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Current research in Internet of Things (IoT) is focused on the security enhancements to every communicated message in the
network. Keeping this thought in mind, researcher in this work emphasizes on a security oriented cryptographic solution.
Commonly used security cryptographic solutions are heavy in nature considering their key size, operations, and
mechanism they follow to secure a message. This work first determines the benefit of applying lightweight security
cryptographic solutions in IoT. The existing lightweight counterparts are still vulnerable to attacks and also consume
calculative more power. Therefore, this research work proposes a new hybrid lightweight logical security framework for
offering security in IoT (LLSFIoT). The operations, key size, and mechanism used in the proposed framework make its
lightweight. The proposed framework is divided into three phases: registration, authentication, and light data security
(LDS). LDS offers security by using unique keys at each round bearing small size. Key generation mechanism used is
comparatively fast making the compromise of keys as a difficult task. These steps followed in the proposed algorithm
design make it lightweight and a better solution for IoT-based networks as compared to the existing solutions that are
relatively heavy weight in nature.

1. Introduction

A fresh primitive cryptography known as lightweight cryp-
tography is specifically being put on the market for use as
integrated systems in resource-restricted settings like radio
frequency identification (RFID) IoT [1]. Lightweight will
not be soft in nature, but will not be enforced on many apps.
The attacker is restricted by lightweight algorithms with the
exposure of only restricted information per key [2]. Light-
weight alternatives are used to marinate the necessary trade
between efficiency, safety, and assets [3]. The major chal-

lenges in IoT are restricted instruments such as RFID and
battery-operated detectors. Particular consideration should
therefore be paid to limiting the use of its funds and at the
same moment to provide safety [4]. Solutions for lightweight
cryptography deliver both safety and efficiency [5]. The easi-
est approach seems to be of IoT resource restrictions. Light-
weight alternatives provide safety only through the
exposure of restricted operational information [6]. The limi-
tations in existing network are the use of large key size, block
size, complex round structure, and the implementation
requirements [7]. Being a resource constrained network,
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security in IoT should be using a security mechanism using
less key size, block size, simple round structures, and simple
implementation requirements [8, 9].

For Lightweight solutions, the National Institute of Stan-
dards and Technology (NIST) sets a minimum key size
requirement of 112 bits. Even smaller key sizes are more vul-
nerable to brute force attack [10]. The following requirement
is for a small block size. The lightweight cipher’s block size
should be smaller than that of conventional cyphers. For
instance, if the block size is 64 bits rather than the 128 bits
used by AES, a greater number of plaintext blocks can be
encrypted [11]. Additionally, memory requirements will
decrease. Following that, a simple round structure should
be used: The rounds used in lightweight cyphers should be
simpler than those used in conventional cryptography [12].
For instance, a round can be simplified by substituting a 4-
bit S-Box for an 8-bit S-Box. This also reduces the amount
of memory required. Increasing the total number of rounds
to be fired may lower the amount of security that can be
improvised [13]. The requirements take into account the fact
that the device should be capable of either encryption or
decryption. Rather than implementing the entire cypher,
only required operations should be implemented [14, 15].
This comes out with an issue while implementing lightweight
solutions in IoT but once it is implemented, the overall
resources and life of network can be improved [16].

The contribution of this research work is to overcome the
limitations of existing solutions by making changes in design
of the security algorithm. In comparison to conventional
block cyphers, the requirements of lightweight security solu-
tions are lower for key size. Existing security solutions like
AES, SIMON, and SPECK, they have more key size require-
ments as compared to the proposed algorithm.

The remaining paper is arranged accordingly. In Section
II, work related to IoT security is reviewed. Existing solutions
for providing security and authentication are covered. Sec-
tion III propose the hybrid lightweight security solution for
IoT comprising three phases, i.e, registration, authentication,
and data security. Later, in Section IV, round key generation
schedule of data security mechanism is discussed. Section V
discusses the complete one round structure for Data security.
Section VI analyzes the proposed algorithm by evaluating the
mean and standard deviation. Finally, conclusion states the
currents state of art and the benefit of the proposed security
framework.

