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Delay-tolerant networks (DTNs) are wireless mobile networks, which suffer from frequent disruption, high latency, and lack of a
complete path from source to destination. The intermittent connectivity in DTNs makes it difficult to efficiently deliver messages.
Research results have shown that the routing protocol based on reinforcement learning can achieve a reasonable balance between
routing performance and cost. However, due to the complexity, dynamics, and uncertainty of the characteristics of nodes in DTNs,
providing a reliable multihop routing in DTNs is still a particular challenge. In this paper, we propose a Fuzzy-logic-based DoubleQ
-Learning Routing (FDQLR) protocol that can learn the optimal route by combining fuzzy logic with the Double Q-Learning
algorithm. In this protocol, a fuzzy dynamic reward mechanism is proposed, and it uses fuzzy logic to comprehensively evaluate
the characteristics of nodes including node activity, contact interval, and movement speed. Furthermore, a hot zone drop
mechanism and a drop mechanism are proposed, which can improve the efficiency of message forwarding and buffer
management of the node. The simulation results show that the fuzzy logic can improve the performance of the FDQLR protocol
in terms of delivery ratio, delivery delay, and overhead. In particular, compared with other related routing protocols of DTNs,
the FDQLR protocol can achieve the highest delivery ratio and the lowest overhead.

1. Introduction

Nowadays, with the improvement of network technologies,
the application scenarios are also expanding. Network envi-
ronments with low delivery ratio, high latency, and limited
connectivity are becoming increasingly common, such as
interplanetary networks [1], sensor networks [2], and vehic-
ular networks [3]. In these networks, for example, the fre-
quent topology changes caused by the high mobility of
nodes make the messages lost or delivered with large delay,
and thus, the traditional routing protocols are unreliable or
even invalid. In order to solve these problems, delay-
tolerant networks (DTNs) [4] are proposed, where messages
are forwarded by communication opportunities when nodes
meet each other. However, the multihop routing in DTNs is
still a considerable challenge, and an efficient routing algo-
rithm adapting to the DTN environment is very necessary.

The typical routing in DTNs is to select the optimal path
from the source node to the destination node through a set of
intermediate nodes. Store-carry-forward-based routing is
one of the most important mechanisms to deal with routing
problems in DTNs. This mechanism ensures a message can
be forwarded and successively stored on the intermediate
nodes until the message reaches the destination node. Based
on the store-carry-forward routing, researchers have pro-
posed many routing protocols for DTNs, which can be clas-
sified into two types: replication-based routings and
forwarding-based routings. However, the replication-based
routing protocols (e.g., Epidemic [5] and Spray and Wait
[6]) usually cause flooding and exhaust the limited network
resources, because they generate excessive message copies
in the network. Although the forwarding-based routing pro-
tocols (e.g., First Contact [7] and Direct Delivery [8]) can
conserve the network resources, they may worsen the deliv-
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ery ratio and latency of messages. Therefore, routing proto-
cols that can deliver messages with high delivery ratio, short
latency, and low overhead are still needed for DTNs.

The PRoPHET protocol [9] is a classic routing protocol,
which relies on the history of encounters and transitivity to
deliver copies of messages. However, the PRoPHET protocol
cannot quickly adapt to node mobility and network topology
changes. To solve these problems, routings based on rein-
forcement learning (RL) algorithm have been proposed.
Delay-Tolerant Reinforcement-Based (DTRB) routing pro-
tocol [10] adopts the Q-Learning algorithm (Q-Leaning is
one of reinforcement learning algorithms) to learn about
routes in the network and replicate messages to the node with
the best reward. But, the DTBR protocol takes the maximum
action value as the optimal action, which may be obscured by
overestimation. Therefore, in our previous work, the Double
Q-Learning Routing (DQLR) protocol was proposed [11],
which adopts the Double Q-Learning algorithm to obtain
an unbiased estimation and improve the performance of
message delivery. However, in real scenarios of DTNs, the
characteristics of nodes (e.g., node activity, contact interval,
and movement speed) are complex, dynamic, and uncertain,
which will affect the performance of routing protocols.
Therefore, Fuzzy Logic (FL) should be introduced into the
routing of DTNs to handle the imprecise and uncertain char-
acteristics and select the proper next hop nodes. It can be
seen that FL improves the describing ability for these fuzzy
characteristics and captures the essential meaning of fuzzy
knowledge in DTNs.

