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B-cells that induce antigen-specific immune responses in vivo produce large numbers of antigen-specific antibodies by recognizing
subregions (epitopes) of antigenic proteins, in which they can inhibit the function of antigen protein. Epitope region prediction
facilitates the design and development of vaccines that induce the production of antigen-specific antibodies. There are many
diseases which are difficult to treat without vaccines. And the COVID-19 has destroyed many people’s lives. Therefore, making
vaccines to COVID-19 is very important. Making vaccines needs a large number of experiments to get labeled targets.
However, obtaining tremendous labeled data from experiments is a challenge for humans. Big data analysis has proposed some
solutions to deal with this challenge. Big data technology has developed very fast and has been applied in many areas. In the
bioinformatics area, big data analysis solves a large number of problems, particularly in the area of active learning. Active
learning is a method of building more predictive models with less labeled data. Active learning establishes models with less
data by asking the oracle (human) for the most valuable samples to train models. Hence, active learning’s application in
making vaccines is meaningful that the scientists do not need to do tremendous experiments. This paper proposed a more
robust active learning method based on uncertainty sampling and K-nearest density and applies it to the vaccine manufacture.
This paper evaluates the new algorithm with accuracy and robustness. In order to evaluate the robustness of active learners, a
new robustness index is designed in this paper. And this paper compares the new algorithm with a pool-based active learning
algorithm, density-weighted active learning algorithm, and traditional machine learning algorithm. Finally, the new algorithm
is applied to epitope prediction of B-cell data, which is significant to making vaccines.

1. Introduction

Big data analysis is a thriving field. The branch of big data
analysis, artificial intelligence, has greatly promoted the
team’s understanding of life science in the field of bioinfor-
matics [1, 2]. We can use machine learning to predict major
disease problems for the benefit of human beings, such as
vaccine manufacturing.

Now, people are fully aware of the importance of health.
At the same time, with the development of the Internet and
big data, many mobile applications with collaborative sys-
tems have been developed to detect people’s health [3–5].
As we can see from previous work, many collaborative sys-
tems have begun to work with machine learning methods
[3–5]. These systems can use machine learning to detect
body states. At the same time, COVID-19 disease has

destroyed many people’s lives, so it is necessary to use such
a system to detect whether people have COVID-19. And
making vaccines to COVID-19 is also an emergency. There-
fore, we choose the B-cell [6, 7] data which is so relative to
the immune system. Antibodies inhibit the function of anti-
gen proteins by identifying antigen epitope that can be seen
as “vaccines,” because B-cells are immune cells that can rec-
ognize antigens when producing antibodies. Therefore, pre-
dicting epitopes using B-cell data [6, 7] is important for the
preparation of experimental vaccines. Since it is not diffi-
cult to get the specimen of B-cell, using the epitope predic-
tion to the health collaborative systems is a good way to
assess whether people are suffering from COVID-19. Sev-
eral physical and computational methods [8–12] have been
proposed to predict epitopes. In the physical methods, the
features used are limited to those associated with the target
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amino acid sequence, so the representations of these
models are inadequate [6]. And using the physical methods
to predict epitope requires tremendous experiments which
need labor, establishment, and money. Although the com-
putational methods have achieved better, it still requires
tremendous samples to train. Therefore, these methods
are expensive.

There are several ways to cope with the big data problem
when reducing the burden of data and experiments. Dimen-
sionality reduction [1] is one of the most important methods
to reduce the complexity of models and select the most
important variables. However, dimensionality reduction still
requires tremendous samples. Active learning [13] is a solu-
tion to this problem. Active learning which aims to reduce
the number of samples required by asking the oracle is a
subfield of machine learning with the same name [14] in
educational literature. And the area of active learning is
booming: many active learning methods [15, 16] have been
proposed. These algorithms are based on uncertainty sam-
pling. In addition to uncertainty sampling, many sampling
processes for active learning are proposed. Based on label
changes [17], committee queries [18], representative changes
[19], and density-based sampling [20, 21] are some of the
processes. More importantly, the active learning method
has been successfully applied to speech recognition [22],
information extraction [23], and bioinformatics [24–26].