2. Related Work

Light weight means the algorithms that require fewer and
optimal performance funds. The lightweight term does not
refer to the weakness of the algorithm [17]. As the trend for
future appliances with restricted systems has changed, a great
deal of effort was produced to optimize AES for these apps.
However, adaptation to the requirements of these systems
in the AES was not suitable [18]. Although AES has been
implemented quickly, however, it is still very complicated
and has big codes that do not comply with the needs [19].
In [20], it is mentioned that AES is utilized as validation com-
ponent in RFID-based frameworks. The AES is used in the

application layer as an integrated COAP system. Advanced
encryption standards (AES) is an institutionalized symmetri-
cal square figure by NIST. It uses a replacement phase
scheme and deals with a 128-bit square-length 4 × 4 network
[21]. Each byte is influenced by the effects of subbytes, row
shifting, MIXED COLUMNS, and ADD ROUND KEY.
The key size that can be used is 128 bits, 192 bits, or
256 bits. AES is as yet defenseless against man-in-center
assault [22, 23].

The author suggested in [24], PRESENT which is SPN
based and used as an ultra-light safety calculation. It uses 4-
bit info and S-box rates to advance devices at the replacement
layer. It has 80 or 128 parts of main size and operates on 64
pieces. PRESENT is listed as a lightweight cryptography
scheme in ISO/IEC 29192-2 : 2012 “Lightweight cryptogra-
phy.” On 26 out of 31 rounds [25], PRESENT is indefensible
from differential attack. In [26], author referred SIMON 2n
an N-bit word cipher forming a 2n-bit block. N can have
16, 24, 32, 48, and 64 values. SIMON 2n using key as k
-word key (kn-bit) is referred as SIMON 2n/kn. Therefore,
SIMON 96/144 will be working on a block of 96-bit plaintext
and using key of 144 bits. SIMON is a member of the block
cypher family with varying block sizes. It can support 32,
48, 64, 96, and 128 bits of block size that further can work
on varying key sizes.

In [27], author referred SPECK highlighted that SPECK
requirements are like SIMON. SPECK 128/128 therefore
means the 128 bit file length SPECK block code that sucks
the 128-bit button. The SPECK supporting block and key size
is identical to that of SIMON. SPECK uses Feistel structure
performing bitwise XOR, circular shits, and modular addi-
tion in each round at both directions [28]. In [29], TWINE
is described as a 64 bit block cipher forming a basic Feistel
structure. Feistel functions consist of 16 4-bit subblocks using
key addition. Two key sizes 80 and 128 bits are supported by
TWINE. TWINE operates on total 36 rounds with same
round function. In [30], author mentioned FANTOMAS as
an LS-design example (LS consists of L-boxes using bit-
sliced looking tables and S-boxes). The block cipher FANTO-
MAS can be displayed with the s × L bit array. The s × s parts
are permutation for each matrix row, whereas the permuta-
tion for each matrix row is L × L. Consider, for instance, a
128-bit FANTOMAS key and block length. The s-bits are 8,
and the L-bits are 16.

3. Proposed Lightweight Logical Security
Framework for IoT (LLSFIoT)

The proposed LLSFIoT is divided into three phases: registra-
tion, authentication, and LDS. When a new device enters the
network, the credentials are first registered with the server
using the key sharing mechanism. Once the device has the
credentials, mutual authentication between the device and
the server will take place before initiating any communica-
tion. Using the LDS algorithm, the data transmitted by and
from the device is secured. The notations used in the process
of registration, authenticationn and data security are shown
in Table 1.
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3.1. Phase 1: Registration. Steps corresponding to registration
phase are detailed below:

Step 1. Device Di will initiate a connection that has been
established with IS by submitting its IDD to the IS making
use of a secure medium.

Step 2. IS following receipt of the connection request from Di
computes a nonce value NS. This NS is used to compute a
shared key KS, where KS = IDS ⊕ hðIDD‖NSÞ.

Step 3.Additionally to this, IS generates a collection of unique
IDs, UID = fid1, id2, id3,⋯:idn:g, and set of alternate keys
Ka = fka1, ka2,⋯:kang in relation to one another uidi∈UID.

Step 4. Additionally, IS, a sequence number, is a generated
randomly SN. As a result, for each request submitted by the
Di, IS generates KS, unique IDs, alternate keys, and SN. If
Di makes an additional request to IS, a new SN is generated.
The onus of IS is to maintain one copy of SN in database and
forward same copy to the Di. The benefit of using SN is to
avoid any replay that the intruder may inject.

Step 5. Before the authentication process actually begins, IS
checks to see if the SN sent by Di matches one already stored
in the database. Authentication phase 2 will be active when
this match occurs. whereas IS ends connection with Di and
requires Di to use one UID and Ka couple if match does
not occur in SN.

The pair will be used once, and the entry will be removed
in both the IS and Di database. I will send a message at the
endDi encrypted using public key ofDi having a set of values:
KS, {idi, kai}, SN, and in its own database keeps the same
values as the Di ID, i.e. IDD.