In this paper, we propose a Fuzzy-logic-based Double Q
-Learning Routing (FDQLR) protocol, as an improvement
of DQLR, whose objectives are to increase the delivery ratio
and decrease the overhead of the message transmission in
DTNs by integrating fuzzy logic and Double Q-Learning
jointly. In FDQLR, the characteristics of nodes, including
node activity (the activity of a node meeting other nodes),
contact interval (the contact interval time of a node encoun-
tering other nodes), and movement speed (the movement
speed of node), are considered jointly by fuzzy logic. Then,
the fuzzy logic results are used in the reward mechanism of
the Double Q-Learning routing. To the best of our knowl-
edge, there are few works using fuzzy logic to evaluate the
characteristics of nodes in Double Q-Learning routing algo-
rithm of DTNs.

The main contributions of this paper are as follows:

(1) We propose a Fuzzy-logic-based Double Q-Learning
Routing (FDQLR) protocol that combines the fuzzy
logic with a DoubleQ-Learning algorithm to improve
the decision of the best next hop in the routing of
DTNs

(2) A fuzzy dynamic reward mechanism is proposed,
which adopts the fuzzy logic to comprehensively
evaluate the characteristics such as node activity,
contact interval, and movement speed, then these
characteristics are converted into a fuzzy reward
coefficient in the immediate reward function of the
Double Q-Learning routing

(3) A hot zone mechanism is proposed to mark the
nodes that meet the destination node within a certain
time to improve the message forwarding efficiency. In
addition, a drop mechanism is proposed, which
drops the delivered messages and the older undeliv-
ered messages properly to alleviate the buffer
overflows

The rest of this paper is organized as follows: In Section 2,
we review the related work briefly. In Section 3 and Section 4,
the proposed system model and routing algorithm are
described in detail, respectively. In Section 5, the proposed
work is evaluated comprehensively, along with extensive
results and discussions. Finally, we conclude the paper with
some future works in Section 6.

2. Related Work

Delay-tolerant networks (DTNs) are wireless mobile net-
works, which are characterized by frequent disconnectivity
and high latency. DTNs are intended to deal with the scenar-
ios involving intermittent connectivity between adjacent
nodes, lack of contemporaneous end-to-end links, and
exceptionally high delays and error rates. To solve these
problems, several routing protocols have been proposed,
such as Epidemic and PRoPHET. The Epidemic routing pro-
tocol [5] is one of the flooding routings that replicate mes-
sages to neighbor nodes randomly, without using any
predictions of the path forwarding probabilities. The Proba-
bilistic Routing Protocol (PRoPHET) [9] relies on the deliv-
ery predictability of the current node’s neighbors to deliver
messages to reliable relay nodes. Thus, the PRoPHET proto-
col exploits the historical information of the node encounters
and message deliveries to determine whether to forward mes-
sages. The Predict and Relay (PER) routing protocol [12]
adopts a landmark trajectory prediction method that is dif-
ferent from previous prediction-based DTN routing algo-
rithms because it considers when two nodes will encounter
each other. However, those protocols mentioned above can-
not estimate the movement pattern of nodes very well.
Therefore, some routing protocols based on the reinforce-
ment learning (RL) algorithm have been proposed recently,
which can indirectly estimate the movement pattern of nodes
and constantly learn the knowledge from the network. Rein-
forcement learning [13] refers to a trial-and-error way of
learning and can be expressed as a Markov decision-
making process. In the network environment of routing
selection based on reinforcement learning, nodes attempt to
learn information collected from neighbor nodes and net-
works. Then, the corresponding rewards can be given, and
the action with the highest reward can be regarded as the best
policy for the next hop routing. Q-Learning [14] algorithm is
well-known as a Temporal Difference (TD) algorithm for
reinforcement learning and is wildly applied to dynamic net-
works. Q-Learning algorithm can obtain the best choice via
continuous interactions with the environment rather than
the prior knowledge. QLAODV [15] is an enhanced routing
protocol for ad hoc networks, which relies on a Q-Learning
algorithm to infer the network link states and dynamically
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change the routes based on the learned information.
QLAODV also utilizes a route change request/reply mecha-
nism to check the path availability in a real-time manner.
Adaptive Reinforcement-Based Routing (ARBR) [16] uses
Collaborative Reinforcement Learning (CRL) as a self-
organizing technique, which considers the mobility statistics,
congestion, and buffer occupancy as feedback in the quality-
metric function. QKS [17] uses the Q-Learning algorithm
associated with kinematic and sweeping features to explore
the routing in an underwater network environment. Delay-
Tolerant Reinforcement-Based (DTRB) [10] is a Q-Learn-
ing routing protocol, which utilizes multiagent Q-Learning
techniques to learn about routes in the network and forwards
or replicates messages that produce the best rewards. In the
DTRB framework, rewards are associated with the time of
the messages reaching the destination. It is shown that DTRB
improves the delivery ratio in dense population areas. How-
ever, using Q-Learning in DTNs can also suffer a large pen-
alty, because it can produce a positive bias by using the
maximum value as the approximation of the maximum
expected value. Therefore, we proposed DQLR [11] to solve
the above problems. In the DQLR protocol, the Double Q
-Learning algorithm is used to decouple the selection from
the evaluation to obtain an unbiased estimation. In addition,
the dynamic reward and intermediate value mechanisms are
proposed to adapt to the node mobility and the change of
network topology, which improve the performance of the
routing protocol.