We believe that using active learning is of great signifi-
cance to predict epitope, and this paper mainly concentrates
on the uncertainty sampling [27, 28] and density sampling
method [20, 21]. The uncertainty sampling method usually
selects the outliers as the most uncertain and informative
samples to ask the oracle. Outliers are not so valuable and
may result in less robust classifiers when new samples are
added to the training data. To solve this problem, density-
weighted sampling has been proposed. Density-weighted
sampling [20, 21] is a good way to solve the outlier problem.
But the density-weighted method does not provide the same
information as the uncertainty sampling method. Recently,
some methods have developed new loss functions by inte-
grating uncertainty sampling and K-nearest density weight-
ing to improve the performance of active learning [29–31].
However, these methods may still cause loss of information,
just like the density-weighted method. And calculating the
density of samples in the pool samples is difficult since the
computing complexity is great when there are many samples
[32]. In order to use the most valuable data and make more
robust query strategies without high complexity, this paper
establishes a new algorithm. Specifically, the work uses
uncertainty sampling to find the most informative points
firstly, then uses K-nearest density in the uncertainty data
with L1 norm (Manhattan distance) to eliminate outliers to
improve pool-based active learners’ robustness. This paper
calls the new algorithm K-nearest robust active learning
(KRAL). Compared to the density-weighted method like
SUD [31], the KRAL is with less complexity. This is because
not many most uncertainty samplers are generated in each
step; calculating density in this dataset does not result in
computing complexity being too high. At the same time,
using the K-nearest density method, we eliminate the out-

liers, which guarantees the maximization of information uti-
lization and does not increase computing complexity
excessively.

Our proposal is to make a new algorithm which predicts
the epitope with less labeled data and higher accuracy when
compared to the existed pool-based active learning and
density-weighted active learning algorithms in epitope pre-
diction problem. Hence, this paper uses B-cell data with epi-
tope to do the experiments. The data comes from the
immune epitope database (IEDB) which is a public database
of immune epitope [7]. By experimenting and comparing
the KRAL with pool-based active learning and density-
weighted method on B-cell data, we finally get a more accu-
rate and robust model with less complexity. Therefore, the
results of this study may be helpful in the production of
the COVID-19 vaccine.

2. Data and Methodology

2.1. Data and Task Description. The world is suffering from
a pandemic in which COVID-19 has destroyed a large num-
ber of people’s lives. Substances that mimic the structure and
function of epitopes can be thought of as “vaccines” of
organisms designed to induce specific antibodies in vivo.
Therefore, the B-cell data [6] is selected for this study. B-
cells are immune cells that recognize antigens when produc-
ing antibodies. Antibodies can inhibit the function of anti-
gen proteins by binding to antigen epitope regions. Hence,
it is very helpful to find a good prediction model of epitope
for this problem. There are some physical methods to pre-
dict the epitope. For instance, the three-dimensional struc-
tural analysis of antibody-antigen complexes by X-ray [9]
or nuclear magnetic resonance (NMR) spectroscopy [10] is
considered to identify the epitope.

But these methods are quite expensive and require a lot
of time and labor to predict epitope. Recently, various big
data analysis methods were proposed based on machine
learning [11, 12]. Under this circumstance, the performance
of epitope prediction has improved by machine learning
methods. But we still need a lot of data for training, which
is still expensive. Hence, the task is still challenging for
humans. Next, we describe this task in detail.

The data and variables description:
Independent variables:

(i) start_position: start position of peptide

(ii) end_position: end position of peptide

(iii) chou_fasman: peptide feature, β turn

(iv) emini: peptide feature, relative surface accessibility

(v) kolaskar_tongaonkar: peptide feature, antigenicity

(vi) parker: peptide feature

(vii) isoelectric_point: protein feature

(viii) aromaticity: protein feature

(ix) hydrophobicity: protein feature

2 Wireless Communications and Mobile Computing



(x) stability: protein feature

Dependent variable:

(i) Antibody valence (target value)

The task is a binary classification problem with 10 inde-
pendent variables, and the target was antibody valence,
where 0 stands for negative and 1 stands for positive. There
are 14387 samples in the data. The structure of the dataset is
shown in Figure 1 and Table 1. Figure 1 and Table 1 illus-
trate that about 3/4 samples are negative and 1/4 are posi-
tive. From the skewness and kurtosis from Table 1, we can
see that some of the independent variables do not follow
the normal distribution, and some are sparsely distributed.
Particularly, the end_position, start_position, and emini
are not obeying the normal distribution. And some others,
like the hydrophobicity, are sparsely distributed. Therefore,
the dataset may have some outliers that may affect the per-
formance of active learning algorithms. Therefore, tradi-
tional machine learning and active learning methods may
not work well.

