
Research Article
Masked Face Detection Algorithm in the Dense Crowd Based on
Federated Learning

Rui Zhu ,1 Kangning Yin ,2 Hang Xiong,1 Hailian Tang,2 and Guangqiang Yin 2

1School of Information and Communication Engineering, University of Electronic Science and Technology of China,
Sichuan 611731, China
2School of Information and Software Engineering, University of Electronic Science and Technology of China, Sichuan 611731, China

Correspondence should be addressed to Guangqiang Yin; yingq@uestc.edu.cn

Received 20 July 2021; Accepted 15 September 2021; Published 4 October 2021

Academic Editor: Yan Huang

Copyright © 2021 Rui Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wearing masks is an effective and simple method to prevent the spread of the COVID-19 pandemic in public places, such as train
stations, classrooms, and streets. It is of positive significance to urge people to wear masks with computer vision technology.
However, the existing detection methods are mainly for simple scenes, and facial missing detection is prone to occur in dense
crowds with different scales and occlusions. Moreover, the data obtained by surveillance cameras in public places are difficult
to be collected for centralized training, due to the privacy of individuals. In order to solve these problems, a cascaded network
is proposed: the first level is the Dilation RetinaNet Face Location (DRFL) Network, which contains Enhanced Receptive Field
Context (ERFC) module with the dilation convolution, aiming to reduce network parameters and locate faces of different
scales. In order to adapt to embedded camera devices, the second level is the SRNet20 network, which is created by Neural
Architecture Search (NAS). Due to privacy protection, it is difficult for surveillance video to share in practice, so our SRNet20
network is trained in federated learning. Meanwhile, we have made a masked face dataset containing about 20,000 images.
Finally, the experiments highlight that the detection mAP of the face location is 90.6% on the Wider Face dataset, and the
classification mAP of the masked face classification is 98.5% on the dataset we made, which means our cascaded network can
detect masked faces in dense crowd scenes well.

1. Introduction

COVID-19 spreads rapidly among the population and has
a serious impact on society, economy, and people’s
normal lives. The weekly epidemiological update of the
World Health Organization (WHO) [1] presented that
the cumulative number of cases reported globally is now
over 186 million, and the number of deaths exceeds 4
million. Fortunately, wearing masks is an effective and
simple method to prevent the spread of COVID-19 [2],
and almost everyone is obligated to wear a face mask
in public places. Relying solely on manpower for inspec-
tions inevitably has disadvantages, such as high work
intensity, low efficiency, and timeliness, but using detec-
tion algorithms to complete this task can save many
human resources. Using computer vision technology to

detect whether people wear masks and to give correspond-
ing reminders can achieve the purpose of noncontact
detection, preventing the spread of the virus and ensuring
people’s safety.

Moreover, most of the existing algorithms train the
model by collecting the data together, but the reality is that
videos captured by the cameras in public places will not be
easily obtained because of personal privacy [3]. The surveil-
lance video data of public place belong to different depart-
ments, which make the data form an isolated island and
difficult to be concentrated together for model training. As
a new distributed machine learning method, federated learn-
ing, with the help of the storage and computing capacity of
the device itself, can cobuild the model without data out of
the local, so as to protect data privacy and effectively solve
the problem of data island [4].
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Therefore, the task is decomposed into two subnetworks.
The first network is used for the general face location, and
the second is used for the masked face classification. The
main contributions of our paper are listed below:

(1) The DRFL network is proposed and trained on the
Wilder Face dataset to locate faces in dense crowds

(2) The SRNet20 network is designed with NAS and
trained by methods of federated learning to classify
masked faces

(3) A masked face dataset is created and contains 18,000
images in the train set and 1,751 images in the test
set. In order to facilitate other researchers, this data-
set is also published on the GitHub: https://github
.com/woshizr/masked-Face

