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A class of nonlinear networked systems with external interference is designed in this paper. Currently, we have witnessed that
networked control technology has played a key role in the Internet of Things (IoT). However, the amount of big data in the
Internet of Things will cause network congestion in the data transmission of the network control system. In order to solve this
problem, event-driven control scheme can effectively save the network resources of the network control system. But when there
is interference in the system, the conventional constant threshold parameter is difficult to achieve the expected energy-saving
effect. In order to solve this challenge, this paper proposes a design with a continuously variable threshold. After each trigger to
transmit data, the threshold gets changed accordingly, and the sliding mode approach rate is changed simultaneously.
Compared with the constant threshold event drive, the number of transmissions in this design can be greatly reduced, while
sliding mode jitter is suppressed. The simulation results show that the scheme can achieve higher resource utilization efficiency
and better robustness.

1. Introduction

In recent years, we have witnessed the rapid development of
the Internet of Things (IoT). By 2020, the surge in mobile
devices is expected to exceed 50 billion. NCS research plays
a key role in this field. At present, networked-control systems
(NCSs), including multiloop NCSs, are extensively used.
Their systems have the advantages of high reliability, high
system flexibility, and low installation and maintenance costs
[1–6]. Network control systems are used in many fields, such
as mobile sensor networks [7], intelligent transportation sys-
tems [8], remote network control technologies [9], and theo-
retical results in [2, 3, 10] and other applications. In general,
for the control of IoT, the collection and processing of data
are very important. Note that with the emergence of IoT,
the captured data will increase significantly. In the network
control system (NCS), when the network is congested, phe-
nomena such as jitter, packet loss, and transmission delay
are particularly prone to occur [11–13], leading to poor per-
formance of the network control system. Therefore, it is
urgent to design a reasonable control scheme to reduce data

transmission on the network. This solution should ensure
that the network control system still has satisfactory perfor-
mance even in the presence of uncertainty and delayed
transmission.

In the past few decades, scientific literature has proposed
several control schemes to save communication network
transmission resources [14–16]. Event driving (ED) is one
of the widely recognized and effective methods [17–24]. In
traditional time-driven control schemes, data is transmitted
periodically. Unlike the traditional implementation of time-
driven control, the ED control scheme allows communica-
tion between the controlled object and the controller (feed-
back path) and between the controller and the actuator
(direct path) only when certain trigger conditions are met.
Therefore, the ED control method can significantly reduce
data transmissions and avoid network congestion and its
possible unavailability. In [25], the authors propose a decen-
tralized event-driven implementation of a centralized non-
linear controller on a sensor-actuator network. In [26],
Wang and Lemmon assumed that the control system was
composed of weakly coupled subsystems and proposed a
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distributed event-driven control method. In [27], the authors
developed an event-driven transmission strategy based on
state estimation. Designing event-driven algorithms based
on changes in the Lyapunov function and selection of input
variables to be updated is given in [28]. The threshold value
of the event driving condition may greatly affect the execu-
tion of the control task. In recent years, a common design
method for the feedback control gain of the system and the
parameters of the event driving condition has been studied,
such as [29–32] and references in the text.

The aforementioned event driving scheme (EDS) has a
common feature that the threshold value of the event driving
condition is known in advance. Since the threshold value is a
preset constant, it is difficult to adapt to changes in the sys-
tem; that is, the designed event driving parameters cannot
adapt to external disturbances. To overcome this shortcom-
ing, event trigger parameters need to be optimized online to
achieve adaptation to external disturbances. But so far, there
are few researches on the variable threshold under the event-
driven condition of nonlinear systems in the public literature.
Increasing the anti-interference ability of the event-driven
system is a factor that must be considered in the design of
high-performance event-driven control systems. Increasing
the anti-interference ability of the event-driven system is a
factor that must be considered in the design of high-
performance event-driven control systems. Sliding mode
control (SMC) is a well-known robust control method, which
is especially suitable for models subject to modeling uncer-
tainty and external interference control system [33, 34].
Due to its robustness, sliding mode control is also an effective
control method based on the arrival law, which greatly
improved the fast convergence of the sliding mode surface
under the excessive strategy for networked control systems
[35, 36]. Asifa Yesmin et al. proposed an event-driven sliding
mode control jitter and gave designers greater freedom to
design parameters to achieve: the expected steady state in
the absence of disturbance uncertainty [37]. An event-
driven sliding mode controller with a fuzzy variable thresh-
old is designed for a nonlinear continuous time-varying
MIMO system. The fuzzy control is used to variablely adjust
the event trigger condition threshold of the nonlinear system
to make the system more flexible.