3.2. Phase 2: Authentication. In the authentication phase, two
way mutual authentication is performed between Di and IS.
Steps corresponding to authentication phase are detailed
below:

Step 6. Di by taking a nonce value N1 generates a variable
V1 = hðIDDkKS ⊕N1Þ.

Step 2. Now, Di creates a message of request having fV1,
IDD, SNg to the IS.

Step 3. On the off chance that SN is not accessible with Di, Di
will use one of the {idi, kai} pair where kai can be used in
replacement of KS.

Step 4. On receiving request from Di, The IS verifies the mes-
sage’s SN or checks that additional parameters are legitimate
or not if they match the matching SN of the Di stored in the
database. The value of N1 is later calculated by IS.

Step 5. If all the parameters are validated, then IS after taking
a nonce value N2 will generate a new random sequence num-
ber SNnew= h ðIDD‖KS‖N1Þ ⊕ SN and computes a temporary
variable TV = hðIDDkKSkN2Þ ⊕ SNnew and computing vari-
able V 2 = hðIDDkKSkN1kTVÞ.

Step 6. Di on receiving message containing {V2, SNNew, TV }
from the IS computes the value hðIDDkKSkN1kTVÞ and
compares it with V2. If match occurs, Di computes nonce N

2 using TV = hðIDDkKSkN2Þ ⊕ SNnew:

3.3. Phase 3: Lightweight Data Security (LDS) Algorithm.
Once mutual authentication is performed between Di and
IS, the next step is to offer data security using the encryption
method. Data is taken in blocks of 64 bits each, and the size of
KS shared betweenDi and IS that is 128 bits. To offer security,
a lightweight data security (LDS) algorithm is proposed. This
algorithm takes of the secure data communication and offers
the services for security such as confidentiality of data and
integrity of data.

Proposed LDS works on 20 rounds using addition, rota-
tion, and XOR (ARX) operations. This flexibility of choosing
the number of rounds lies with the user depending upon the
execution time required and also on full diffusion. The three
operations ARX are chosen for offering optimum security
trading off with lightweight solution considering the IoT
application scenario. The reason for choosing only these
operations for a round is discussed later in Section 4. The
structure of LDS consisting of 20 rounds using ARX opera-
tions and a key generation function is represented through
Figure 1.

4. Generation of Subkeys for Each Round

For each round, two n-bit subkey bocks are required, consid-
ering n as the number of bits in a word. Block size that can be
taken as input will be 2n. Here, block size of 64 bits is
assumed; so, value of n is 32. Key size is taken as 128 bits.
Therefore, for 20 rounds, 40 key subblocks have each of 32

Table 1: Notations used in LLSFIoT.

Symbol Description

Di ith device

IS Information server

IDD Identity of device

IDS Identity of server

KS Key shared between device and server

SN Sequence number

UID Unique IDs

Ka Alternate keys

TV Temporary variable

n Number of bits in each word

2n Block size/number of input bits

SKi ith key subblock

S−x Left rotation by x bits

Sy Right rotation by y bits
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bit out of 128 bit long key. A key generation mechanism is
required for getting the key subblocks for each round of
operation.

Subkey generation is done in such a manner that key gen-
erator gives a unique and random subkey every time it is run.
For a good key generator mechanism, if the generated subkey

is compromised by cryptanalysis, other subkeys should not
be identified. The subkeys are generated from the main key
of 128 bits. As stated earlier, each round requires two subkey
blocks. The mechanism of key generation function consists
of a key generation that divides the keys into subblocks.
Key generator generates subkeys for two rounds at a time.

First key sub
block of 32 bits

Third key sub
block of 32 bits

Fourth key sub
block of 32 bits

Key
generation
function

39th key sub
block of 32 bits

40th key sub
block of 32 bits

Input message size: 64 bits
2 words of 32 bit each (Li and Ri)

Add Li and Ri using addition modulo 16
to generate new Ri

Add Li+1 and Ri+1 using addition
modulo 16 to generate new Ri+1

Add Li+19 and Ri+19 using addition
modulo 16 to generate new Ri+19

Left rotate Ri by y bits

Left rotate Ri+1 by y bits

XOR Ri with sub key block of 32 bits

Right rotate Li by x bits

Right rotate Li+1 by x bits

Add Ri and Li to generate new Li

Add Ri+1 and Li+1 to generate new Li+1

XOR Li with sub key block of 32 bits

XOR Li+1 with sub key block of 32 bits

XOR Li+19 with sub key block of 32 bits

Li→ Ri+1
Ri→ Li+1

Li+1→ Ri+2
Ri+1→ Li+2

Second key sub
block of 32 bits

Round 0

Round 1

Round 19

XOR Ri+1 with sub key block of 32 bits

Left rotate Ri+19 by y bits

Right rotate Li+19 by x bits

Add Ri+19 and Li+19 to generate new
Li+19

XOR Ri+19 with sub key block of 32 bits

Figure 1: LDS structure.
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Therefore, for 20 rounds, key generator will work for 10
times and generate 4 subkey blocks each time, making a total
of 40 subkey blocks. The whole mechanism of key generator
is explained through following steps:

Step 1. The original key (Ki) of 128 bits is given as input to
subkey generator.