However, in the real DTN environment, the delivery ratio
and delivery delay of the message forwarding is directly
affected by the characteristics of nodes (e.g., node activity,
contact interval, and movement speed), which are not taken
into account in the DQLR protocol. Besides, these character-
istics are complex, dynamic, and uncertain in DTNs. For
example, it is difficult to use clear criteria to indicate the
speed of node movement and the time of contact interval in
DTNs. Therefore, Fuzzy Logic (FL) is introduced to handle
these various characteristics and evaluate the quality of nodes
as next hop nodes in DTN routings [18]. FL is a classical
method for dealing with uncertain and imprecise informa-
tion, which is present in real-world problems. Additionally,
in DTNs, FL is appropriate due to its ability in “implement-
ing” the approximate reasoning. AFSnW [19] is proposed
based on the Spray and Wait protocol, which mainly adopts
a fuzzy decision that combines the transmission count and
message size, and classifies messages into different prioritiza-
tion levels in a buffer to improve the delivery ratio. EFSnWR
[20] employs a fuzzy prioritization-based message schedul-
ing policy along with a random drop policy, which optimizes
the mechanism of message priority in AFSnW by aggregating
three parameters, i.e., the number of message replicas, mes-
sage size, and remaining Time-To-Live (TTL). AFRON [21]
is also a fuzzy routing protocol for opportunistic networks,
which takes the parameters (transmission count, message
size, and remaining TTL) as fuzzy input parameters to dis-
cover a path to the destination. In [22], a Fuzzy-assisted
Position-Based Routing protocol with DTN capability
(FPBR-DTN) is proposed for Vehicular Ad hoc NETworks
(VANETs). FPBR-DTN is a hybrid routing protocol and

has three main modes including greedy, perimeter, and
DTN. FPBR-DTN improves the greedy routing by applying
the fuzzy logic and parameters such as the number of neigh-
bors, neighboring vehicles’ speed, direction, and distance
from a destination; a forwarding chance value is calculated
for each neighbor node. Then, the node having the highest
chance value among the neighbors is selected for greedy for-
warding. A fuzzy constraint Q-Learning routing protocol for
vehicular networks was proposed in [23], which is the
improvement of QLAODV. It employs fuzzy logic to evaluate
the link statuses by bandwidth, mobility, and signal strength,
and a Q-Learning based approach is provided to select a sta-
ble and efficient routing. However, it is based on the Ad hoc
On-demand Distance Vector (AODV) routing protocol,
which is designed for the mobile ad hoc network rather than
DTNs. FQLRP [24] is a novel routing protocol for opportu-
nistic networks, which uses fuzzy-based Q-Learning for effi-
cient routing. FQLRP predicts the next optimal forwarder
of a message based on a reward mechanism that considers
the node’s energy, movement, and buffer space as
parameters.

A summary of the related routing protocols discussed in
this section is presented in Table 1, where these protocols are
compared in terms of routing history, learning method, rout-
ing or reward mechanism, fuzzy logic, fuzzy input parameter,
drop policy, and network type. We can find that few routing
protocols are utilizing both fuzzy logic and Double Q
-Learning in DTNs or taking into account the impacts of
practical network environment and node characteristics on
routing decisions. Therefore, based on the DQLR protocol,
we present an enhanced routing protocol called FDQLR,
which uses a Double Q-Learning algorithm to select the next
hop nodes with an unbiased estimation, and utilizes fuzzy
logic to comprehensively evaluate the characteristics such
as node activity, contact interval, and movement speed,
which directly affect the performance of message delivery.
Also, we propose a hot zone mechanism, which consists of
the neighbor nodes that meet the destination node within a
certain time to improve the message forwarding efficiency.
Moreover, we present a drop mechanism, which controls
the number of messages carried by nodes and discards the
messages that have not been forwarded for a long time.