The main contributions of this paper include the fol-
lowing: (1) designing event-driven control with fuzzy con-
trol for nonlinear continuous time-varying MIMO systems
based on sliding mode control; (2) designing a novel var-
iable event driving condition for nonlinear systems, in
order to promote system stability and speed, while reduc-
ing network data transmission; and (3) the formula which
is used to prove and simulate the closed-loop stability of
the system.

The content of this article is arranged as follows: the sec-
ond part introduces the system description and continuous-
time sliding mode control, the third part introduces the
event-driven sliding mode controller design, and then the
fourth part introduces the fuzzy control and event driven
control (EDC) variable design. The numerical example simu-
lation in Section 5 validates the analysis results. Finally, con-
clusions are drawn in Section 6.

2. System Description and Sliding Mode Control

2.1. System Description. First, we consider a MIMO nonlinear
system, as shown below:

_x = f xð Þ + Bu + Bd: ð1Þ

Here, x = ½x1, x2� ∈ R2n, fðxÞ = ½ f1ðx1Þ, f2ðx1, x2Þ�, B∈R2n,
x1, and x2 ∈ Rn represent the system’s state variables. u ∈ Rn

is the control input vector of the system, and d is the external
disturbance affecting the system. It is assumed that the dis-
turbance is bounded, i.e., supt≥0jdðtÞj ≤ d0 <∞, and it sat-
isfies the matching condition with respect to the control
input.

For the nonlinear functions f1ð∙Þ and f2ð∙, ∙Þ, we make
the following assumptions.

Assumption 1. The function f1ðx1Þ has a unique equilibrium
point without loss of generality, and we assume f1ð0Þ=0. In
addition, the system can be represented by both linear and
nonlinear terms, such as f1ðx1Þ=A1x1 + γðx1Þ, A1 is a linear-
ized system at the equilibrium point, and γðx1Þ is the nonlin-
ear components of higher-order terms.

Assumption 2. In the compact domain D ∈ R2n, the functions
f1ð∙Þ and f2ð∙, ∙Þ are Lipschitz functions. For any vector z1, z2
in D, which are satisfied, k f ðz1Þ − f ðz2Þk ≤ Ljjz1 − z2jj.

f ξ1ð Þ − f ξ2ð Þj jj j = f z1, y1ð Þ − f z2, y2ð Þj jj j
≤ f1 z1ð Þ − f1 z2ð Þk k + B1 y1 − y2ð Þj jj j

+ ∣f2 z1, y1ð Þ − f2 z2, y2ð Þ∣ ≤ L1 z1 − z2j jj j
+ B1k k∣y1 − y2∣ + ∣f2 z1, y1ð Þ − f2 z2, y2ð Þ∣

= L1 + L2ð Þ z1 − z2j jj j + B1j jj j + L2ð Þ∣y1 − y2∣
≤ L1 + L2ð Þ ξ1 − ξ2k k + B1j jj j + L2ð Þ ξ1 − ξ2k k
= L1 + 2L2 + B1j jj jð Þ ξ1 − ξ2k = Lj ξ1 − ξ2k k

ð2Þ

2.2. Design of Sliding Mode Controller. Considering the non-
linear MIMO system given above, here, we choose s = cTx as
the sliding mode surface of the system, where c ∈ Rn.

