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This paper performs a comprehensive survey on transmission schemes for the large-scale Internet of things (IoT) networks with
nonorthogonal multiple access (NOMA). By solving the interference among users, NOMA can significantly improve the
frequency reuse efficiency and support multiple users to use the same frequency resources. It is considered to be one of the
most effective technologies for the next-generation wireless communication. However, there are still many challenges on the
transmission schemes for the large-scale NOMA system, including the short-data packet transmission, active user detection,
channel estimation, and data detection. In order to meet these challenges, this paper first reviews the short-packet transmission
in the large-scale NOMA systems and then reviews the active user detection and channel estimation technologies of the
considered systems.

1. Introduction

The application of Internet of things (IoT) has promoted a
significant increase in data traffic of wireless networks
[1–3]. For machine-type communication (MTC) or
mission-critical communication (autonomous driving,
drones, and augmented/virtual reality), all of them have pro-
posed new development requirements on capacity, latency,
reliability, and scalability. In particular, the massive
machine-type communication (mMTC) and mass access
are considered as two very important scenarios of the fifth-
generation (5G) and beyond 5G (B5G) wireless communica-
tions [4–8]. As a typical application of mMTC, large-scale
IoT-enabled cellular networks are widely used in intelligent
buildings, intelligent cities, intelligent medical treatment, fac-
tory automation, automatic driving, intelligent meters, and
other fields. It has been recognized that large-scale IoT can
significantly reduce the system operation cost [9, 10].

As shown in Figure 1, only a short number of unknown
users are active at any given time in the large-scale IoT
model. This communication mode is mainly designed with
the purpose of energy saving. Generally, developing future
cellular IoT faces many challenges, such as adapting to more
users with low latency requirements, dynamically identifying
active users, and reliably receiving their information [11].
For the traditional authorization-based random access
scheme, uncoordinated users can compete for physical layer
resource blocks for data transmission. Each active user ran-
domly selects one from a set of predefined orthogonal pre-
amble sequences to notify the base station (BS) that the
user is active [12, 13]. As to each activation preamble, the
BS responds to the corresponding user as permission for
the subsequent transmission. Each user who receives a
response to its preamble transmission sends a connection
request for the required resources of the subsequent data
transmission [14–16]. When only one user in the system
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selects the current preamble sequence, the BS authorizes the
user’s connection request and sends a contention resolution
message to notify the reserved resource user to send sus-
pended data. If two or more users select the same preamble
sequence, the connection request will send conflicts [17–19].

When the BS detects a conflict, it will not reply to the
contention resolution message. The affected user restarts
the random access process after the timer expires. For the
authorized access scheme, the user needs to handshake four
times with the BS, which increases the control signaling
overhead and latency. On the contrary, users can start data
transmission in the unauthorized protocol without shaking
hands with the BS, which can meet the low latency require-
ments of large-scale IoT. In addition, the nonorthogonal
multiple access (NOMA) technology allows multiple users
to share the same resource block (including time and spec-
trum resources) to establish more connections.

At present, there are still some challenges, such as the
nonorthogonal transmission scheme for short data packets
(or short packets), large-scale pilot sequences, active user
detection, channel estimation, and multiple optimal design
and analysis of user data detection. Recently, it has been rec-
ognized that a reliable nonorthogonal transmission scheme
and effective multiuser detection can improve the spectrum
efficiency of the system. Therefore, the license-free NOMA
can effectively combine the low access latency of the
license-free protocol with the advantages of large numbers
of connections of NOMA and the high spectrum efficiency,
which can meet the communication requirements of the
large-scale IoT networks that realize the low latency and reli-
able communication. The cochannel interference of NOMA,
especially in the IoT networks with large-scale multiple
access, dramatically limits the system performance. Hence,
designing an appropriate license-free NOMA scheme is very
critical.