3. System Model

Reinforcement learning refers to a type of learning that is
achieved through interaction. In RL, the learner and decision
maker are called an agent, and the surrounding with which
they interact is called the environment. The agent selects the
actions, and the environment, in return, provides rewards
and a new state. The reinforcement learning algorithm is
aimed at finding a policy, which means a mapping from state
to action, which maximizes the expected cumulative reward
(value function) under that policy. To describe our model
and algorithm clearly, we provide a list of notations in Table 2.

Based on reinforcement learning, FDQLR can be mod-
eled as follows: DTNs can be regarded as environment E,
which includes mobile nodes, messages delivered by nodes,
and transmissions among nodes. Each message delivered
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from source node to destination node denotes an agent. All
nodes in the network can be seen as the set of states S. A node
represents the state s (s ∈ S) when the message is delivered to
the node. All the processes of the next hop (state) selection
for transmitting messages can be taken as a set of actions
denoted by A. Each node is equipped with an omnidirectional
antenna with a fixed transmission range. Two neighbors can
communicate with each other only if they are within the trans-
mission range of each other. We define all neighbors of the
current node carrying messages as a state set, and the process
of the next hop (state) selection from all neighbors can be
regarded as an action, a (a ∈ A). Let d be the destination node
of a message; we define Qsðd, aÞ(s, d ∈ S; a ∈ A) as the estima-
tion of the future rewards if a message in node (state) s takes
an action a to the destination node d.

The learning task must be done in a distributed way for
each node since a global view of the network state is impossi-
ble. Thus, the state transition policy of the next hop nodes is
essential for delivering messages from the current node c to
the destination node d. Suppose all messages have definite
destinations and the selection of the next hop to the destina-
tions can influence the network environment. Once the opti-
mal next hop for messages is determined, the action of the
current node to next hop i will receive the immediate reward

~Rcðd, iÞ. According to the information of different next hops,
the corresponding rewards will be given, and the best choice
can be made as the action with the highest future rewards. By
the Double Q-Learning algorithm, we define QA

c ðd, iÞ and
QB

c ðd, iÞ as the two values of future rewards that current node
c bound to destination node d through the next hop i (i ∈Dc),
where Dc is the set of neighbors of the current node. Besides,
it should be noted that the action of the next hop selection
from current node c to next hop i is denoted by i in QA

c ðd, i
Þ and QB

c ðd, iÞ for simplicity. Therefore, the selection of the
next hop in a greedy strategy can be expressed by Equations
(1) and (3), and the update rule in QA

c ðd, iÞ and QB
c ðd, iÞ can

be written as Equations (2) and (4).

y∗ = arg max
j∈Di

QA
i d, jð Þ, ð1Þ

QA
c d, ið Þ← 1 − δð ÞQA

c d, ið Þ + δ ~Rc d, ið Þ + ηQB
i d, y∗ð Þ� �

, ð2Þ

z∗ = arg max
j∈Di

QB
i d, jð Þ, ð3Þ

QB
c d, ið Þ← 1 − δð ÞQB

c d, ið Þ + δ ~Rc d, ið Þ + ηQA
i d, z∗ð Þ� �

, ð4Þ

Table 1: Comparison of related routing protocols.

Name of
protocol

Routing
history

Learning
method

Routing/reward mechanism
Fuzzy
logic

Fuzzy input parameter
Drop
policy

Network
type

Epidemic
[5]

— — — — — — DTNs

PRoPHET
[9]

Yes — Contact probability — — — DTNs

PER [12] Yes — Contact time — — — DTNs

QLAODV
[15]

Yes Q Link status — — — Ad hoc

ARBR [16] Yes Q Mobility statistics; congestion;
buffer occupancy

— — — DTNs

QKS [17] Yes Q Kinematic and sweeping
features

— — Ad hoc

DTRB [10] Yes Q Time to destination — — — DTNs

DQLR [11] Yes Double Q Dynamic reward; intermediate
value

— — — DTNs

AFSnW
[19]

Yes — Prioritization of message Yes
Forward transmission count; message

size
Yes DTNs

EFSnWR
[20]