S = x ∈ Rn : s = cTx = 0
� �

, ð3Þ

where c = ½cT1 ∙1�T and c1 ∈ Rn−1, x = ½xT1 ∙x2�T . Differentiating
s = cTx with respect to time, we obtain:

_s = cT1 _x1 + _x2 = cT1 f1 x1ð Þ + cT1B1x2 + f2 x1, x2ð Þ
+ B2u + B2d = cT f xð Þ + B2u + B2d:

ð4Þ

The SMC design must ensure that the system trajectory
converges to the sliding manifold, so the system trajectory
must be converged to the equilibrium point within a limited
time. Here, we design the control rate u as shown below:

u = −B2
−1 cT f xð Þ + K sign s
� �

: ð5Þ
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In the above formula, the gain K is a bounded constant
and satisfies K > jB2jd0. Therefore, the reaching law of slid-
ing mode can be expressed as

_s = −K sign s + B2u: ð6Þ

The design of the control law and the approach law of the
sliding mode controller ensures that the system can reach an
equilibrium state in a finite lime. This chapter mainly ana-
lyzes the implementation of the SMC in the normal state.
In the following content, we mainly analyze the implementa-
tion of the SMC in the event-driven state and consider the
threshold of the ED-SMC trigger condition to design a vari-
able event-driven sliding mode controller that meets the con-
trol performance.

3. Event-Driven Sliding Mode Controller

At present, there are few studies on SMC discretization of
nonlinear systems. Similar to a linear system, the implemen-
tation of a discrete SMC, in this case, will never produce an
accurate sliding mode, which is s = 0. Therefore, for discrete
cases, the sliding trajectory does not remain on the switching
manifold but remains near the sliding surface. In the SMC
periodic operation, the final limit depends on the sampling
interval and the perturbation limit. As the sampling interval
decreases, the system performance improves accordingly.
On the other hand, the steady-state boundary is designed in
advance for the implementation of event driving, so perfor-
mance can be improved as desired.

In order to make the system reach the tracking target in a
limited time and keep the tracking error within a certain
limit, the following content mainly studies the sliding mode
controller with an event trigger. For example, in the LTI sys-
tem, the trajectory of a nonlinear system simply depends on
the design of some parameters to keep it within a certain
range. In the following, the standard definition of the sliding
mode of nonlinear systems based on the event-driven mech-
anism is given, and an event-driven sliding mode controller
that meets the performance indicators is designed.

3.1. Design of Event-Driven Sliding Mode Controller. For the
LTI system, the trajectory of the system stays constant within
a certain range has nothing to do with the sampling interval.
We can use the event trigger strategy to make the sliding
mode motion reach any ideal stable state. This control will
be kept constant until the next trigger Time is coming.

ftig∞i−=0 is a series of driving moments for control updates.
Here, Ti = ti+1 − ti is used to represent the time of internal
events. In Figure 1, the role of the zero-order retainer is to
keep the data at the time t ∈ ½ti, ti+1Þ, so once the control is
updated, the controller will continue to the next time ti+1,
before that the control signal has been uðtÞ = uðtiÞ. We define
eðtÞ = xðtiÞ − xðtÞ as the systematic error. The error e here
plays a very important role in the implementation of event-
driven control. The main performance is by constantly
observing the change of e until it reaches a preset threshold
and then using this to determine the next time ti+1. The event
trigger mechanism has the advantage of reducing network
signal transmission, saving network resources, and saving
energy consumption. Moreover, this strategy will determine
the state evolution and disturbance steady-state boundary
in advance no matter what.

The design of the event-driven sliding mode controller
here should also be divided into two steps: First, we need to
design this sliding variable sðtÞ = cxðtÞ = x1ðtÞ + x2ðtÞ, c = ½1
1� ⊗ Inn ∈ R2n, and define this sliding mode surface as follows:

S = x ∈ Rn : sk k = cxk k ≤ uf g: ð7Þ

In the above formula, u > 0, because S here means “the
practical sliding surface” [21].

In the second step, in order to enable the system trajec-
tory to reach the sliding die surface, we should also design
appropriate driving rules and control laws. The design of
driving rules and control laws is given below.

Since the control signal remains constant in the time
interval ðti, ti+1Þ between two consecutive driving moments,
the control law can be written as follows:

u tð Þ = −B2
−1 cT f x tið Þð Þ + K sign s tið Þ� �

: ð8Þ

The purpose here is to design the switching gain so that
the stability of the system trajectory remains for a limited
time.