Due to the requirements of low transmission latency, the
data packet length and pilot sequence of IoT users are lim-
ited, the scale of users is enormous, and it is challenging to
meet the needs of all users for the orthogonal spectrum

resources and pilot sequence. Therefore, nonorthogonal
transmission schemes and nonorthogonal pilot sequences,
such as Gaussian and Reed Muller (RM) sequences, have
been widely studied. In addition, signal detection plays a
vital role in the design of a license-free NOMA system. This
is because with no coordination, multiple users can transmit
information to BS in parallel and BS needs to detect these
signals efficiently. In particular, BS needs to detect signals
from some unknown users among a large number of poten-
tial users. The signal detection problem of large-scale IoT
networks involves three essential parts: identifying active
users, channel estimation, and multiuser data detection
[20, 21]. The signal detection of large-scale IoT can be
divided into two successive stages: channel training and data
transmission, in which active user detection, channel estima-
tion, and data decoding will be performed. The paper imple-
mentation plan includes the following steps: (1) performing
the channel estimation and then performing the joint detec-
tion of the data of active users and multiuser and (2) per-
forming the channel estimation and active users jointly
and then detecting the multiuser data. For the single-phase
transmission scheme, data information is embedded in a
pilot sequence or pilot symbols are embedded in a data
packet and the BS can jointly detect active users and their
data in a phase. This scheme does not require particular
channel estimation and can reduce the system overhead
and transmission latency. However, the signal transmission
and reception scheme need to be carefully designed.

Due to the broadcast characteristics of wireless transmis-
sion, ten large-scale IoT networks are vulnerable to interfer-
ence and attack by illegal users, so physical layer security is
very important. In [22, 23], the authors analyze the physical
layer security of the cooperative NOMA system and a two-
stage relay scheme is proposed. The closed expression of
outage probability and the asymptotic expression of outage
probability under signal-to-noise ratios (SNRs) are derived.
In [24], the authors proposes a security-enhanced user pair-
ing scheme under weak security constraints to achieve high-
frequency spectral efficiency and weak system confidential-
ity. In [25], the authors study the outage probability and
secret outage probability in two-user NOMA systems. Based
on the concept of NOMA, the interruption behavior of
trusted users under the constraint of security outage proba-
bility is studied.

Most researches on IoT data transmission are based on
the Shannon theory [26–29]. In practice, the data packets
of IoT users are tiny and different users have different busi-
ness requirements. In addition, signal detection mainly uses
compressed sensing (CS) or linear inversion technology,
which ignores the changing characteristics of sparse signals
[30–33]. Therefore, researches based on the large-scale IoT
transmission characteristics and different business require-
ments are not systematic and complete. This paper studies
the nonorthogonal transmission and signal detection of
large-scale IoT from the following three aspects: (1) from
the perspective of short-data packet transmission, we design
a reliable nonorthogonal transmission scheme for the cellu-
lar IoT uplink and downlink and analyze the system error
performance and its influencing factors, (2) we study the

Denoting active users, and others are idle users.

Figure 1: System model of large-scale IoT sporadic
communications.
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characteristics of fast fading of nonzero elements of sparse
signals and design efficient and reliable active user detection
algorithms to reduce the false alarm rate of IoT user activity
detection, thereby improving the utilization of spectrum
resources, and (3) from the structural characteristics of dou-
ble signal sparsity, we use Bayesian inference and optimiza-
tion theory to design estimation algorithms for the user
activity, channel jointly, and data, reducing the pilot over-
head for reliable information transmission. However, for
the large-scale NOMA, a series of topics such as the design
of nonorthogonal transmission scheme with a short data
packet, reliable detection algorithm with low complexity,
and the reduction of system signaling overhead and trans-
mission latency are very challenging. The problems men-
tioned above have essential theory and application value
for the planning and deploying the large-scale multiple
access technology in IoT networks.

2. Recent Progress and Challenges

It is essential to design the large-scale IoT signal transmis-
sion and detection solutions to meet a series of requirements
such as large-scale connections, reliable transmission of
short data packets, high spectrum efficiency, and low signal
overhead. In particular, the reliable transmission design
and performance analysis of short data packets and the
design of large-scale signal detection algorithms are the keys
to IoT researches. To fully understand the existing problems
and limitations of the IoT research, we will analyze the rele-
vant research status and development of the trend in the
following.