Yes — Prioritization of message Yes
Number of replicas; message size;

remaining TTL
Yes DTNs

AFRON
[21]

Yes — Prioritization of message Yes
Forward transmission count; message

size; remaining TTL
— DTNs

FPBR-DTN
[22]

Yes — Forwarding chance Yes
Number of neighbors; speed;

direction; distance
—

Ad
hoc/DTNs

FQLAODV
[23]

Yes Q Link status Yes Bandwidth; mobility; signal strength — Ad hoc

FQLRP [24] Yes Q Reward Yes Energy; movement; buffer — DTNs

FDQLR Yes Double Q Dynamic reward; intermediate
value; hot zone

Yes
Node activity; contact interval;

movement speed
Yes DTNs
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where η is the discount factor, δ is the learning rate, and Di is
the set of neighbors of node i.

The next hop y∗ and z∗ in Equations (1) and (3) denote the
neighbors of node i with the maximum value of QA

i ðd, jÞ and
QB

i ðd, jÞ, respectively. Then, we updateQA
c ðd, iÞ with QB

i ðd, y∗
Þ and update QB

c ðd, iÞ with QA
i ðd, z∗Þ by Equations (2) and (4).

The discount factor η should satisfy that 0 < η ≤ 1, and it
determines the degree of the importance of the future
rewards. If η is too low, the immediate rewards are domi-
nated, and if η is too high, the future rewards will be consid-
ered with a greater weight.

The learning rate δ (0 < δ ≤ 1) limits the learning speed. In
FDQLR, it affects how quickly the future rewards can change
with a network topology change. A low learning ratemay cause
the routing algorithm unable to adapt to the network mobility,
whereas a high learning rate may lead nodes to receive incor-
rect rewards and reflect the wrong network mobility.

~Rcðd, iÞ represents the immediate reward function that is
nonnegative and will have a positive value if c is one of the
neighbors of the destination node. To comprehensively con-
sider the characteristics of nodes in DTNs, fuzzy logic is used
in the definition of ~Rcðd, iÞ, which makes the routing algo-
rithm fully consider the status of the network and nodes
when evaluating the next hop of messages. In addition, a
dynamic reward mechanism is employed for ~Rcðd, iÞ, which
is subjected to exponential decay and related to h, i.e., the
number of hops from the source node to the destination
node. That is, a larger number of hops give rise to a smaller
reward. Hence, ~Rcðd, iÞ can be defined as

~Rc d, ið Þ = 1 − σð Þ + σFc dð Þ½ �e−h, if c ∈Dd ,
0, otherwise,

(
ð5Þ

Table 2: List of notations.

Notation Description Notation Description

E DTN environment ni
Number of the current node encounters

nondestination nodes

S Set of states nd
Number of the current node that encounters the

destination node

s A state of S ε Encounter weight

A Set of actions n Total number of the current node that encounters
other nodes in the network

a An action of A Δtcnow
Average contact interval between the current node

and other nodes

d Destination node Δtcmin
The minimum contact interval between the current

node and other nodes in the network

Qs d, að Þ Future rewards of s taking an action a to the destination node
d

Δtcmax
The maximum contact interval between the current

node and other nodes in the network

c Current node scnow Speed of the current node at the current time

~Rc d, ið Þ Reward function of current node c taking action of selecting i
as the next hop to the destination node d

scmin The lowest speed of the current node in the network

QA
c d, ið Þ Value A of the future rewards scmax The highest speed of the current node in the network

QB
c d, ið Þ Value B of the future rewards γ1 Aging constant of Q value

Dc Set of neighbors of node c μ1 Number of time units having elapsed

Dd Set of neighbors of destination node α Balance factor

i Neighbor of node c β Scaling constant

j Neighbor of node i Q̂c d, ið Þ Mixed future reward

y ∗ Neighbor of node i with the maximum value of QA
i d, jð Þ T0 Time period of hot zone

z ∗ Neighbor of node i with the maximum value of QB
i d, jð Þ ti

The contact interval between the node i and the
destination node in the hot zone

η Discount factor Hc tið Þ Hot zone strength of node i in the hot zone

δ Learning rate γ2 Aging constant of hot zone

h Number of hops from the source node to the destination node μ2 Number of time units having elapsed of hot zone

Fc dð Þ Fuzzy reward coefficient of current node c relative to
destination node d

ω Joint coefficient

σ Fuzzy weight Uc d, i, tið Þ Joint utility function
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where Dd is the set of neighbors of the destination node d;
FcðdÞ represents the fuzzy reward coefficient of the current
node c relative to the destination node d, which will be
described in the next section, and σ ð0 ≤ σ ≤ 1Þ is the fuzzy
weight, which determines the degree of relationship between
~Rcðd, iÞ and FcðdÞ.