Theorem 3. Considering the above nonlinear system and the
given control law, let α > 0, and give the following trigger con-
ditions:

L cj jj j e tð Þj jj j < α: ð9Þ

All time t > 0 here, if the gain K is selected as follows, the
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Figure 1: ED-SMC network controller architecture.
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actual sliding mode will appear in the system.

K > B2j jd0 + α: ð10Þ

Proof. Consider the Lyapunov function V = 1/2S2. Differenti-
ating V with respect to time t ∈ ½ti, ti+1Þ, we obtain the follow-
ing:

_V sð Þ = s_s = s cT f xð Þ + B2u + B2d
� �

: ð11Þ

Taking the control law u (8) into the above formula, we
get the following:

_V s tð Þð Þ = s tð Þ cT f x tð Þð ÞcT f x tð Þð Þ�
− cT f x tið Þð Þ

− K sign s tið Þ + B2d ≤ −s tð ÞK sign s tið Þ
+ s tð Þj j cT f x tð Þð Þ − cT f x tið Þð Þ�� ���� �� + s tð Þj j B2j jd0

≤ −s tð ÞK sign s tið Þ + s tð Þj j cj jj j f x tð Þð Þ − f x tið Þð Þj jj j
+ s tð Þj j B2j jd0 ≤ −s tð ÞK sign s tið Þ
+ s tð Þj jL cj jj j x tð Þ − x tið Þj jj j + s tð Þj j B2j jd0:

ð12Þ

Until this trajectory reaches the sliding surface, the sign
of the sliding variable will not change, and sign sðtiÞ = sign s
ðtÞ; we can write it as −K ∣ sðtÞ ∣ And by taking equations
(9) and (10) into (12), we can get

_V s tð Þð Þ ≤ − ∣ s tð Þ∣K + s tð Þj jα + s tð Þj j∣B2∣d0
= −∣s tð Þ∣ K − α − B2j jd0ð Þ = −η s tð Þj j:

ð13Þ

For some η > 0. This shows that in the time interval ½ti,
ti+1Þ, for some i ∈ Z ≥ 0, the trajectory is moving toward the
sliding surface. For as long as sign sðtiÞ = sign sðtÞ, the inter-
val is subsequently triggered. In the end, the tracking trajec-
tory reaches the sliding surface in a limited time. However,
there is no guarantee that the trajectory will still move on
the sliding surface because no control signal is applied.
Therefore, the trajectory passes through it after reaching
the sliding surface. However, since relationship (9) holds, it
will not be borderless, as shown below. We can get the max-
imum differential of the sliding trajectory at any time interval
½ti, ti+1Þ. It can be expressed by the following formula:

s tið Þ − s tð Þj j = cTx tið Þ − cT x tð Þ�� �� ≤ cj jj j e tð Þj jj j < α

L
: ð14Þ

If the trigger occurs when the trajectory just reaches the
sliding mode surface, the maximum value of the actual slid-
ing mode band can be obtained, so this boundary can be
given as follows:

Ω = x ∈D : sj j = ∣cTx∣< α
L

n o
: ð15Þ

This indicates that the system trajectory ends up in theΩ
region. Therefore, the certification is complete.

The above results have some similarities with linear sys-
tems. The first one is the relationship (9), which is essential
for the existence of actual sliding modes in nonlinear sys-
tems. The Lipschitz constant that appears here corresponds
to the induced norm of the system matrix of the LTI system.
Another similarity is that the actual sliding mode band is
obtained from a similar relationship (9) obtained with the
LTI system.

3.2. System Stability Analysis. For the trigger conditions and
control laws given above, we should analyze the closed-loop
stability of the system. Redefine the sliding variable here, as
shown below:

x2 tð Þ = −x1 tð Þ + s tð Þ: ð16Þ

For the above algebraic dynamic equation, it can be
proved that if x1ðtÞ is bounded, then x2ðtÞ must also be
bounded. Below, we will prove the closed-loop stability of
the system.