2.1. Short-Data Packet Transmission in Large-Scale Multiple
Access. In the third-generation partnership project (3GPP)
IoT standard, the uplink of the narrow-band IoT (NB-IoT)
uses single-carrier frequency division multiple access (SC-
FDMA) and the downlink uses orthogonal frequency divi-
sion multiple access (OFDMA). Although the transmission
and reception schemes of IoT can be simplified, the spec-
trum efficiency of the system is low. Therefore, it is necessary
to design new multiple-access schemes to improve IoT net-
work spectrum efficiency further. In fact, the performance
of the large-scale IoT networks is determined by the channel
estimation, uplink data transmission, and downlink data
transmission. At present, some researchers have optimized
designs for a system that couples two or three parts of chan-
nel estimation, uplink data transmission, and downlink data
transmission. In the literature, the researchers considered
the channel estimation and uplink data transmission of a
single-cell uplink in the large-scale multiantenna system,
jointly optimized the pilot length and transmission power,
and then obtained an optimized design with an optimal pilot
length equal to the user number [34]. In addition, for the
three-stage transmission, a cellular IoT transmission proto-
col can be designed for large-scale access by optimizing the
transmission time of three stages to maximize the rate and
speed. They proposed a reliable transmission scheme based
on NOMA, analyzed the relationship between packet rate
and interruption of the performance, and optimized the

transmission power of the system [35]. Specifically, the cur-
rent optimized design for IoT uplink and downlink data
transmission is based on the Shannon theory which is given
by [36],

C = log2 1 + γð Þ, ð1Þ

where γ represents the received SNR. Although the Shannon
theory defines the theoretical upper bound of the communi-
cation rate without transmission error, it theoretically
requires an infinite amount of code to implement. In prac-
tice, the amount of data transmitted by IoT users is short
and the short-packet transmission requires a low transmis-
sion latency. Therefore, the Shannon capacity cannot accu-
rately characterize the reliability and latency of the large-
scale IoT short-data packet transmission.

To accurately describe the channel capacity under the
finite code length, the finite coding system can be designed
for the additive white Gaussian noise (AWGN) channel.
The approximate relationship between the achievable rate r
, the code length L, and the packet error rate ε can be derived
as

r ≈ log2 1 + γð Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

1 − 1
1 + γð Þ2

� �s
Q−1 εð Þ
ln 2 , ð2Þ

where Q−1ð•Þ is the inverse function of function QðxÞ =Ð +∞
x 1/

ffiffiffiffiffiffi
2π

p
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2/2dt. Although equation (2) is an approxima-
tion of the upper bound of the achievable rate under a finite
code length, most of existing researches have verified that
equation (2) is very accurate.

For the research on the nonorthogonal transmission sys-
tem of short packets of large-scale IoT, there is still no com-
plete theoretical framework and the design and performance
analysis of the large-scale IoT short-data packet nonortho-
gonal transmission scheme based on the finite coding has
not been studied. The influence of channel estimation error
propagation, data encoding length, and the number of mes-
sage bits on system performance are also to be further
studied.

2.2. Active User Detection and Channel Estimation for Large-
Scale Multiple Access. In order to estimate the active users
and their channel information, a practical approach is to
use the “sporadic” nature of the large-scale IoT communica-
tion to model the received signal in the training phase as a
sparse signal recovery problem and then solve the problem
based on the CS technology or a Bayesian inference frame-
work. In [37], Du et al. considered a joint design scheme
for the active user detection and channel estimation for a
single antenna system, where the received pilot signal is por-
trayed as a single measurement vector problem. They pro-
posed a joint iterative algorithm based on the message
passing and block sparse Bayesian learning to design high-
precision and low-complexity algorithms to solve the sparse
signal recovery problem. In addition, for a system with
analog-to-digital converters (ADC), He et al. [38] proposed
an active user detection and channel estimation based on a
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generalized expectation-consistent signal recovery algo-
rithm, which allows the output mapping of the signal to be
of the arbitrary form. The above findings show that the sin-
gle antenna system can serve thousands of IoT users and
requires long lead sequences. Therefore, the large-scale
antenna system is considered to improve system connectiv-
ity. The joint active user detection and channel estimation
problem for the large-scale receive antenna system is
described as a multiple measurement vector problem [39].
The authors use the approximate message passing (AMP)
algorithm with multiple measurement vectors to solve the
problem and use the approximate message passing algo-
rithm based on state evolution to analyze the limiting perfor-
mance of the system.