4. Fuzzy Double Q-Learning Routing

In this section, we discuss the proposed routing protocol
FDQLR, which considers the characteristics of nodes with

fuzzy logic. The rest of the section consists of four parts.
We first discuss the fuzzy dynamic reward mechanism. Then,
we present the value aging and intermediate value mecha-
nism. Besides, we propose a hot zone and drop mechanisms.
Finally, we describe the proposed routing algorithm.

4.1. Fuzzy Dynamic Reward Mechanism. In DTNs, routing is
a particular challenge because of the complex, dynamic, and
uncertain node characteristics such as node activity, contact
interval, and movement speed. Therefore, fuzzy logic is
adopted to improve the describing ability for these fuzzy

Node
activity

Contact
interval

Movement
speed

Characteristics

Fuzzification
interface

Fuzzy
inference
process

Defuzzification
interface

Fuzzy rule
base

Fuzzy
database

Fc (d)

Figure 1: Fuzzy system for generating FcðdÞ.
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Figure 2: Fuzzy membership functions of NAF, CIF, and MSF.
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characteristics. FDQLR uses a fuzzy dynamic reward mecha-
nism in routing decisions. Here, we define the fuzzy reward
coefficient FcðdÞ in Equation (5) by fuzzy logic.

Figure 1 shows the fuzzy system for generating FcðdÞ.
Firstly, the crisp values of characteristics (i.e., node activity,
contact interval, and movement speed) are input into the fuz-
zification interface and converted into fuzzy values by the
membership functions defined in the fuzzy database. Then,
the fuzzy inference process is performed according to the
fuzzy rule base. Finally, the fuzzy inference output is con-
verted into the crisp value of FcðdÞ by the defuzzification
interface.

4.1.1. Definitions of Multiple Factors. In this paper, we define
the Node Activity Factor (NAF), which represents the degree
of activity of the current node in the network. The NAF can
be described by the nondestination and destination nodes
encountered by the current node, and different weights are
assigned to the nondestination nodes and destination nodes.
The node will be given higher weights when it encounters the
destination node. Hence, the NAF is defined as

NAF = ε
ni
n

+ 1 − εð Þ nd
n
, ð6Þ

where ni is the number of nondestination nodes encountered
by the current node, nd is the number of current nodes
encountered by the destination node, and n is the total num-
ber of the current nodes encountered by other nodes in the
network. ε (0 ≤ ε ≤ 1) is the encounter weight, which indi-
cates the difference of nondestination nodes and destination
nodes.

Contact Interval Factor (CIF) represents the normalized
factor of the contact interval between the current node and
other nodes, which is used to find the most appropriate time
interval required for transmitting messages between nodes.
CIF is defined as

CIF =
Δtcnow − Δtcmin

Δtcmax
− Δtcmin

, ð7Þ

where Δtcnow denotes the average contact interval between the
current node and other nodes and Δtcmin

and Δtcmax
represent

the minimum and maximum contact intervals between the
current node and other nodes in the network, respectively.

Movement Speed Factor (MSF) represents the normal-
ized factor of the relative speed of the current nodes in the
network. The MSF also plays an important role in the mes-
sage transmission process. If the factor is too large, i.e., the
relative speed of the node is large, then the message transmis-
sion process will be hard to succeed and some messages will
be lost. MSF is defined as

MSF =
scnow − scmin

scmax
− scmin

, ð8Þ

where scnow represents the speed of the current node at the
current time and scmin

and scmax
represent the lowest and high-

est speeds of the current node in the network, respectively.

4.1.2. Fuzzification. Fuzzification is the process of converting
crisp values of characteristics to fuzzy values by the fuzzy
database. Linguistic variables and membership functions
are needed to be defined before the fuzzification. In this

Table 3: Fuzzy rule base.