Here, V1 = ð1/2Þx1Tx1 is selected as the Lyapunov func-
tion. Next, we directly differentiate V1 and bring equations
(8) and (21) into the equation; we can get

_V1 = x1
T _tð Þx1 tð Þ = x1

T tð Þx2 tð Þ ≤ x1
T tð Þ −x1 tð Þ + s tð Þð Þ

≤ − x1 tð Þj jj j2 + x1 tð Þj jj j s tð Þj jj j
≤ − x1 tð Þj jj j2 + α

L
x1 tð Þj jj j:

ð17Þ

If j∣x1ðtÞ ∣ j > α/L, then _V1 < 0 holds, and then this x1ðtÞ
will approach the Ω region. Therefore, this state vector x1ðt
Þ is finally bounded and proved.

3.3. Event-Driven Control Strategy. The trigger condition
design must ensure the stability of the system. As can be seen
from the previous chapter, the relationship (9) is a sufficient
condition for the existence of the actual sliding mode. There-
fore, this relationship satisfies the stability of the system at
any time. In other words, the choice of a driving scheme
should make this relationship always hold. Therefore, the
trigger scheme is expressed as follows:

ti+1 = inf t > ti : L cj jj j e tð Þj jj j > σαf g: ð18Þ

Here, σ ∈ ð0, 1Þ. This trigger strategy satisfies the follow-
ing relationship:

L cj jj j e tð Þj jj j > σα: ð19Þ

When t > 0, this relationship is always true.
Select ftig∞i=0 as a trigger sequence. For the stability of the

event-driven control system, there must be a positive lower
bound between the two trigger intervals, so as to avoid the
occurrence of the Zeno phenomenon. In fact, this is a very
important process to perform this control task; otherwise,
the system may be unstable. In practice, the control law is
applied to discrete-time series, and this time series does not
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consider the delay caused by control. If this delay is very
small and does not affect the performance of the system, then
this delay can be ignored. Through this delay-free control
execution, we prove that the trigger sequence generated by
(18) is the following theorem. Before proving this, we must
first write the system dynamics equation (1) in the following
format:

_x = f xð Þ + Bu + Bd: ð20Þ

B=½0, B2�T , where 0 is a column vector with dimension n
-1, and all parameters are zero.

Theorem 4. Considering the above system and the given con-
trol law, it can be seen that this trigger sequence is eligible, that
is, for the above trigger criteria given byftig∞i=0, the internal
time trigger The interval Ti always has a positive lower bound.
Here we can give

Ti ≥
1
L
ln 1 + σ

α

cj jj j ρN x tið Þj jj jð Þ + βNð
� �

: ð21Þ

In the above formula, βN is defined as

βN = BB−1
2

�� ���� ��K + B2j jd0: ð22Þ

ρNðjjxðtiÞjjÞ is defined as

ρN x tið Þj jj jð Þ = L 1 + BB−1
2 cT

		 		� �
x tið Þj jj j: ð23Þ

Proof. The first thing to be clear is that keðtÞk grows from 0 to
σα/∣jcj ∣ L; that is, it is bounded. Define the interval Γ≕ ft
∈ ½ti, ti+1Þ: jjeðtÞjj = 0g. Then we can differentiate on keðtÞk,
and we get

d
dt

e tð Þk k ≤ d
dt

e tð Þ
				

				 = d
dt

x tð Þ
				

				
= f x tð Þð Þ + Bu tð Þ + Bd tð Þk k
= f x tð Þð Þ − BB−1

2 cT f x tið Þð Þ		
− BB−1

2 Ksigns tið Þ + Bd tð Þk:

ð24Þ

The final equation is obtained by replacing the control
expression (5). Using xðtÞ = xðtiÞ − eðtÞ. We can get further