However, most of the existing algorithms for active user
detection are based on the derivative frequency matrix,
which satisfies the finite isometric property or has low inter-
correlation. In addition, the active user detection algorithm
is based on the prior distribution of the large-scale fading
of the user or the exact large-scale fading information. In
practice, the AMP and the CS-based active user detection
algorithms are not suitable for highly correlated derivative
matrices and the oversampled discrete cosine transform
matrix has very high intercorrelation under individual
parameters. In contrast, the AMP algorithm performs poorly
in the same setting. In addition, during the active user detec-
tion and channel estimation phase, it is not practical to
assume that the statistical characteristics of the channel are
known to the receiver.

Based on the in-depth analysis of the sparse structure of
the received signal in a large-scale multiple access system,
the design of active user detection and channel estimation
scheme is of great significance for further improving the
accuracy of active user detection. However, there is little
research on this aspect.

2.3. Data Detection Algorithms for Large-Scale Multi Access.
In the large-scale IoT network based on unauthorized
NOMA, multiuser data detection plays a vital role, as multi-
ple users can transmit data simultaneously without coordi-
nation [40]. Although only a tiny fraction of users is active,
the potential user base is large. Hence, the BS needs to obtain
a priori information of the data detection of multiple users
with the unknown active user. Moreover, two factors need
to be considered when designing a data detection scheme
for the large-scale multiple access. On the one hand, the
impact of the active user detection and the accuracy of the
channel estimation on the data detection give a large num-
ber of potential users. On the other hand, the computational
complexity of the algorithm is reduced while ensuring the
accuracy of the algorithm.

In the large-scale IoT networks, the multiuser data detec-
tion involves two key components, the active user detection
and the channel estimation. In [41], the authors jointly
designed the algorithm which can detect the low-
complexity active user and data under the assumption that
the complete channel information is known [42]. To charac-
terize the impact of incomplete channel information on the
multiuser data detection, Liu et al. [43] first jointly designed

the active user detection and channel estimation algorithm,
based on the estimated active user and channel information,
using the traditional minimum mean square error (MMSE)
and least squares (LS) for data detection. However, for the
two design schemes mentioned above, the accuracy of active
user detection and channel estimation affects the perfor-
mance of multiuser data detection to a great extent. In addi-
tion, when the number of active users is large, the
computational complexity that MMSE and LS detection
required is high because they are designed to find the inverse
of the matrix. Moreover, the existing works focus on the
packet synchronization transmission system that users can
only change their activity status at the beginning of each
coherent time. During the packet transmission, the packet
alignment among a large number of users will result in sig-
nificant overhead and the user who fails to align their
packets can disrupt the entire multiuser data detection
process.

Currently, in order to further reduce the system over-
head and detection error rate and improve the spectral effi-
ciency of the system, Ding et al. [44] concentrated the
three parts of active user detection, channel estimation,
and data detection in a phase and used blind detection and
semiblind detection algorithms to solve the multiuser data
detection problem. However, the dual sparsity of the signal
and channel has not been fully exploited in this algorithm.
Moreover, it will be more challenging as it can be seen from
the three-part joint design scheme that the BS needs only a
phase-based data signal to identify the active users, estimate
the channel, and decode the user data. In this sense, sym-
bolic synchronous transmission is more suitable for the unli-
censed multiple access system to minimize the user
coordination cost and improve reliability. However, depend-
ing on the structure of the symbol synchronous system, it is
more challenging to design for the active user identification,
channel estimation, and data decoding using the dual-block
sparsity performance.

In summary, the current researches on the multiaccess
scheme for the large-scale IoT networks mainly focus on
active user detection and channel estimation. Although
many effective mechanisms and algorithms have been pro-
posed, the current researches rely more on traditional signal
detection methods for multiuser data detection. In particu-
lar, in the large-scale NOMA system with two-phase or
three-phase signal transmission, although there have been
many results on the optimal design of active user detection,
channel estimation, and data transmission, a complete the-
ory and technology system has not yet been formed and
there are still many key issues to be solved:

(1) Firstly, for the nonorthogonal transmission scheme
of short packets for the large-scale IoT networks,
most of the existing researches are based on the
Shannon theory for optimal design. In practice, the
quality of service requirements of large-scale IoT
users is different. In the smart home scenario, most
of the data packets received by the user equipment
are very short, which requires low latency and
high-reliability transmission. For the fax service
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scenario, it requires a lot of data transmission.
Therefore, the design of a signal transmission and
reception scheme that can meet the needs of large-
scale IoT services and realize short packets, low
latency, and reliable transmission is worthy of fur-
ther research

(2) Secondly, for the NOMA-based large-scale IoT
research, most of the existing signal processing
schemes mostly focus on active user detection and
channel estimation. Regarding the false-positive rate
and false-negative rate of active users, the relevant
research only finds a compromise between them
and does not consider handling the false-positive
rate and false-negative rate separately based on the
characteristics of active user signals. Meanwhile, the
traditional MMSE detection is more in consideration
for multiuser data detection. However, this detection
scheme is only applicable to the case of a short num-
ber of active users. If the number of the potential
user base and active users is still large, the detection
requires a low-complexity algorithm. This prompts
us to study a more reliable and more widely applica-
ble detection scheme, which considers signal charac-
teristics, user’s prior information, and each user’s
guide frequency sequence to propose effective active
users and data detection algorithms

(3) Finally, for the data joint detection scheme and
active users of the large-scale IoT networks, the
related literature only uses the CS or linear model
inversion technology to configure the system with-
out considering the specific signal transmission,
reception scheme, and the structure of the signal
processing problem. The relevant algorithm or
mechanism has much room for improvement.
Therefore, how to study the signal detection model
of the large-scale multiple access based on the char-
acteristics of the received signal and reduce the sys-
tem detection error rate, the transmission latency,
and the system overhead also needs further
investigation

3. Research Plan

3.1. Research Plan to Be Adopted. This paper studies how to
design an effective nonorthogonal transmission and recep-
tion scheme under the condition of limited spectrum and
energy resources. The objective is to realize low latency
and reliable transmission in large-scale IoT networks,
improve the system user access rate and spectrum efficiency,
and save the system cost. Drawing on the research progress
and thought methods in related fields such as NOMA,
large-scale IoT, and signal processing and combining the
characteristics of large-scale multiple access and IoT, the
technical solution shown in Figure 2 has been proposed
and the performance of the adopted solution and its impact
factors are comprehensively analyzed and simulated to ver-
ify the system platform. In the following, the specific techni-
cal lines and the associated research schemes will be

presented for each research component. In particular, the
problem description, system modeling, and the research
plans will be provided.

3.2. Nonorthogonal Transmission and Reception Scheme of
Large-Scale IoT Short Data Packets Based on Finite Coding.
In large-scale IoT networks, especially the cellular IoT, the
system performance is mainly determined by the channel
estimation and uplink and downlink data transmission.
Based on the traditional time division duplex (TDD) mode
of cellular IoT, the uplink and downlink of the system are
transmitted on different time slots of the same frequency
resource. The system only needs to estimate the uplink
channel information to take advantage of the channel reci-
procity in the coherent time. However, since the BS and
IoT users have different processing capabilities and higher
requirements for the implementation of the NOMA scheme,
a hybrid multiple-access scheme is needed for the large-scale
IoT uplink and downlink communication modes and char-
acteristics. The specific technical solution is shown in
Figure 3.

A cellular IoT model, as shown in Figure 4, includes N
short-packet transmission users and a central BS where all
user terminals are equipped with a single antenna and a
low-resolution ADC.

The BS preassigns a dedicated nonorthogonal spreading
sequence Sn ∈ℂ

Lp×1 to each user, where the length of the
sequence Lp is shorter than the total number of users N
and each element of the sequence is independently and
equally probabilistically selected from the set f−1, 1g. In
the uplink, an authorization-free NOMA scheme is used,
i.e., each user can access the network and transmit data with-
out being authorized. Therefore, the BS needs to estimate the
active users and their channel information before detecting
the uplink data. In addition, due to the high computational
power of the BS, algorithms with higher accuracy can be
used to jointly detect multiuser information. However, users
in large-scale IoT networks have very limited computational
power. In the downlink nonorthogonal transmission, if the
information of all active users is superimposed and broad-
cast, the performance of each user will decrease and the
detection complexity will increase. Therefore, it is necessary
to consider the active user pairing and grouping strategies
and use a nonorthogonal transmission scheme within a
group of users and orthogonal resources between groups,
such as subcarriers. Moreover, in the nonorthogonal trans-
mission scheme for downlink packet data, the obtainable
capacity can be expressed as a function of code length and
error block rate using the finite code length capacity. For
user n, the signals of other users are usually considered as
interference. Thus, in the group with N users, the signal-
to-interference-plus-noise ratio (SINR) of the nth user when
decoding its own signal is