Step 2. Sub key generator generates 4 sub key blocks of 32 bit
each. Two key sub blocks of 32 bits are passed as input to first
round and next two key sub blocks of 32 bits are passed as
input to second round.

Step 3. Bits in original Ki are processed using a mixing func-
tion to generate input for the running the key generator for
the next time. From there again, 4 key subblocks are gener-
ated for next two rounds.

Step 4. Mixing function takes as input the output of the pre-
vious key generator function. For the first time, after the exe-
cution of key generator, original Ki consists of 4 key
subblocks, let us say, SK1, SK2, SK3, SK4, each of 32 bits. Mix-
ing function performs the XOR operation in circular rota-
tion. All the bits of SK1 are XORed with random bits of
SK2, SK2 is XORed with random bits of SK3, SK3 is XORed
with random bits of SK4, and SK4 is XORed with random bits
of SK1. SK1(0) represents the first bit of key subblock SK1.
Figure 2 shows the block diagram for operation of key gener-
ator. The sample equations to generate subkey can be repre-
sented mathematically in Table 2.

Step 5. Step 3 and step 4 are repeated till all the 40 subkey
blocks are generated for all the 20 rounds.

5. Round Function of LDS

LDS framework works on the Feistel-like structure. Opera-
tions used during the encryption process of LDS are

(i) Addition modulo 2n, considering n as the number of
bits in a word. If n is 16, block size will be 32 and for
n taken as 32, block size will be 64 bits. Addition
modulo is preferred over multiplication modulo.
There may bemultiple reasons for choosing addition
over multiplication. First, multiplication require
more cycles as compared to addition even with the
fastest CPUs. Second, operation of multiplication
may lead to timing attacks

(ii) Bitwise XOR, ⊕: most block ciphers work using XOR
as the basic operation as compared to other opera-
tions like AND and OR. Numbers of factors sup-
porting XOR over other operations are first, XOR
operation works on reversible procedure. When
encryption is performed on original text XOR with
key to generate cipher text, same key when operated
using XOR with cipher text the resultant will be
same original text. Second, XOR can be realized
using the NAND gate requiring few transistors as

compared to other operations, making its hardware
implementation quite easier. Third, in XOR, the out-
put is dependent on both the operands as compared
to AND and OR. In AND, if one of the operand is
false, second is not evaluated at all. In OR, if one of
the operand is true and second is not evaluated at
all, whereas, in XOR, if first operand is true or false,
second needs to be evaluated for getting the expected
output

(iii) R−b and Rb are left and right rotations respectively,
where b is the number of bits to rotate. Rotations
are preferred over shift as rotation when used with
the XOR operation that creates maximum diffusion
in the resultant output with alteration in a single
input bit. On the other hand, when shift is used with
the XOR, then diffusion created is less in output with
alteration in a single input bit

The input block of n bits is divided into two equal halves.
For example, if input text is 64 bits long, it will be divided into
32 bits each represented as Li and Ri. Li represents the left
subblock, and Ri represents the right subblock. The left and
the right subblock in a particular round is evaluated as

Li = S−xLi + Sy Li + Rið Þ ⊕ SK2ð Þð Þ ⊕ SK1,
Ri = Sy Li + Rið Þ ⊕ SK2:

ð1Þ

Therefore, the round function of LDS is denoted as

F Li, Rið Þ = S−xLi + Sy Li + Rið Þ ⊕ SK2ð Þð Þ ⊕ SK1, Sy Li + Rið Þ ⊕ SK2ð Þ,
ð2Þ

Input

Sub key block generator

Mixing function
Sub key block generator

Mixing function
Sub key block generator

Mixing function
Sub key block generator

Round 2Round 1

Round 4Round 3

Round 18Round 17

Round 20Round 19

SK1 = 32 bits SK2 = 32 bits SK3 = 32 bits SK4 = 32 bits

SK8 = 32 bitsSK7 = 32 bitsSK6 = 32 bitsSK5 = 32 bits

SK37 = 32 bits SK38 = 32 bits SK39 = 32 bits SK4 = 32 bits

Original key
Ki = 128 bits

Figure 2: Block diagram for key subblock generator function.
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where x and y are the rotation constants. For block size of
64 bits and key size of 128 bits, the value of x is taken as 7, and
the value of y is taken as 3. This composition of round func-
tion is represented through Figure 3.