d
dt

e tð Þj jj j ≤ L x tð Þk k + BB2 cTB
� �−1cT f x tið Þð Þ

			 			
+ BB−1

2
		 		K + B2d tð Þk k ≤ L x tið Þk kð

+ e tð Þk kÞ + L BB2 cTB
� �−1cT			 			 x tið Þk k

+ BB−1
2

�� ���� ��K + B2j jd0 = L e tð Þk k
+ 1 + BB−1

2 cT
		 		� �

L x tið Þk k + βN = L e tð Þk k
+ ρN x tið Þk kð Þ + βN ,

ð25Þ

where βN and ρNðkxðtiÞkÞ are defined as (22) and (23),

respectively. For t ∈ ½ti, ti+1Þ, the solution of the above differ-
ential inequality is to call Lemma 2 [38] with the initial con-
dition keðtiÞk = 0, and we get

e tð Þj jj j ≤ ρN x tið Þj jj jð Þ + βN

L
eL t−tið Þ − 1


 �
: ð26Þ

Once (18) is satisfied, time ti+1 will be triggered. So we
write (26) as

σα

L cj jj j = e tið Þj jj j ≤ ρN x tið Þj jj jð Þ + βN

L
eLTi − 1
� �

: ð27Þ

Rearrange (27) to get expression (21) for execution time.
It still shows that it is bounded by some finite positive num-
ber. Note that ρðjjxðtiÞjjÞ and βN are both finite positive
numbers. Therefore, this means that Ti is proved to be
bounded by a positive finite number all the time.

4. Variable Threshold Events Driven by the
Sliding Mode Control

4.1. Problem Statement.As can be seen from the previous sec-
tion, the choice of α determines the steady-state range of the
system. Therefore, a large enough value must be selected so
that the accumulation performed by the controller does not
occur; that is, the driven time is greater than the given mini-
mum time period. For example, for a given small α, the next
trigger moment may be lower than the sampling interval cor-
responding to the processor bandwidth. If this situation hap-
pens, the control will not be performed until the trigger time
exceeds the processor’s bandwidth limit and eventually
results in the Zeno phenomenon. In other words, Ti must
have a positive lower bound to ensure that this phenomenon
does not occur. For all i ∈ Ti ≥ 0, we provide the following
conditions under the condition of α to ensure that the inter-
active execution time Ti is greater than the processor band-
width. A value large enough must be chosen to produce Ti
that is greater than the processor’s minimum internal execu-
tion time τ. However, higher α may increase the steady-state
boundary of the sliding trajectory. Therefore, the appropriate
optimal value of α is selected to make the system get the best
performance under the expected steady-state boundary.

On the other hand, it can be known from Theorems 3 and
4 that the magnitude of the alpha value determines the diffi-
culty of the event-driven and the size of the trigger interval.
The larger the alpha value, the more difficult the event trigger
occurs and the larger the corresponding event trigger inter-
val. Therefore, under the condition that the above-
mentioned system is stable, a larger value of α will reduce
the number of events driven and reduce the actuator’s fre-
quency of execution. Based on the principle of sliding mode
motion, there are two stages of sliding mode motion, as
shown in Figure 2: the first stage is moving from the sliding
mode surface to the sliding mode surface, and the second is
moving on the sliding mode surface and finally reaches the
system origin. It is generally known that chattering occurs
on the sliding surface. If the current point of motion is far
away from the sliding surface, an appropriate increase in K
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is required to speed up the control and improve the control
performance. However, when the distance between the cur-
rent moving point and the sliding surface is close, in order
to reduce the tremor, the approach speed is expected to be
reduced, which needs to be reduced by K . Based on the above
knowledge and control experience, fuzzy control laws and
fuzzy control systems can be designed. Ki may change with
the distance between the current moving point and the slid-
ing surface to reduce jitter and system steady-state error.

4.2. Design of Fuzzy Controller. Based on the above ideas, a
two-dimensional fuzzy controller is used to directly design
the event trigger parameter α and the parameter K of the
approach law through the fuzzy control law. It adjusts α
and K in real-time according to the absolute value of S and
the modulus value of x.

The inputs of the fuzzy controller are set as kxk and jSj,
which are fuzzification variables of xðtÞ and sðtÞ, respectively.
The output of the fuzzy controller is the event trigger param-
eter α and the parameter K of the sliding mode controller
blurring variable.