γn⟶n =
αn h∧nj j2

h∧nj j2∑k=1,2,⋯,Ni ,k≠nαk + σ2ε + 1/ρ
, ð3Þ

where αk = pk/P, P =∑k=1,2,⋯,Ni
pk, and ρ = P/σ2

d denote the
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transmission signal-to-noise ratio (SNR), ĥn is the estimated
channel, and σ2ε is the variance of the channel estimation
error. Accordingly, the instantaneous error block rate of user
n is approximated by

εn ≈Q
c γn⟶nð Þ − Bn/Ld

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V γn⟶nð Þ/Ld

q
0
B@

1
CA, ð4Þ

where cðγn⟶nÞ = log2ð1 + γn⟶nÞ is the Shannon capacity
and Vðγn⟶nÞ = ð1 − ð1/ð1 + γn⟶nÞ2ÞÞðlog2eÞ2 denotes the
channel dispersion. When the probability density function
of γn⟶n is f γn⟶n

ðxÞ, the average error block rate of user n
can be written as

�εn ≈
ð∞
0
Q

c γn⟶nð Þ − Bn/Lnð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V γn⟶nð Þ/Ln

p
 !

f γn⟶n
xð Þdx: ð5Þ

In the uplink pilot frequency and data transmission
phase, since the receiver with low-resolution ADC is consid-
ered, the received signal is quantized, which cannot provide
good statistical information. At present, most of the approx-
imate information transmission algorithms are not suitable
for the model’s active user detection, channel estimation,
and data detection. The algorithms for this part need to be
redesigned. In addition, for this model, the impact of
analog-to-digital conversion bits on the system performance
needs to be studied. On the other hand, in the downlink
nonorthogonal transmission, the downlink channel needs
to be estimated before analyzing the error block rate perfor-
mance of the system. Meanwhile, the performance of the
user grouping strategy for the nonorthogonal transmission
should be discussed and analyzed to obtain a more explicit
user grouping criterion, which will be the key issue to be
investigated. Firstly, we will model the short-packet non-
orthogonal transmission system for the cellular IoT uplink
and downlink; design the uplink active user, channel estima-
tion, and multiuser detection algorithms; and analyze the
performance of uplink based on the short packet transmis-
sion and its impact factors. For the downlink, the downlink
channel estimation method should be proposed to derive the
error block rate performance of the short-packet nonortho-
gonal transmission and the impact of channel estimation
error, information bits, coding length, and other factors on
the performance of short-packet nonorthogonal transmis-
sion in the downlink is analyzed. Meanwhile, using the
power domain NOMA theory, we analyze the short-packet
nonorthogonal transmission performance under different
cellular IoT transmission service requirements and discuss
the variation of system performance under different user
groupings. This guides the design of short-packet nonortho-
gonal schemes for the cellular IoT.

3.3. Large-Scale IoT’s Active Users and Data Grading
Detection Scheme Based on Reliable Information
Transmission. In the signal coherent detection of large-
scale IoT uplink, i.e., license-free NOMA, active users, and

data detection are the two key parts, in particular, data
detection can be performed through estimation of active
users and channels first or active users and data detection
can be combined. In the coherent detection, if a joint detec-
tion scheme of active users and data is used, the channel
information needs to be estimated in advance. However, in
the case of unknown active users, the channel of active users
should be estimated, which increases the complexity of the
detection algorithm and leads to a degradation in the perfor-
mance of active users and data detection. Therefore, for
active user and hierarchical coherent detection schemes,
the characteristics of sparse signals should be exploited to
obtain the reliable iterative first, and then, the information
iterative steps can be optimized and higher detection accu-
racy can be obtained at the cost of more computational com-
plexity. The specific technical solution is shown in Figure 5.