2. Related Work

2.1. Face Detection Algorithms. Face detection is closely
related to general object detection. In recent years, object
detection algorithms have developed rapidly, which are
mainly divided into two categories: single stage object detec-
tion algorithms, represented by YOLO [5] and RetinaNet
[6], divide the image into regions and predict bounding
boxes and probabilities for each region simultaneously.
Therefore, this kind of algorithm is faster. The two-stage
object detection algorithms, represented by RCNN [7] and
FPN [8], generate a large number of proposal regions, which
then classify the proposals into foreground classes or back-
ground. Therefore, the accuracy of this kind of algorithm is
higher. Based on the object detection algorithms, a large
number of face detection algorithms and masked face detec-
tion algorithms have been developed: MTCNN [9] uses 3
cascaded networks to achieve face detection; Face RCNN
[10] is based on Faster RCNN [11] for face detection; SSH
[12] enhances the feature extraction of convolutional layers
with different depths to achieve multiscale face detection;
PyramidBox [13] uses the context information of the face
to improve the detection of occluded faces; Didi company
proposes a mask wearing detection algorithm based on
DFS [14], the algorithm detects the face region first, expands

the face area based on the face features, and then uses the
attention mechanism to find the mask area, and finally
detects whether the face is wearing a mask; AIZOO proposes
a lightweight mask wearing detection algorithm [15] based
on SSD and improves the network structure; RetinaMask
[16] detects the face with mask by adding attention mecha-
nism in context module.

Many efforts have also been made in society to help with
masked face detection. In [17], three kinds of masked face
datasets are proposed, including masked face detection data-
set (MFDD), real-world masked face recognition dataset
(RMFRD), and simulated masked face recognition dataset
(SMFRD). Among them, RMFRD is currently the world’s
largest real-world masked face dataset, which provides the
correct masked face dataset (CMFD) and the incorrectly
masked face dataset (IMFD), and some sample images are
shown in Figure 1(a); however, the dataset in dense scene
is often shown as Figure 1(b). Therefore, the performance
of the algorithm in Figure 1(b) can better illustrate the
advantages and disadvantages of the algorithm.

2.2. Federated Learning. The development of artificial intel-
ligence technology has encountered two main challenges:
one is that data exists in the form of data islands in most
industries; the other is that training models require a lot of
data, and improper collection of data will make it difficult
to protect the privacy and security of data. In the traditional
centralized machine learning method, the data collected
from different devices need to be uploaded to the cloud
[18], and the central server in the cloud uses the data to train
the model, as shown in Figure 2. Data are directly exposed in
the cloud, which is difficult to protect user privacy [19].

To solve the above problems, in 2016, Google proposed
federated learning [20], a machine learning framework
based on user privacy protection. Their main idea is to build
machine learning models based on data distributed on mul-
tiple devices and prevent user privacy from being leaked.
Federated learning allows the device to use local data to train
the model, after the training, the local device does not need
to send sensitive data to the cloud, but only needs to upload
the model parameters [21]. The central server of federated
learning then aggregates the collected model parameters,

(a) Examples in public dataset (b) Expected dataset

Figure 1: Comparing images.
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and this process continues until the joint training models
reach the expected accuracy, as shown in Figure 3.

The data of the provider are kept locally, and the leakage
of data privacy is suppressed from the source. Of course, fed-
erated learning also involves many aspects; in this paper, it
mainly involves the use of multiparty data sources for feder-
ated training.

3. Models and Improvements

The whole algorithm is divided into two cascaded subnet-
works: a general face location network and a face classifica-
tion network with masks. The algorithm process is shown
in Figure 4.

All face boxes are found in the input image through the
face location network, and then whether each face box is
wearing a mask is determined through the classification
network. Especially, a federated training method is used to
keep the data locally, and only the model parameters are
transferred between clients, when training the classification
network.

3.1. Dilation RetinaNet Face Location Network. The DRFL
network is inspired by RetinaNet. In order to solve the prob-
lems of occlusion and multiscale faces in the masked face
detection task in dense crowd, the backbone of the DRFL
network uses ResNet50 [22] as the feature extraction net-
work. C3, C4, and C5 represent the low-level feature,
middle-level feature, and high-level feature extracted for
the image. P3, P4, and P5 are feature fusion in the FPN net-
work through upsampling and residual connection. The
fused features are used to enhance feature extraction,
increase the scope of the receptive field, and enhance the
robustness of small-scale face detection through indepen-
dent Enhanced Receptive Field Context (ERFC) module.
The DRFL network structure is shown in Figure 5.