(1) Defining fuzzy sets

PV = positive oversized,
PB = positive large,

PM = positivemiddle,
PS = positive small,

ZO = zero

ð28Þ

(2) According to the fuzzy control principle, kxkand ∣S ∣
are defined as the inputs of the fuzzy controller, and
the output of the fuzzy controller is alpha and K

xk k = ZO, PS, PM, PB, PVf g,
Sj j = ZO, PS, PM, PB, PVf g,

Alpha = ZO, PS, PM, PB, PVf g,
K = ZO, PS, PM, PB, PVf g

ð29Þ

Its field of discussion is as follows:

xk k = 0,+1,+2,+3,+4f g,
Sj j = 0,+1,+2,+3,+4f g,

Alpha = 0,+1,+2,+3,+4f g,
K = 0,+1,+2,+3,+4f g

ð30Þ

(3) The membership function setting is shown in
Figure 3

(4) Determine the fuzzy control rules of the fuzzy sliding
mode controller

According to control experience, when ∣S ∣ is PB, it
means that the state of the system is far from the sliding sur-
face. Therefore, a large approach law parameter is needed to
accelerate the approach speed; that is, K should be PB; when
∣S ∣ is PS, it means that the system state is closer to the sliding
mode surface, so a smaller K is required to slow the approach
speed to reduce chattering; that is, K should be PS. When kxk
is large, it means that the system is far away from the system
equilibrium point and has a faster approach speed. The sys-
tem needs a larger α to reduce the number of triggers. When
kxk is small, the system enters near the sliding mold surface,
α is not easy to be too large, and it will not trigger if it is too
large. Based on the above experience, the control rule table

Sliding surface

X(t0)

X(t1)

X2

X1

Sliding phase

Figure 2: Sliding mode diagram.
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shown in Tables 1 and 2 is used. The fuzzy rules used are as
follows: if kxk is A and jSj is B, then alpha is C and K is D.

(5) In anti-fuzzy, use the center of gravity method to
refine the fuzzy output; the formula is as follows:

ε0 =
∑n

i=1μB’ bið Þ∙bi
∑n

i=1μB’ bið Þ ð31Þ

The above-mentioned fuzzy controller is used to adjust s
in real time, thereby forming a fuzzy reaching law of sliding
mode control. The block diagram of the control system is
shown in Figure 4.

The law of control is written as follows:

u tð Þ = −B2
−1 cT f x tið Þð Þ + Ki sign s tið Þ� �

: ð32Þ

The trigger scheme is expressed as follows:

ti+1 = inf t > ti : L cj jj j e tð Þj jj j > σαif g: ð33Þ

Internal time trigger interval Ti is positive lower bound:

Ti ≥
1
L
ln 1 + σ

αi
cj jj j ρN x tið Þj jj jð Þ + βNð

� �
: ð34Þ

In the above formula, βN is defined as

βN = BB−1
2

�� ���� ��Ki + B2j jd0: ð35Þ

And ρNðjjxðtiÞjjÞ is defined as follows:

ρN x tið Þk kð Þ = L 1 + BB−1
2 cT

�� ���� ��� �
x tið Þk k: ð36Þ

5. Experimental Simulation

Numerical examples are used in this section to verify the
above analysis. Consider the following second-order nonlin-
ear continuous system:

_x1 = x2 _x2 = x1 + x22 + u + d: ð37Þ

The compact domain of the system is selected as D = fx
∈ R2 : kxk2 = 9g. The Lipschitz constant of the system in this
domainD is chosen as L = 10. The perturbation is assumed to
be bounded, and it is considered here as d = 0:5 cos t, which
results in △d = 0:5. The design of the sliding surface should
ensure the stability of the system. We choose cT = ½0:5 1�, so
s = cTx represents the sliding variable in the continuous-
time setting. The SMC for (3) can be expressed as follows:

u = x1 − 0:5x2 − x22 −Ksign sð Þ: ð38Þ

And K > 0:5. When the control law is implemented
through an event-driven strategy, it remains constant in the
time interval ½t, ti+1Þ, that is, at t ∈ ½ti, ti+1Þ, uðtÞ = uðtiÞ, and
i ∈ Z ≥ 0. The other parameters are chosen as τ∗ = 0:0001
and σ = 0:8. The initial value of αmin is chosen to be 0.3.
The initial value is K = 0:8, and the sampling period is set
to ts = 0:001 s. The initial conditions is [-1 2].