Assuming that the summarized users are synchronized
in a frame structure and are active or dormant for the entire
frame, a single-cell IoT uplink license-free single/multicar-
rier NOMA system is considered. Moreover, a block fading
channel is considered, i.e., the channel coefficients remain
unchanged within a frame. Since only a short part of users
is active in the coherent time, without loss of generality, it
is assumed that the BS knows the distribution of each user
activity indicator αn or the total number of active users,
where KðK ≪NÞ, αn obeys Bernoulli distribution, i.e., Pr ð
αn = 1Þ = ϵ and Pr ðαn = 0Þ = 1 − ϵ, for a certain frame K/N
≈ ϵ. In a certain frame, the active user sends a pilot symbol
followed by Ld data symbols, while the inactive user stays
dormant throughout the frame.

In the training phase, at the BS, the pilot measurement of
the lth (l = 1, 2,⋯, L) subcarrier is

ypl = 〠
N

n=1
ζpsnαnhnl + zpl = S diag að Þhlð Þ + zpl , ð6Þ

where ζp is the energy normalization factor of the pilot in the
spread sequence, S = ζp½s1, s2,⋯,sn� is the pilot observation
matrix, and a = ðα1, α2,⋯,αnÞT ∈ f0, 1gN is the user activity
indicator vector. Notation h = ðh1l, h2l,⋯,hnlÞT is the chan-
nel vector, where hnl ∼CN ð0, σ2hÞ, and zpl ∼ CNð0, σ2

pILpÞ
represents the additive white Gaussian noise vector.

In the uplink transmission phase, at the BS, the jth data
symbol received by the lth subcarrier is

ydlj = 〠
N

n=1
xn,jαnhnl + zdlj: ð7Þ

Thus, the signals received by all subcarriers can be
expressed as

ydj =H að Þx j + zdj , ð8Þ

where ydj ≜ ðyd1j, yd2j,⋯, ydLj
ÞT ,H ≜ ½h1, h2,⋯, hL�T , and xi =

ðx1,j, x2,j,⋯, xN ,jÞT . The license-free single/multicarrier
NOMA system can provide a large number of links and
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low access latency and has a wide range of applications in
the cellular IoT. However, due to a large number of potential
users and that these users use nonorthogonal pilot
sequences, the key challenges existing in the unlicensed con-
nection scenarios for large-scale IoT users are channel esti-
mation, active user detection, and data decoding. A
fundamental question is, in addition to active user detection,
how to design a receiver to perform the channel estimation
and/or multiuser data detection effectively.

We intend to solve how to exploit the nonzero element
characteristics of sparse signals and the sparse structure of
system blocks to effectively improve the system’s channel
estimation, active user detection, and data decoding. To take
advantage of the fast attenuation characteristics of nonzero
components in the sparse signals, the traditional least abso-
lute shrinkage and selection operator (LASSO) problem can
be transformed into an iterative weighting problem

min
�hl∈ℂ J

�hl
�� ��

1,w

s:t: ypl − S�hl
�� ��

2 ≤ ε,
ð9Þ

where k�hlk1,w =∑J
n=1ωnj�hnlj�hnl ≜ αnhnl, ωn = 0, n ∈Λ, ωn = 1

, n ∉Λ, ε is the tolerable estimation error and the set Λ is
defined as Λ = fn : �hnlg ≠ 0. Since the information of the
nonzero element part of the sparse signals is more reliable,
the estimation of some nonzero elements can be stopped
after several iterations. In addition, the active user set is
updated based on the symbol energy of unreliable informa-
tion and the accurate or approximate total number of active
users known by the BS. This can not only reduce the false
alarm rate but also reduce the missed detection rate and even
achieve a complete detection of active users. For the uplink
transmission stage, the multiple user signals received by
the BS are decomposed into linear combinations of different
signal vectors and the maximum likelihood (ML) detection
problem is transformed into two separable subproblems,
using alternate minimization algorithm. By analyzing the
information of each iteration, the inversion of large-scale
matrices is avoided, thereby reducing the computational
complexity of multiuser data detection.