The entire feature extraction network combines top-
down and bottom-up feature fusion strategies to improve
the multiscale prediction network. Finally, a multitask loss
function is used to fully consider the central point distance
between the face and the detection frame, overlap rate, and
key point information, thereby improving the accuracy of
face detection.

3.2. Enhanced Receptive Field Context Module. The ERFC
module with special dilation convolution is used to extract
the feature output by the FPN. The advantage of using dila-
tion convolution is that it can increase the receptive field
while avoiding the loss of information caused by the pool-
ing operation. Each convolution output contains a larger
range of information and captures multiscale context infor-
mation. As shown in Figure 6, (a) corresponds to 3 × 3 con-
volution with dilation rate 1, which is the same as ordinary
convolution operation, (b) corresponds to 3 × 3 convolution
with dilation rate 2, and the receptive field has increased
to 5 × 5.

The specific operation of ERFC module is to first com-
pute the input features by the 3 × 3 convolution, and then
one of them is to enhance the extraction of context informa-
tion through the parallel 3 × 3 convolution with dilation rate
1 and 3 × 3 convolution with dilation rate 2, in order to
improve the detection robustness of occluded faces. At the
same time, the local parameters are reduced by 16.7% with-
out changing the receptive field and detection accuracy.
Finally, all the outputs are concatenated as the output of
the entire ERFC module and transmitted to the next net-
work as shown in Figure 6(c).

3.3. Masked Face Classification Network. The significance of
NAS is to solve the parameter adjustment problem of deep
learning models, which is a cross-research that combines
optimization and machine learning. Before deep learning,
the traditional machine learning models might also encoun-
ter the problem of parameter adjustment. Because the struc-
ture of the shallow model is relatively simple, most studies
unify the structure of the model as a super parameter to
search, such as the number of hidden neurons in the
three-layer neural network. The methods for optimizing
these hyperparameters are mainly black box optimization
methods, such as evolutionary optimization, Bayesian opti-
mization, and reinforcement learning.

However, in deep learning, with the expansion of the
model scale, the number of super parameters also increases,
which brings new challenges to the optimization problem.
The search space of NAS directly affects the difficulty of
optimization. A simple search strategy [23] in neural net-
work search is to multiply each branch by a weight during
training and to send the result to the next level. After
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training, the branch with the largest weight is retained. The
working principle of the search is shown in Figure 7.

Specifically, in this paper, we designed the SRNet20
network based on ResNet18 network, the convolution kernel
of 3 × 3 is replaced by the parallel structure of 3 × 3, 5 × 5,
7 × 7, and the NAS method is used to find the most suitable
branch of the task. Then, in the experimental part, we train
the searched classification network on our own dataset and
compare the results with the original ResNet results on the
dataset.

3.4. Model Training Method of Federated Learning. In this
paper, the dataset is divided into 10 disjoint parts, represent-
ing 10 independent clients, which simulates the real situa-

tion of training the classification network. Client Ci has a
local private dataset Di, and model M0 is published from
the central server.

The steps in the training stage are as follows:

(1) Client Ci receives model M0 from the central server

(2) Client Ci trains the model based on the local dataset
Di and obtains a new model Mi

(3) Client Ci calculates the model parameter difference
MΔi, where MΔi =Mi −M0, and uploads the param-
eter difference MΔi to the central server

(4) The central server aggregates the parameter differ-
ences uploaded by users, updates the model M0,

DRFL network
for location

SRNet20 network
for classification

Figure 4: Two cascaded subnetworks.
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and resends it to clients participating in federated
learning

After a round of update is completed, we check whether
the accuracy of the local model meets the requirements. If it
meets the requirements, stop training; otherwise, prepare for
the next round of training.

4. Experiments and Results

4.1. Dataset. First, the general face location network uses the
public Wider Face [24] dataset. It is a benchmark dataset in
the field of face detection. It contains 32,203 images and a
total of 393,703 annotated faces, of which 158,989 annotated
faces are in the training set and 39,496 are in the validation
set. Each subset contains 3 levels of detection difficulty: easy,
medium, and hard. These different faces have a wide range
of changes in terms of scale, posture, illumination, expres-
sion, and occlusion. Using this dataset to train the DRFL
network will have better detection and location capabilities
for faces of different scales.