Rule NAF CIF MSF Rank

Rule 1 Bad Long Fast Little acceptable (LA)

Rule 2 Bad Long Medium Little good (LG)

Rule 3 Bad Long Slow Bad (B)

Rule 4 Bad Medium Fast Good (G)

Rule 5 Bad Medium Medium Little perfect (LP)

Rule 6 Bad Medium Slow Little good (LG)

Rule 7 Bad Short Fast Acceptable (A)

Rule 8 Bad Short Medium Good (G)

Rule 9 Bad Short Slow Little acceptable (LA)

Rule 10 Medium Long Fast Acceptable (A)

Rule 11 Medium Long Medium Good (G)

Rule 12 Medium Long Slow Little acceptable (LA)

Rule 13 Medium Medium Fast Very good (VG)

Rule 14 Medium Medium Medium Perfect (P)

Rule 15 Medium Medium Slow Good (G)

Rule 16 Medium Short Fast Very acceptable (VA)

Rule 17 Medium Short Medium Very good (VG)

Rule 18 Medium Short Slow Acceptable (A)

Rule 19 Good Long Fast Good (G)

Rule 20 Good Long Medium Little perfect (LP)

Rule 21 Good Long Slow Little good (LG)

Rule 22 Good Medium Fast Perfect (P)

Rule 23 Good Medium Medium Very perfect (VP)

Rule 24 Good Medium Slow Little perfect (LP)

Rule 25 Good Short Fast Very good (VG)

Rule 26 Good Short Medium Perfect (P)

Rule 27 Good Short Slow Good (G)
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Figure 3: Membership function for output FcðdÞ.
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paper, three input linguistic variables of NAF, CIF, and MSF
are defined, and each input linguistic variable consists of
three linguistic terms, which are represented by the member-
ship functions. The results of the membership functions
show the degree that linguistic variables belong to their cor-
responding linguistic terms. Therefore, the fuzzy member-
ship functions of linguistic variables of NAF, CIF, and MSF
are defined in Figure 2, where the fuzzy linguistic terms of
NAF are {Bad, Medium, Good}, the fuzzy linguistic terms
of CIF are {Long, Medium, Short}, and the fuzzy linguistic
terms of MSF are {Fast, Medium, Slow}.

4.1.3. Fuzzy Rule Base and Fuzzy Inference. After defining the
input linguistic variables of NAF, CIF, andMSF, we define an
output linguistic variable called node Rank to represent the
quality of a node serving as the next hop, which in fuzzy lin-
guistic terms consists of 10 ranks, i.e., {Bad (B), Little Accept-
able (LA), Acceptable (A), Very Acceptable (VA), Little
Good (LG), Good (G), Very Good (VG), Little Perfect (LP),
Perfect (P), and Very Perfect (VP)}. Then, the fuzzy rule base
is defined, which contains fuzzy IF/THEN rules for the infer-
ence of a node rank. The rule is “IF (antecedent) part of the
rule and then evaluating the THEN (consequent) part of
the rule.” Table 3 shows the fuzzy rule base for fuzzy linguis-
tic variables. Since there are three input linguistic variables in
the fuzzy system, and each of them consists of three linguistic

terms, we can obtain 27 (i.e., 33) rules for reasoning the node
Rank. For example, Rule 3 means “IF the NAF is Bad, CIF is
Long, andMSF is Slow, THEN the Rank is Bad (B),” and Rule
23 means “IF the NAF is Good, CIF is Medium, and MSF is
Medium, THEN the Rank is Very Perfect (VP).” Rule 3 and
Rule 23 express the two extreme cases in the inference of a
node rank. It should be pointed out that the fuzzy rule base
in Table 3 is determined by our practical experience and intu-
ition in DTN routing. It does not exclude the possibility of
other definitions of rules, and the optimal fuzzy rule base will
be left as an open problem for future work.

In the process of fuzzy reasoning, usually, multiple rules
are satisfied in parallel and the antecedent of a rule has more
than one fuzzy linguistic variables. Therefore, some inference
methods should be applied to these rules, such as Min–Max,
Prod-Max, and Prod-Sum. Without loss of generality, we
adopt the Min–Max method because it is simple and widely
used [25]. In this method, for each rule, the minimum value
of the antecedent is used as the level of rank. When combin-
ing different rules, the maximum value of the antecedent is
used as the final rank, for example, when NAF, CIF, and
MSF belong to the corresponding linguistic variable with
terms {Bad: 0, Medium: 0, Good: 1}, {Long: 0.25, Medium:
0.75, Short: 0}, and {Fast: 0, Medium: 0.5, Slow: 0.5}, respec-
tively. In this case, multiple rules are matched including Rule
20, Rule 21, Rule 23, and Rule 24. For Rule 20, the degree of