Case 1. EDSM.

Figure 5 shows the simulation results of the response of
EDSM to a nonlinear system.

It can be seen from Figure 5(a) that the actual sliding pat-
tern occurs in the system in a limited time. For the selected
value of a, the value of the sliding mode band is 0.03. The
sliding trajectory entered the frequency band for a limited
time and remained there. The same is true for different per-
turbation range values. The change of the state trajectory
over time is shown in Figure 5(b), which shows that the tra-
jectory is finally in a stable state, so the system is in a stable
state. The interevent time versus time is shown in
Figure 5(d). After entering the sliding mode, the driving time

Table 1: Table of control rules.

Alpha
xk k

ZO PS PM PB PV

Sj j

ZO ZO PS PM PB PS

PS ZO PS PS PM PM

PM ZO PS PM PB PB

PB ZO PM PB PB PV

PV ZO PS PM PB PV

Table 2: Table of control rules.

K
xk k

ZO PS PM PB PV

Sj j

ZO ZO PS PM PB PS

PS ZO PS PS PM PM

PM ZO PS PM PB PB

PB ZO PM PB PB PV

PV ZO PS PM PB PV

Plant Sensor

Network

ZOH

Actuator

ETCFuzzy
control 

SMCNetwork

u(t)
d(t)

u(ti)

x(ti)
x(ti)

ki

𝛼i

x(t)

Figure 4: Block diagram of the control system.
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interval has a sequence of long and short. The controller out-
put control signal is updated as shown in Figure 5(c). After
entering the sliding mode, it is in a continuous oscillation
state.

Case 2. AEDSM.

Figures 6–8 show the simulation results of AEDSM
response to a nonlinear system.

It can be seen from Figure 6 that, as in the above case, the
sliding track enters the frequency band in a limited time. For
the selected α value, due to the variable adjustment of the K
value, the sliding mode band is reduced to 0.02 compared
to the above case. The same is true for different perturbation
range values. The trajectory is finally in a stable state. The
above illustrates the effectiveness of the proposed variable
event-driven transmission strategy.

It can be seen from Figure 7 that α of AEDSMC is contin-
uously adjusted and its corresponding threshold is continu-

ously adjusted until the error reaches a steady state. In this
case, α eventually converged to 0.2039. In this case, K eventu-
ally converged to a constant value.

Figure 8 shows the change in the S-function modulus. It
can be seen that the S-function modulus is most stable in
the sliding mode band, which is 0.02.

Compared with the EDSMC control scheme, the
AEDSMC sliding mode band is 30% smaller than the above
situation, effectively suppressing the sliding mode chattering
phenomenon. The proposed driving scheme has a smaller
number of driving events and a longer event driving interval,
so it has better performance in terms of limited resource uti-
lization. Table 3 summarizes the results and shows the num-
ber of trigger events.

6. Summary

In this paper, a variable threshold control method based on
event driving was proposed and designed to solve the
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Figure 5: EDSMC system response diagram. (a) System trajectory diagram showing the actual sliding mode in a limited time. (b) System
status. (c) Sliding mode control with event touch. (d) Mutual execution time of event-driven sliding mode control.
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problem of insufficient robustness of a class of nonlinear net-
work systems with external disturbances. Different from the
current event-driven control system, the control scheme pro-
posed in this paper can variably update the threshold param-
eter α according to the fuzzy rule after each event is driven
and simultaneously update the parameter K of the sliding
mode controller. In this scheme, the system with external dis-
turbance has good robustness and adaptability. Simulation
results show that the event-driven control scheme reduces
the number of event triggers, saves system network resources,
effectively suppresses the chattering phenomenon of sliding
mode control, and meets system design performance require-
ments, which verifies the effectiveness and feasibility of the
scheme. In the future work, we can consider other interfer-
ences, such as denial-of-service (DOS) attacks and study
adaptive event-driven control in network control systems
under DOS attacks.
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