6. Evaluating Diffusion Property for LDS Round

Diffusion property of the cryptographic algorithm is focused
on incorporating the avalanche effect. It refers to observe the
change in number of bits of the output cipher text with a sin-
gle bit modification in the input original text. With more
number of bits affected by diffusion, the cryptographic solu-
tion proves to be stronger.

The input original text of 64 bits is divided into 2 subdata
blocks of 32 bits each and referred as A and B. The values of
rotation constant for creating the diffusion matrix may vary
from 0 to 31. Therefore, the total possible combinations of
rotation constants x and y each carrying value from 0 to 31
may lead to 32 × 32 = 1024 combinations. 1024 combina-
tions can generate 1024 diffusion matrices based on respec-
tive designs. A sample diffusion matrix is shown in Table 3
below:

In Table 3, MAA refers to the count of number of bits
modified in A by modifying the single bit of A. As there are
32 bits in A, the mean value and the standard deviation are
calculated after changing every bit of A and noticing its effect
on A and B. Similar effect can be noticed in MAB, MBA, and
MBB.

Table 2

SK1 0ð Þ = SK1 0ð Þ ⊕ SK2 31ð Þ SK2 0ð Þ = SK2 0ð Þ ⊕ SK3 0ð Þ
SK1 1ð Þ = SK1 1ð Þ ⊕ SK2 0ð Þ SK2 1ð Þ = SK2 1ð Þ ⊕ SK3 1ð Þ
SK1 2ð Þ = SK1 2ð Þ ⊕ SK2 1ð Þ SK2 2ð Þ = SK2 2ð Þ ⊕ SK3 2ð Þ
SK1 3ð Þ = SK1 3ð Þ ⊕ SK2 2ð Þ SK2 3ð Þ = SK2 3ð Þ ⊕ SK3 3ð Þ
SK1 4ð Þ = SK1 4ð Þ ⊕ SK2 3ð Þ SK2 4ð Þ = SK2 4ð Þ ⊕ SK3 4ð Þ
SK1 5ð Þ = SK1 5ð Þ ⊕ SK2 4ð Þ SK2 5ð Þ = SK2 5ð Þ ⊕ SK3 5ð Þ
SK1 6ð Þ = SK1 6ð Þ ⊕ SK2 5ð Þ SK2 6ð Þ = SK2 6ð Þ ⊕ SK3 6ð Þ
SK1 7ð Þ = SK1 7ð Þ ⊕ SK2 6ð Þ SK2 7ð Þ = SK2 7ð Þ ⊕ SK3 7ð Þ
SK1 8ð Þ = SK1 8ð Þ ⊕ SK2 7ð Þ SK2 8ð Þ = SK2 8ð Þ ⊕ SK3 8ð Þ
SK1 9ð Þ = SK1 9ð Þ ⊕ SK2 8ð Þ SK2 9ð Þ = SK2 9ð Þ ⊕ SK3 9ð Þ
SK1 10ð Þ = SK1 10ð Þ ⊕ SK2 9ð Þ SK2 10ð Þ = SK2 10ð Þ ⊕ SK3 10ð Þ
SK1 11ð Þ = SK1 11ð Þ ⊕ SK2 10ð Þ SK2 11ð Þ = SK2 11ð Þ ⊕ SK3 11ð Þ
SK1 12ð Þ = SK1 12ð Þ ⊕ SK2 11ð Þ SK2 12ð Þ = SK2 12ð Þ ⊕ SK3 12ð Þ