3.4. Joint Blind Detection Scheme of Large-Scale IoT Activity
Users and Data Based on Double-Sparse Learning. Due to the
transmission latency requirement, it is necessary to further
reduce the pilot symbol transmission. Different from the
active user and data classification detection scheme, the
active user and data joint blind detection scheme based on
the double-sparsity learning needs to devised into the data
packet as the user’s identity, and at the same time, the activ-
ity can be completed in one transmission stage for user and
data detection. We need not to estimate the channel infor-
mation firstly, which can help reduce the transmission
latency further. The specific technical solution is shown in
Figure 6. Therefore, considering the symbol synchronization
and authorization-free uplink NOMA system, users are
allowed to initiate data packet transmission at the beginning
of any symbol interval. Whenever the user wants to transmit
a message, it generates a data packet that carries the message
and the identity of the sending user. Once activated, the user
transmits the data packet to the BS at L consecutive symbol
intervals. Assume that the jth data packet of user n is denote

by cðjÞn ∈ℂL×1 and sn,t represents the transmission symbol of

user n in the tth symbol interval. As shown in Figure 7, tðtÞn
represents the symbol interval at which user n starts to

transmit the jth data packet, s
n,tð jÞn +k−1 = cðjÞn ðkÞ, k = 1, 2,⋯, L

. The symbol of the dormant user can be represented by

zero. Therefore, when tðjÞn ≤ t ≤ tðjÞn + L holds, the transmis-

sion symbol of user n is sn,t = cðjÞn ðt − tðjÞn + 1Þ; otherwise sn,t
= 0. For the data packet cðjÞn , the channel from user n to

the BS can be expressed by hðjÞn =
ffiffiffiffiffi
βn

p
gðjÞn , where βn and

gðjÞn represent large-scale and short-scale fading, respectively.
The channel state remains unchanged during the entire

transmission period of the data packet cðjÞn , which is the
block fading channel.

In the tth symbol interval, the signal received by the BS
can be expressed as

yt =Htst +wt ∈ℂ
M×1, ð10Þ

where Ht = ½h1,t , h2,t ,⋯, hN ,t� and st = ðs1,t , s2,t ,⋯, sN ,tÞT . If
tðjÞn ≤ t ≤ tðjÞn holds, then, we have hn,t = hðjÞn . Otherwise, hn,t
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Figure 5: Technical solution of the activity user and data classification detection solution in the large-scale IoT.
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= 0. This problem combines active user detection, channel
estimation, and data detection, which can help reduce the
system’s transmission latency. Note that the representations
of the channel and the signal are both sparse, so that this
problem is also called as the double-sparsity problem. The
performance analysis of the model and the use of the double
sparsity of the received signal model to design detection
algorithms should be developed.

We firstly use the double sparsity of the received signal
model to describe the iterative information of the estimated
channel and data estimation as a conditionally independent
random distribution and use a blind detection algorithm to
estimate the signal in each sparse block. Secondly, a low-
complexity information iterative algorithm is used between
the independent sparse blocks, which can make good use
of the sparseness of the signals to improve the system perfor-
mance and reduce system transmission latency. Finally,
numerical results should be provided to verify the reliability
of the above theoretical results and correctness.

4. Conclusions

In this paper, we performed a comprehensive survey on the
transmission schemes for large-scale IoT with NOMA,
which could support multiple users to use the same fre-

quency resources as long as the interference among users
could be addressed. The NOMA technique could help
improve the frequency reuse efficiency significantly and
was viewed as one of the most efficient candidate of the tech-
niques for the next-generation wireless communications.
However, there still existed a lot of challenges on the trans-
mission schemes for large-scale NOMA systems, including
the short-data packet transmission, active user detection,
channel estimation, and data detection. To address these
challenges, we firstly reviewed the short-data packet trans-
mission in the large-scale NOMA system and then reviewed
the active user detection and channel estimation techniques
for the considered system. We further described the data
detection algorithms for large-scale NOMA systems. In
future works, we will incorporate some intelligent algo-
rithms, such as the deep learning-based algorithm [45–47],
deep Q-network-based algorithms [48], federated algorithms
[49, 50], and transfer learning-based algorithms [51], to the
considered system to enhance the system transmission
performance.

Data Availability

The data in this work can be available through email to the
authors of this paper.
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Figure 6: Technical design of joint blind detection solution for large-scale IoT activity users and data.
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