Second, the masked face classification network is trained
on self-made dataset. The training set contains 18,000
images, including 9,000 faces with masks and 9,000 faces
without masks. The test set contains 1,751 images, including
656 faces wearing masks and 1,095 faces without masks. The
dataset contains face data of different ages, genders, and ori-
entations, which can prevent the network from overfitting
the data of a single pose and improve the generalization abil-
ity of the network. Some images are shown in Figure 8.

4.2. Loss Function. Based on the loss function of RetinaFace
[25], the feature pyramid is adopted to realize the fusion of
multiscale information, which plays an important role in
the detection of small faces. Its multitask loss function for
any training anchor i is shown in the following equation.

L = Lcls pi, p∗ið Þ + λ1p
∗
i Lbox ki, k∗ið Þ + λ2p

∗
i Lpts qi, q∗ið Þ: ð1Þ

There are three parts of the loss function:

(1) Face classification loss Lclsðpi, p∗i Þ, where pi is the
predicted probability of anchor i which has a face

and p∗i is 1 for the positive anchor and 0 for the neg-
ative anchor. Lcls is the softmax loss for binary classes

(2) Face box regression loss Lboxðki, k∗i Þ, where ki =
fkx, ky , kw, khgi and k∗i = fk∗x , k∗y , k∗w, k∗hgi represent

the coordinates of the predicted box and ground-
truth box in the positive anchor. Lboxðki, k∗i Þ =
Rðki − k∗i Þ, where R is smooth L1 defined in [26]

(3) Facial landmark regression loss Lpts, where qi =
fqx1 , qy1 ,⋯, qx5 , qy5 gi and q∗i = fq∗x1 , q∗y1 ,⋯, q∗x5 , q

∗
y5
g
i

represent the predicted five facial landmarks and
groundtruth associated with the positive anchor.
The loss is similar to the box centre regression. The
loss-balancing parameters λ1and λ2 are set to 0.25
and 0.1

In the face classification network, we use CrossEntropy
loss shown in the following equation.

LCE = −〠
n

i=1
p xið Þ log q xið Þð Þ: ð2Þ

The pðxiÞ represents the real label of xi, and qðxiÞ repre-
sents the possibility of xi measured through the network.

4.3. Setup for Experiments

4.3.1. Data Augmentation. When training the deep learning
network, the specific operation randomly cropped the image
in the mini-batch to 0.8-1.0 times the size of the original
image, and at the same time perform a horizontal flip with
a 50% probability, and finally use the resize operation to
adjust to a uniform size. Before entering the network, nor-
malize each channel of the image.

The images are randomly cropped and randomly flipped
to achieve data augmentation, which improves the accuracy
and robustness of the model to a certain extent.

4.3.2. Anchors. The DRFL network uses different anchor
boxes in different feature pyramid layers from P3 to P5. In
the lower feature layer, small-scale anchor points are tiled
to capture small facial features. The high feature layer

(a) Unmasked face (b) Masked face

Figure 8: Some images in our dataset.
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corresponds to a large area in the original image, so large
facial features are captured in the high-level feature layer.
The sizes of anchors are shown in Table 1.

4.3.3. Optimization Strategy. In the experiment, the optimi-
zation strategy for training the network is to use Adam for
the first 10 epochs and SGD for the subsequent epochs. At
the 20th epoch, the learning rate decays to 0.1 times, and
at 40 epochs, it decays to 0.01 times.

4.4. Tests and Results. In order to test the performance of this
network, there are the following three experiments. Experi-
ment 1 tests mAP of the DRFL network. Experiment 2 tests
the ERFC module with dilation convolution and without
dilation convolution. Experiment 3 compares mAP of origi-
nal ResNet with SRNet (ResNet after NAS) and verifies the
feasibility of federated learning.