2.2. Methodology Description. In this paper, we propose a
new big data analysis method to predict epitope, and B-cell
data were used to establish the model. The detailed steps of
this work are shown in Figure 2. More specifically, this paper
uses KRAL to predict targets and incorporates the new algo-
rithm with traditional pool-based active (PBL) learners,
density-weighted active learning method (SUD), and basic
algorithms (random forest [33] and SVM [34]) with random
selection (RS) in both accuracy and robustness. In order to
evaluate the active learners’ robustness, this paper designs
a new index called sequential robust index (SRI).

3. Active Learning Process

This paper is interested in big data and pool-based active
learning based on uncertainty sampling [15]. That is, active
learners have the least confidence in the samples with the
greatest uncertainty, while pool-based active learners have
two-stage samples. There are a small number of labeled sam-
ples and a large number of unlabeled samples. Pool-based
active learners require oracle to provide the most uncer-
tainty samples and add them to the labeled samples for the
next training. The full algorithm is illustrated as follows
[16]. The algorithm results are shown in Algorithm 1.

Pool-based active learning:

4. Uncertainty Measures

There is too much useless information when dealing with
big data. Therefore, choosing the sample with the most use-
ful information is important. In the uncertainty sampling
scheme, the unlabeled sample with the largest uncertainty
is considered the one with the largest amount of informa-
tion. Therefore, it is significant to find a good evaluation
method of measurement sample uncertainty.

The well-known entropy [27] has been widely used in
previous studies in evaluating uncertainty [35, 36].

H xð Þ = −〠
y∈Y

P y ∣ xð ÞlogP y ∣ xð Þ, ð1Þ

where Pðy ∣ xÞ is the a posteriori probability, target
(label) y ∈ Y = fy1, y2,⋯ykg. HðxÞ is the uncertainty mea-
surement function based on the entropy estimation of the
classifier’s posterior distribution.

Entropy is a baseline method for measuring uncertainty,
which involves a large amount of information. Therefore,
this paper uses the entropy as the uncertainty sampling
measurement.

5. K-Nearest Robust Active Learning

Although entropy contains the most useful information, it
has some drawbacks. Entropy is to find the nearest point
to the classification boundary, that is, outliers are usually
used as the sample with the least confidence. Outliers may
contain too much noise, resulting in poor robustness of the
model. Therefore, dealing with outliers is a feasible way to
improve the model’s performance.

5.1. K-Nearest Neighbor Classification. K-Nearest Neighbor
Classification (KNN) [32] learners are the basic way to deal
with classification problems. KNN is characterized by esti-
mating sample density using a distance function. Therefore,
using K-nearest density can help us find outliers and pass
them out of the training data. However, the KNN model is
a method with great complexity. Therefore, how to use the
K-nearest neighbor algorithm in active learning is a
challenge.

5.2. Distance Function. There are many distance functions.
Hence, selecting a fit distance function is fundamental to
estimate the K-nearest density of samples. Considering the
effect of outliers and the complexity of big data, this paper
uses the Manhattan distance to calculate the K-nearest
density.

Manhattan distance:

d12 = 〠
n

k=1
X1k − X2kj j: ð2Þ

The Manhattan distance method is not affected so much
by outliers. It evaluates whether two points are close or not.
And the Manhattan distance is also not so complex. There-
fore, calculating the Manhattan distance will not add too
much complexity in big data. Hence, using Manhattan dis-
tance to calculate the distance between vectors is a good
choice.

