 1. In view of the small sample data, cross-
validation is used to train 200 epochs.

The main network parameters of the subway obstacle
analysis method proposed in this paper are shown in
Table 2.

4.1. Accuracy Analysis of Track Recognition. In order to ver-
ify the feasibility of the proposed method for subway track
recognition, we build a proposed detection network model
based on the above parameters and reproduce the methods
in references [15], [17], and [18] in the same experimental
scenario. Figure 9 shows the detection and analysis results
of subway tracks under each method.

As shown in Figure 9, at the 45th iteration of proposed
detection method, the network loss function drops to 0.06.
At the same time, the detection network’s orbit recognition
accuracy has increased to 98.9%; its value is almost close to
100% and remains stable. References [15], [17], and [18]
achieved a stable network performance at 120 times, 90
times, and 60 times, respectively. However, it can be seen
that the comparative reference not only has a certain disad-
vantage compared with the proposed method in terms of

Table 1: Operation scenarios of simulation experiment.

Software
environment

Operating system Windows 10
Deep learning
framework

PaddlePaddle

Program editor PyCharm

Hardware
environment

CPU Intel Core i7 9700

GPU
GeForce GTX-

1650

Running memory 32GB

Table 2: Network parameter setting.

Parameter Value

Weight attenuation silver 0.0012

Momentum parameter 0.97

Initial learning rate 0.001

Maximum learning rate 0.027

Training batch 200

Input sample
data set

The depth information features are extracted to
obtain the corresponding confidence, and the

candidate boxes are preliminarily screened

The overlapping candidate boxes were
removed for further screening

Wiener filtering predicts and
measures the matching degree

Cascade matching and
IoU regression

Output current
time result

Status
update

Figure 8: DeepSort tracking process.
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analysis speed. Moreover, the analysis accuracy is slightly
inferior to the recognition ability of the proposed method.
Reference [15] is 11.6% lower than proposed method, refer-
ence [17] is 21.8% lower than the proposed method, and the
analysis accuracy of reference [18] is 72.3%.

4.2. Performance Analysis of Obstacle Detection. The detec-
tion and processing of obstacles before the subway encoun-
ters obstacles is particularly important. Therefore, we also
discuss the performance of the detection method in obstacle
recognition and analysis. Figure 10 is a discussion of obstacle
detection performance under different recognition methods.

As shown in Figure 10, the method proposed in this
paper can effectively distinguish obstacles in the 50th iter-
ation with a recognition accuracy of 98.9%. However, the
accuracy of reference [15] is 11.2% lower than proposed
method, and the accuracy of reference [18] is 14.6%
lower than proposed method. Reference [17] has not yet
found the optimal solution in the iterative analysis pro-
cess. The reason is that we implement feature-level fusion
of sensor cluster data on edge side to provide reliable and
complete data support for detection network model. The
comparison literature only carries out simple data prepro-
cessing on the collected samples. For the deep network,
the quality of the dataset samples will determine the
accuracy of obstacle recognition to a certain extent. At
the same time, reference [17] combines the semantic seg-
mentation network and deep learning network, which has
the possibility of local optimization due to the complex
network structure, which limits the analysis and
recognition.

At the same time, we also analyzed the calculation effi-
ciency of different methods, and the results are shown in
Table 3.

According to Table 3, with the help of edge computing
for fast and efficient action control at the edge of network,
the method proposed in this paper can complete the detec-
tion of obstacles in track within 1.43 s. The comparison
methods all have a certain time delay. The detection time

of reference [15] is 2.79 s, the time of reference [18] is
5.42 s, and reference [17] did not complete the reliability of
subway track obstacles within the set time. At the same time,
the YOLOv3 network used in this paper is essentially a one-
step solution, which can realize direct and efficient feature
extraction for the sample dataset, while the CNN network
used in the comparative literature needs to classify the sam-
ple dataset first and then realize feature extraction. There-
fore, it is proved that the proposed method has the ability
of an efficient and rapid obstacle analysis.
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Figure 9: Subway track recognition performance under different methods.
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Figure 10: Subway track recognition performance under different
methods.

Table 3: Statistical table of target detection experiment results.

Method Analysis time (s)

The proposed method 1.43

Reference [15] 2.79

Reference [17] —

Reference [18] 5.42
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4.3. Target Tracking Analysis. At the same time, we also ana-
lyze the performance of multitarget tracking. Table 4 shows
the performance of multitarget tracking analysis under dif-
ferent methods.

As shown in Table 4, due to the introduction of Deep-
Sort algorithm, the proposed method can effectively achieve
multitarget visual fast tracking at the edge of network, and
the recognition accuracy can reach 96%. The comparison
method is obviously not as good as the proposed method.
The recognition accuracy of references [15], [17], and [18]
is 91%, 61%, and 64%.

In summary, the proposed method can meet the needs of
efficient identification for obstacles in actual subway opera-
tion. Compared with the current analysis methods, it has
better image feature mining and analysis capabilities, which
achieves reliable support for stable operation of rail trains.

5. Conclusion

An efficient and accurate obstacle identification method is
very important for the stable and safe operation of the sub-
way. Based on cloud edge cooperation mode and deep learn-
ing technology, this paper proposes a fast and effective rail
transit obstacle recognition method. In this method, Mask
RCNN algorithm is applied to the route identification of a
metro rail transit, which can provide route guarantee for
the safe directional operation of trains. Based on the local
fast computing mode of edge computing, the state percep-
tion and foreign object recognition of running track are real-
ized on the edge side of the network based on the YOLOv3
and DeepSort algorithms. Through the simulation analysis,
it can be seen that the method proposed in this paper can
achieve more rapid and accurate track obstacle analysis in
the actual complex scene.

The nature of edge computing is lightweight on-site
computing. However, the memory and computing power
of smart devices at the edge of network are greatly restricted
under the condition of limited hardware costs. In order to
further reduce the difficulty of computing and solution, the
lightweight processing research will be carried out on the
deep learning detection network model in the future. Fur-
thermore, it can save network memory and reduce computa-
tional complexity and realize sensitive and efficient
identification of track obstacles in actual complex scenes.
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