(1) Experiment 1. Train the DRFL to realize face loca-
tion, and test the results on the Wider Face valida-
tion set. The comparison with other algorithms is
shown in Table 2

The results show that our network has advantages in the
easy part and the medium part of this validation set. The
performance of our algorithm is similar to other algorithms
and basically meets the actual needs.

(2) Experiment 2. In order to verify the effectiveness of
the dilation convolution in the ERFC module, using
one 3 × 3 convolution kernel with dilation rate 2 to
replace two 3 × 3 convolution kernels with dilation
rate 1, we train an unreplaced DRFL network on
the same dataset as the baseline and compare it with
the replaced network. The test results on the Wider
Face validation set are shown in Table 3

The results show that the ERFC module using dilation
convolution hardly affects performance while reducing
16.7% parameters, and it is suitable for deploying on embed-
ded cameras.

(3) Experiment 3. First, select the appropriate classifica-
tion model. The convolution kernels of SRNet20,
which is created by NAS, are shown in Table 4

Comparing the mAP of the searched network and the
original network on the face classification dataset is shown
in Table 5.

Comparing with the masked face classification accuracy,
the SRNet20 is 8.8% higher than ResNet18, and the SRNet50
is 5.4% higher than the original ResNet50, which proves the
effectiveness of the NAS for classification network.

Second, in order to verify the feasibility of federated
learning, we simulate a total of 10 clients, and n represents
the number of clients who really participate in the training.
The model is SRNet20 network, and the number of clients
and accuracy are shown in Figure 9.

The result shows that the model quickly overfits when
the number of participating clients is small. As the number

of participating clients increases, the accuracy gradually
rises. After sufficient training, the results of federated train-
ing are shown in Table 6.

Finally, masked face detection in the dense crowd is
completed by cascade network. The mAP of the face location
is 90.6%, and the mAP of the masked face classification is
98.5%. We input the test images into the cascade network,
and the results are shown in Figure 10. The red box repre-
sents the person without the mask, and the green box repre-
sents the person with the mask. The near faces can be
correctly detected even with slight occlusion, but the blurred
faces in the distance are still missed, and this is also the
direction for future improvements.

Table 2: Accuracy on the Wider Face validation set.

Method
Difficulty

Easy Medium Hard

MTCNN 84.8% 82.5% 59.8%

Face R-CNN 93.7% 92.1% 83.1%

SSH 93.1% 92.1% 84.5%

DRFL (ours) 94.7% 93.0% 84.2%

Table 3: Results on the Wider Face validation set.

Model
Difficulty

Easy Medium Hard

DRFL (without dilation) 94.7% 93.1% 84.4%

DRFL (with dilation) 94.7% 93.0% 84.2%

Table 4: Kernel sizes of layers.

Model Layer 1 Layer 2 Layer 3

SRNet 20 3 × 3, 5 × 5, 7 × 7 7 × 7, 3 × 3, 5 × 5 7 × 7, 7 × 7, 7 × 7

Table 5: mAP of the original network and the searched network.

Model mAP

ResNet18 (pretraining) 90.0%

ResNet50 (pretraining) 93.0%

SRNet20 98.8%

SRNet50 98.4%

Table 1: Anchor size in DRFL network.

Feature pyramid Anchor

P3 (80 × 80 × 64) 16, 20.16, 25.40

P4 (40 × 40 × 64) 64, 80.3, 101.59

P5 (20 × 20 × 64) 256, 322.54, 406.37
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5. Conclusions

In this paper, we create the DRFL network to implement
multiscale face location and create SRNet20 network by
NAS to classify masked faces. For privacy protection, we
introduce federated learning to provide a joint training solu-
tion for multiparty data sources in the real world. By cascad-
ing the two networks, the purpose of masked face detection
in dense crowds is achieved. From the effect of the test
images, our DRFL network has good performance. But for
long-distance faces that are blurred or severely occluded,
the detection effect needs to be further improved. In the
future, we can increase the dataset or adjust the network
structure to enhance the network detection robustness. Or
we may use a lightweight backbone network to achieve
real-time detection in dense crowd scene and apply it to
actual life scenarios.

Data Availability

Data is available at https://github.com/woshizr/masked-Face.
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