5.3. K-Nearest Robust Active Learning. Using the K-nearest
classification to calculate the density of samples can help
us to find the outliers. The density function DenðXiÞ is
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defined as

Den Xið Þ = 1
∑m

J=1d Xi,Xj
� � , ð3Þ

where m is the number of uncertainty samples. fX1,X2
,⋯,Xmg are the most mth uncertainty samples. In the
KRAL, the K is defined as the m, which means that we cal-
culate the distance among the most uncertainty samples at

every step. From the form of density function, the sample
with the smallest density function is the point which needs
to be threaded out. Compared to a naive opinion which is
to apply the K-nearest procedure like SUD for all unlabeled
data, the new density functions do not add much complexity
to the algorithm. This is because calculating the K-nearest
density on a big data will increase the complexity greatly.
And it is difficult to decide the K value because the whole
unlabeled data is concluded too much samples. Hence, we
cannot simply use m (number of samples) as the K.
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Figure 1: The data describing.
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Therefore, how to choose the K is a challenge. And the most
uncertainty samples are more like to be outliers. Hence, cal-
culating the density among the most uncertainty samples is a
good idea. Hence, this paper can exclude outliers from the
least confidence level sample with K-nearest density.

Then, we detail the new algorithm steps. The new algo-
rithm (KRAL) uses entropy sampling in the first step to
select the most indeterminate sample, which is the same as
pool-based active learning. Next, KRAL uses Manhattan dis-
tance to calculate the K-nearest density in the most uncer-
tain samples at the next step. Then, the KRAL selects the
sample with the lowest density for threading, because the
big data is so complex and large that many methods cannot
be used to cope with big data. From the form of KRAL, we
can see that KRAL both consider the computing complexity

and accuracy. Hence, the KRAL can be applied in big data
analysis. And the new full algorithm of KRAL is illustrated
as follows. The algorithm results are shown in Algorithm 2.

K-nearest robust active learning:

6. Experiments and Numeric Research

In this section, experimental and numerical studies are per-
formed using B-cell data. More specifically, this paper com-
pares the accuracy and robustness of KRAL and pool-based
active learning.

6.1. Sequential Robust Index (SRI). There is no method that
has been proposed to evaluate the robustness of active learn-
ing when adding new samples to training data. In order to

Table 1: An error and statistical analysis to the data.

Descriptive statistics
N Mean Std. deviation Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Std. error Statistic Std. error

Start_position 14387 297.68 353.741 125133.014 3.009 .020 11.607 .041

End_position 14387 308.09 353.733 125127.245 3.005 .020 11.574 .041

Chou_fasman 14387 .994705915000000 .124772254000000 .016 .248 .020 .398 .041

Emini 14387 1.059787725000000 1.621931429000000 2.631 5.051 .020 40.411 .041

Kolaskar_tongaonkar 14387 1.021188364000000 .053804291800000 .003 .186 .020 .380 .041

Parker 14387 1.767136582000000 1.968984865000000 3.877 -.362 .020 1.266 .041

Isoelectric_point 14387 7.067471661000001 1.888708170000000 3.567 .439 .020 -.915 .041

Aromaticity 14387 .075726787200000 .025767473200000 .001 -.131 .020 .570 .041

Hydrophobicity 14387 -.406096679000000 .394618135000000 .156 -.706 .020 3.058 .041

Stability 14387 43.703902170000000 16.682362480000002 278.301 1.366 .020 3.248 .041

Valid N (listwise) 14387

Experiments and comparing

Pool-based learner (PBL)

K-Nearest Robust active learner (KRAL)

Random select (RS) Accuracy of RS

Accuracy and SRI of KRAL

Accuracy and SRI of PBL

Figure 2: The step of this paper’s work.

Require: A set of labeled samples L, a set of unlabeled samples U
while Termination condition not satisfied do

Train a classifier φc(·|L) based on labeled samples;
for i =1 : |U| do

Calculate the uncertainty(Entropy) of the sample, Un(xi
u);

Select the top nth uncertainty sample yi as a new set N to query;
L=L∪N;
U=U-N;

end for
end while

Algorithm 1: Pool-based active learning process
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evaluate the robustness of the algorithms, a new robustness
index (SRI) for the sequence of robustness evaluation indexes
is presented. The sequential robust index is defined as

〠I ai − ai−1 < 0ð Þ〠∣ai − ai−1∣I ai − ai−1 < 0ð Þ, ð4Þ

where the ai is the accuracy of one-step test data and IðxÞ
is the indication function. When x < 0, I ðxÞ = 1; otherwise, I
ðxÞ = 0.