SK1 13ð Þ = SK1 13ð Þ ⊕ SK2 12ð Þ SK2 13ð Þ = SK2 13ð Þ ⊕ SK3 13ð Þ
SK1 14ð Þ = SK1 14ð Þ ⊕ SK2 13ð Þ SK2 14ð Þ = SK2 14ð Þ ⊕ SK3 14ð Þ
SK1 15ð Þ = SK1 15ð Þ ⊕ SK2 14ð Þ SK2 15ð Þ = SK2 15ð Þ ⊕ SK3 15ð Þ
SK1 16ð Þ = SK1 16ð Þ ⊕ SK2 15ð Þ SK2 16ð Þ = SK2 16ð Þ ⊕ SK3 16ð Þ
SK1 17ð Þ = SK1 17ð Þ ⊕ SK2 16ð Þ SK2 17ð Þ = SK2 17ð Þ ⊕ SK3 17ð Þ
SK1 18ð Þ = SK1 18ð Þ ⊕ SK2 17ð Þ SK2 18ð Þ = SK2 18ð Þ ⊕ SK3 18ð Þ
SK1 19ð Þ = SK1 19ð Þ ⊕ SK2 18ð Þ SK2 19ð Þ = SK2 19ð Þ ⊕ SK3 19ð Þ
SK1 20ð Þ = SK1 20ð Þ ⊕ SK2 19ð Þ SK2 20ð Þ = SK2 20ð Þ ⊕ SK3 20ð Þ
SK1 21ð Þ = SK1 21ð Þ ⊕ SK2 20ð Þ SK2 21ð Þ = SK2 21ð Þ ⊕ SK3 21ð Þ
SK1 22ð Þ = SK1 22ð Þ ⊕ SK2 21ð Þ SK2 22ð Þ = SK2 22ð Þ ⊕ SK3 22ð Þ
SK1 23ð Þ = SK1 23ð Þ ⊕ SK2 22ð Þ SK2 23ð Þ = SK2 23ð Þ ⊕ SK3 23ð Þ
SK1 24ð Þ = SK1 24ð Þ ⊕ SK2 23ð Þ SK2 24ð Þ = SK2 24ð Þ ⊕ SK3 24ð Þ
SK1 25ð Þ = SK1 25ð Þ ⊕ SK2 24ð Þ SK2 25ð Þ = SK2 25ð Þ ⊕ SK3 25ð Þ
SK1 26ð Þ = SK1 26ð Þ ⊕ SK2 25ð Þ SK2 26ð Þ = SK2 26ð Þ ⊕ SK3 26ð Þ
SK1 27ð Þ = SK1 27ð Þ ⊕ SK2 26ð Þ SK2 27ð Þ = SK2 27ð Þ ⊕ SK3 27ð Þ
SK1 28ð Þ = SK1 28ð Þ ⊕ SK2 27ð Þ SK2 28ð Þ = SK2 28ð Þ ⊕ SK3 28ð Þ
SK1 29ð Þ = SK1 29ð Þ ⊕ SK2 28ð Þ SK2 29ð Þ = SK2 29ð Þ ⊕ SK3 29ð Þ
SK1 30ð Þ = SK1 30ð Þ ⊕ SK2 29ð Þ SK2 30ð Þ = SK2 30ð Þ ⊕ SK3 30ð Þ
SK1 31ð Þ = SK1 31ð Þ ⊕ SK2 30ð Þ SK2 31ð Þ = SK2 31ð Þ ⊕ SK3 31ð Þ
SK3 0ð Þ = SK3 0ð Þ ⊕ SK4 1ð Þ SK4 0ð Þ = SK4 0ð Þ ⊕ SK1 2ð Þ
SK3 1ð Þ = SK3 1ð Þ ⊕ SK4 2ð Þ SK4 1ð Þ = SK4 1ð Þ ⊕ SK1 3ð Þ
SK3 2ð Þ = SK3 2ð Þ ⊕ SK4 3ð Þ SK4 2ð Þ = SK4 2ð Þ ⊕ SK1 4ð Þ
SK3 3ð Þ = SK3 3ð Þ ⊕ SK4 4ð Þ SK4 3ð Þ = SK4 3ð Þ ⊕ SK1 5ð Þ
SK3 4ð Þ = SK3 4ð Þ ⊕ SK4 5ð Þ SK4 4ð Þ = SK4 4ð Þ ⊕ SK1 6ð Þ
SK3 5ð Þ = SK3 5ð Þ ⊕ SK4 6ð Þ SK4 5ð Þ = SK4 5ð Þ ⊕ SK1 7ð Þ
SK3 6ð Þ = SK3 6ð Þ ⊕ SK4 7ð Þ SK4 6ð Þ = SK4 6ð Þ ⊕ SK1 8ð Þ
SK3 7ð Þ = SK3 7ð Þ ⊕ SK4 8ð Þ SK4 7ð Þ = SK4 7ð Þ ⊕ SK1 9ð Þ
SK3 8ð Þ = SK3 8ð Þ ⊕ SK4 9ð Þ SK4 8ð Þ = SK4 8ð Þ ⊕ SK1 10ð Þ
SK3 9ð Þ = SK3 9ð Þ ⊕ SK4 10ð Þ SK4 9ð Þ = SK4 9ð Þ ⊕ SK1 11ð Þ
SK3 10ð Þ = SK3 10ð Þ ⊕ SK4 11ð Þ SK4 10ð Þ = SK4 10ð Þ ⊕ SK1 12ð Þ

Table 2: Continued.

SK3 11ð Þ = SK3 11ð Þ ⊕ SK4 12ð Þ SK4 11ð Þ = SK4 11ð Þ ⊕ SK1 13ð Þ
SK3 12ð Þ = SK3 12ð Þ ⊕ SK4 13ð Þ SK4 12ð Þ = SK4 12ð Þ ⊕ SK1 14ð Þ
SK3 13ð Þ = SK3 13ð Þ ⊕ SK4 14ð Þ SK4 13ð Þ = SK4 13ð Þ ⊕ SK1 15ð Þ
SK3 14ð Þ = SK3 14ð Þ ⊕ SK4 15ð Þ SK4 14ð Þ = SK4 14ð Þ ⊕ SK1 16ð Þ
SK3 15ð Þ = SK3 15ð Þ ⊕ SK4 16ð Þ SK4 15ð Þ = SK4 15ð Þ ⊕ SK1 17ð Þ
SK3 16ð Þ = SK3 16ð Þ ⊕ SK4 17ð Þ SK4 16ð Þ = SK4 16ð Þ ⊕ SK1 18ð Þ
SK3 17ð Þ = SK3 17ð Þ ⊕ SK4 18ð Þ SK4 17ð Þ = SK4 17ð Þ ⊕ SK1 19ð Þ
SK3 18ð Þ = SK3 18ð Þ ⊕ SK4 19ð Þ SK4 18ð Þ = SK4 18ð Þ ⊕ SK1 20ð Þ
SK3 19ð Þ = SK3 19ð Þ ⊕ SK4 20ð Þ SK4 19ð Þ = SK4 19ð Þ ⊕ SK1 21ð Þ
SK3 20ð Þ = SK3 20ð Þ ⊕ SK4 21ð Þ SK4 20ð Þ = SK4 20ð Þ ⊕ SK1 22ð Þ
SK3 21ð Þ = SK3 21ð Þ ⊕ SK4 22ð Þ SK4 21ð Þ = SK4 21ð Þ ⊕ SK1 23ð Þ
SK3 22ð Þ = SK3 22ð Þ ⊕ SK4 23ð Þ SK4 22ð Þ = SK4 22ð Þ ⊕ SK1 24ð Þ
SK3 23ð Þ = SK3 23ð Þ ⊕ SK4 24ð Þ SK4 23ð Þ = SK4 23ð Þ ⊕ SK1 25ð Þ
SK3 24ð Þ = SK3 24ð Þ ⊕ SK4 25ð Þ SK4 24ð Þ = SK4 24ð Þ ⊕ SK1 26ð Þ
SK3 25ð Þ = SK3 25ð Þ ⊕ SK4 26ð Þ SK4 25ð Þ = SK4 25ð Þ ⊕ SK1 27ð Þ
SK3 26ð Þ = SK3 26ð Þ ⊕ SK4 27ð Þ SK4 26ð Þ = SK4 26ð Þ ⊕ SK1 28ð Þ
SK3 27ð Þ = SK3 27ð Þ ⊕ SK4 28ð Þ SK4 27ð Þ = SK4 27ð Þ ⊕ SK1 29ð Þ
SK3 28ð Þ = SK3 28ð Þ ⊕ SK4 29ð Þ SK4 28ð Þ = SK4 28ð Þ ⊕ SK1 30ð Þ
SK3 29ð Þ = SK3 29ð Þ ⊕ SK4 30ð Þ SK4 29ð Þ = SK4 29ð Þ ⊕ SK1 31ð Þ
SK3 30ð Þ = SK3 30ð Þ ⊕ SK4 31ð Þ SK4 30ð Þ = SK4 30ð Þ ⊕ SK1 0ð Þ
SK3 31ð Þ = SK3 31ð Þ ⊕ SK4 0ð Þ SK4 31ð Þ = SK4 31ð Þ ⊕ SK1 1ð Þ
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In order to generate the diffusion matrix, certain steps are
taken that require the input and rotation constants assumed
as x and y here.

Step 1. Input block of 64 bits is divided into two subblocks
referred as A and B each of 32 bits.

Step 2. Considering the different combinations of x and y
where each can take values from 0 to 31, thus, the overall pos-
sible combinations are 1024. Here, the value of x and y is
assumed to be fixed; that is, x is taken as 7, and y is taken
as 3, while executing the LDS algorithm.

Step 3. Round function of LDS is executed over the data
blocks A and B to generate output as A1 and B1.