We expect that when new samples are added to the
training set, the prediction accuracy of the test set will
increase. Through this way, we can reduce the computa-
tional complexity when facing big data. However, some-
times, adding new samples into the training set in active
learning process will result in a lower prediction accuracy.
The SRI measures the number of times predictive accuracy
decreases and the total amount of decline when new samples
are added to the training set. Because the fewer times the
accuracy is reduced and the fewer the accuracy is reduced
when adding samples into training data, the more valuable
the data is added to the training set each time. Hence, it
can be seen from the form of SRI that the smaller the index,
the better the model. We can see that if a good query strategy
is stable, the new data it queries will make the proactive
learning prediction accuracy increasing. However, if a query
strategy is unstable, the queried data may reduce the predic-
tion accuracy, so SRI can measure the stability of a query
strategy greatly at some step, that is, SRI evaluates the
robustness of the query strategy. Therefore, the SRI can esti-
mate the robustness of active learning during the query pro-
cess. And the computation complexity of SRI is not high. So
SRI can very deal with big data.

6.2. Experimental Settings. We use random forest (RF) and
support vector machine (SVM) as base learners. And the
query strategy is based on maximum entropy. Cross-
validation is a good way to examine the performance of
models in big data analysis. Therefore, in order to ensure
the rationality of the experiment, we randomly select sam-
ples as labeled data by cross-validation and repeat the exper-
iment 100 times and use the mean value to record in results.

To be more specific, we randomly divide the data into 50
parts using 50-fold cross-validation and randomly select
one of them as training set and the rest as pools for active
learning queries. The data is a public dataset (IEDB) [7],
which we will use for epitope prediction. And we use the
pool samples as test set at every query step.

We compare KRAL with pool-based active learning and
SUD. And our evaluation metrics are the test set accuracy,
SRI, and the running time. Among them, test set accuracy
is used to directly measure the effectiveness of several
methods, SRI is used to evaluate the query robustness of sev-
eral methods, that is, to evaluate the stability of the query,
and running time is to evaluate the computational complex-
ity of the model. We mainly compare the effectiveness and
computational complexity of every algorithm.

In every query step, we let the most uncertain dataset
includes 40 samples. Under this circumstance, we continue
our experiments. And my computer setting is GPU: RTX
3060 and CPU: 16G, I7, 11th generation.

The IDE is Spyder.

7. Result and Analysis

This paper records the accuracy and SRI when the number
of samples increases. The results are recorded in Figures 3–
6. Figures 3 and 5 record the accuracy of each learner, and
Figures 4 and 6 record the SRI of each active learner. From
Figures 3–6, we can see the results of each model: random
selection sampling is the weakest in both random forests
and support vector machine models. As the number of sam-
ples increases, the sensitivity of random selection sampling
decreases. In the SVM model, adding new samples to the
training data does not significantly improve the accuracy.
Both pool-based active learning, KRAL and SUD methods,
improve the performance of basic learners. Figures 3–6 show
that when new samples are added, the active learning’s accu-
racy is higher than the basic learners. Therefore, using the
active learning method can reduce the complexity when cop-
ing with big data. And when the basic learner is random for-
est, the performance of KRAL is 12.1% better than that of
the basic learner. Therefore, the effectiveness of KRAL was

Require: A set of labeled samples L, a set of unlabeled samples U
while Termination condition not satisfied do

Train a classifier φc(·|L) based on labeled samples;
for i =1 : |U| do
Calculate the uncertainty(Entropy) of the sample, Un(xi

u);
Select the top nth uncertainty sample yi as a new set N ;
Calculate the density function Den(yi) in set N;
p= argmin Den(yi);
N=N-p;
use N’s samples to query the oracle;
L=L∪N;
U=U-N;

end for
end while

Algorithm 2: K-nearest robust active learning process
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examined. So active learning methods can be used to reduce
the computational complexity in big data analysis and
improve the accuracy.