Step 4. Start by modifying one bit of A, then execute LDS over
modified A bits and the original B to get output as A2 and B2.
Compare bits of A1 with bits of A2 and calculate the number
of bits which have been altered, that will become value of
MAA. Similarly, compare bits of B1 with bits of B2 and calcu-
late the number of bits which have been altered, that will
become value of MAB.

Step 5. Repeat step 3 but this time by modifying one bit of B.
Execute LDS over modified B bits and the original A to get
output as A2 and B2. Compare bits of A1 with bits of A2

and calculate the number of bits which have been altered,
that will become the value of MBA. Similarly, compare bits
of B1 with bits of B2 and calculate the number of bits which
have been altered, that will become the value of MBB.

Step 6. Repeat steps 3 and 4 at least 64 times using rotation
constant x =7 and y = 3 to find the average of each value of
matrix M to get diffusion table as shown in Table 4 below.

The possible combinations for x and y can be 1024, but
the same steps for creating diffusion table are repeated by

Table 3: Generalized diffusion table.

Input
Output

Left block (A) Right block (B)

Left block (A) MAA MAB

Right block (B) MBA MBB

Table 4: Diffusion table considering x = 7 and y = 3.

Input
Output

Left block (A) Right block (B)

Left block (A) 10.5 12.3125

Right block (B) 6.71815 8.90625

Mean = 9:609, standard deviation = 2:058

Table 5: Diffusion table considering x = 8 and y = 3.

Input
Output

Left block (A) Right block (B)

Left block (A) 9.375 10.156

Right block (B) 3.156 7.218

Mean = 7:4762, standard deviation = 2:716

Table 6: Diffusion table considering x = 7 and y = 2.

Input
Output

Left block (A) Right block (B)

Left block (A) 8.625 11.25

Right block (B) 4.312 6.75

Mean = 7:734, standard deviation = 2:541

Table 7: Mean and standard deviation with different sets of rotation
constants.

Rotation constants Mean Standard deviation

x = 7
y = 3 9.609 2.058

x = 8
y = 3 7.476 2.716

x = 7
y = 2 7.734 2.541

0

2

4

6

8

10

x = 7, y = 3 x = 8, y = 3 x = 7, y = 2

Mean
Standard deviation

Figure 4: Mean and standard deviation for different sets of rotation
constants.
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Figure 3: Single round function of LDS.
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considering the most common used rotation constants x = 8
and y = 3 and second time by considering x = 7 and y = 2.
The diffusion table generated by repeating the steps 64 times
for the rotation constants x = 8 and y = 3 is shown through
Table 5 below.

The diffusion table generated by repeating the steps 64
times for the rotation constants x = 7 and y = 2 is shown
through Table 6.

Mean value in all the combinations shows the average
number of bits that are affected by changing the individual
bits as shown in equation (3)

Mean = MAA +MAB +MBB +MBAð Þ/4: ð3Þ

Standard deviation is calculated by finding the variance
after subtracting each data value from the mean and then
finding their sum and finally performing square root as
shown in equation (4).

StandardDeviation =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〠
2

i,j=1
Mij −Meanð Þ

v

u

u

t : ð4Þ

Rotation constants chosen for creating diffusion matrix
and hence calculating mean and standard deviation show
the extent of output change by changing input bits. These
constants are used to calculate transition probability. For
block size of 64 bit block and key size of 128 bits, the mean
and standard deviation for three sets of rotation constants
are shown in Table 7 and are represented through Figure 4.

Figure 4 clarifies that when same LDS is executed with
different combinations of rotation constants, the maximum
value and the least standard deviation are observed with rota-
tion constants x = 7 and y = 3. Therefore, the proposed LDS
algorithm chooses the rotation constants x = 7 and y = 3.

7. Conclusion

Once the data is collected through devices using sensors, the
next concern is to offer security to data or devices that play
active role in communication. Therefore, this research work
proposes a LLSFIoT model consisting of three phases. Phase
1 registers the new devices with the central server and hand-
over the essential credentials to the device. Phase 2 performs
mutual authentication between server and the device. Phase 3
proposed a LDS algorithm that offers confidentiality and
integrity to data in transit. LDS works as a Feistel structure
on 20 rounds of operation using ARX operations: addition,
rotation, and XOR. The LDS is evaluated by performing
cryptanalysis using diffusion property. Different sets of rota-
tion constants are used to find mean and standard deviation.
This research work concludes that LDS works well with con-
stant value as x = 7 and y = 3 with maximum mean and min-
imum standard deviation assuring that single change in input
will affect more bits in output.
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