Meanwhile, the SRI of KRAL and SUD is smaller than
pool-based active learning and random selection strategy,
indicating that KRAL and SUD are more robust than pool-
based active learning. And the SRI among the active learners
is much smaller than random selection. More specifically,
the KRAL algorithm achieves at least 6% and 15% higher
in SRI evaluation and the SUD algorithm achieves at least
5.8% and 15.1% higher in SRI evaluation than pool-based
active learning algorithm in random forest and SVM. And
KRAL and SUD algorithms are more accurate than pool-
based active learning algorithm in SVM and RF models.
When the sample scale is 5/10, the learning accuracy of
KRAL is 0.5% higher than that of pool-based active learners
in both two basic learners (RF and SVM). Therefore, SUD
and KRAL can use less data to establish a better model than
pool-based active learners.

And we can see that the prediction accuracy of RF and
SVM is different. This is because RF is an ensemble learning
method, and its base learner is a decision tree. A decision
tree is not a linear regression or classification method, it
can be applied to different types of datasets. At the same
time, the use of ensemble learning and certain randomness
make RF have stronger generalization ability. In this experi-
ment, we use linear SVM, which form is simple and cannot
deal with the complex data structure. And SVM does not use
ensemble methods. Therefore, the effect of SVM is weaker
than that of RF in this experiment.

However, if we only use the accuracy and SRI to evaluate
SUD and KRAL, we cannot tell the difference between the
two algorithms. However, as we mentioned, the SUD uses
the whole unlabeled data to calculate its K-nearest density.
But using whole unlabeled data to calculating density will
cause the increase of computational complexity. In order
to evaluate the complexity, we use the time consuming of
every algorithm. Figure 7 shows that the KRAL’s complexity
is strongly lower than SUD. SUD is the time consumed
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when compared to the KRAL and the basic pool-based active
learners, which means KRAL is more fit to deal with the big
data problem than the SUD.

It can be seen from the experiment that the performance
of the KRAL algorithm is better than pool-based active
learning in accuracy and robustness and SUD in computa-
tional complexity. Therefore, a more robust and accurate
method with less computational complexity is obtained,
especially when KRAL is applied to outlier-sensitive models
like SVM. This is because KRAL can select information data
instances with fewer outliers. And the RF is not so sensitive
to the outliers, which may reduce the effect of KRAL and
SUD. Therefore, considering accuracy, robustness, and com-
putation complexity in big data analysis, this paper uses the
KRAL algorithm with random forest to predict B-cell data
epitopes. The accuracy of the model obtained in this paper
is 93.8%, and only 4/10 of the samples are used.

8. Conclusion and Discussion

The contribution of this paper to big data analysis is to pro-
pose a new more robust active learning method with higher
accuracy and a new active learning robustness evaluation
metric SRI. The new algorithm can also reduce the complex-
ity of density-weighted pool-based active learners like SUD
when facing the big data. And the effectiveness and robust-
ness of KRAL, SUD, and pool-based active learning are eval-
uated experimentally by the SRI. Through the experiments, a
more robust and accurate algorithm with less complexity is
obtained. Apart from the computational complexity, KRAL
has some advantages in big data area when compared with
the SUD algorithm. More specifically, KRAL eliminates out-
liers by estimating sample density for better performance.
However, SUD only uses a new loss function to change the
structure of the model. Hence, KRAL has greater potential.
This is because scholars can change the proportion of
deleted samples before adding them to the training data.
Specifically, using a dynamic greedy algorithm with a rea-

sonable loss function to improve KRAL’s performance is a
prospective direction. Therefore, when the basic learner is
not sensitive to outliers, the algorithm can achieve better
results. However, SUD cannot use this method to improve
performance. But the KRAL also has some disadvantages:
KRAL still uses the uncertainty query strategies for searching
the most valuable samples. However, this may be not fit in
many areas such as the natural language processing (NLP).
Therefore, changing the query strategies to fit these areas is
a good direction. In the future, the author will look for a
good loss function to improve the performance of KRAL
and look for some new query strategies for active learning
and make more contributions in big data and artificial intel-
ligence area. To be more specific, the author will devote him-
self into the NLP area and find more suitable query strategies
to let the active learning method more effective in such as
Neural Machine Translation (NMT) problem. And the
author will conduct some research in bioinformatics to find
some cure to kinds of diseases.
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