Input:
Destination node, d
Current node, c
The set of neighbors of c, Dc
One neighbor of node c, i ∈Dc
The set of neighbors of i, Di
One neighbor of i, j ∈Di
Output:
Optimal next hop, iT

1: for alli ∈Dcdo
2: Compute multiple factors of NAF, CIF, and MSF by Equations (6)–(8)
3: Compute FcðdÞ by fuzzy set and rules
4: Compute ~Rcðd, iÞ by Equation (5)
5: Randomly update QA

c ðd, iÞ or QB
c ðd, iÞ by Equation (2) or Equation (4), respectively

6: Compute Q̂cðd, iÞ by Equation (11)
7: ifi is dthen
8: iT ← i
9: returniT

10: else
11: for allj ∈Dido
12: Use the intermediate value mechanism to compute Q̂cðd, jÞ by Equation (12)
13: Update Q̂cðd, iÞ by Equation (11)
14: Compute Hcð tiÞ by Equation (13)
15: Compute Ucðd, i, tiÞ by Equation (15)
16: end for
17: end if
18:end for
19: iT ← arg max

ðc,i∈DcÞ
fUcðd, c, tiÞ,Ucðd, i, tiÞg

20:returniT

Algorithm 1: FDQLR.
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NAF for Good is 1, the degree of CIF for Long is 0.25, and the
degree of MSF for Medium is 0.5. By the Min–Max method,
we take the minimal value and the degree of Rank for Little
Perfect is 0.25. Similarly, the degree of Little Good (LG) in
Rule 21 is 0.25, the degree of Very Perfect (VP) in Rule 23
is 0.5, and the degree of Little Perfect (LP) in Rule 24 is 0.5.
It is easy to find that both Rule 20 and Rule 24 lead to the
Rank of Little Perfect (LP), according to the Min–Max
method. The maximal value of their consequents is taken,
and the degree of Rank for Little Perfect (LP) is 0.5. In this
way, all rules are combined, and the fuzzy results are
obtained.

4.1.4. Defuzzification. The process of converting the fuzzy
inference results into a crisp value based on the output mem-
bership function and the corresponding membership degrees
is called defuzzification. In this paper, the output member-
ship function of Rank is defined as in Figure 3. There are sev-
eral common defuzzification methods including Center of
Gravity (COG), Bisector of Area (BOA), Mean of Maximum
(MOM), and so on. Here, we use the COG method, which
returns the center of the area under the curve and is one of
the best methods in defuzzification. For example, if the
degrees of Rank for Very Good (VG), Little Perfect (LP),
and Perfect (P) are 0.25, 0.5, and 0.5, respectively, a shadow
shape can be formed according to the output membership
function, as shown in Figure 3. Then, we calculate the cen-
troid of this shape and define the x-coordinate of this cen-
troid as the fuzzy reward coefficient FcðdÞ.
4.2. Value Aging and Intermediate Value Mechanisms. In this
paper, the value aging and intermediate value mechanism is
based on our previous work [11], which are denoted by QA

c

ðd, iÞ and QB
c ðd, iÞ:

QA
c d, ið Þ←QA

c d, ið Þoldγ1μ1 , ð9Þ

QB
c d, ið Þ←QB

c d, ið Þoldγ1μ1 , ð10Þ
where γ1ð0 ≤ γ1 < 1Þ is the aging constant and μ1 is the num-
ber of time units that have elapsed since the last time the met-
ric was aged.

In the Double Q-Learning algorithm, the two value func-
tions of the future rewards are learned from the separate
experience sets, while the action of selecting the next hop
should be based on one value. Therefore, we assign a balance
factor to the two value functions and define a mixed future

reward as Q̂cðd, iÞ. We calculate the mixed future rewards
for each action and perform the greedy exploration with it.
The update of Q̂cðd, iÞ is given as

Q̂c d, ið Þ← αQA
c d, ið Þ + 1 − αð ÞQB

c d, ið Þ, ð11Þ

where αð0 ≤ α ≤ 1Þ is a balance factor.
Since the future rewards of encounter are transitive, the

intermediate value mechanism is used to calculate the future
rewards of the action of delivering a message through an
intermediate node, even though the current node and the
next hop nodes have not encountered yet. This means that
when the current node c encounters node i, and node i will
encounter node j (j ∈Di) later, the future rewards of the
action from node c to j can be calculated by node i. When
node c encounters j in the future, the actions of two nodes
already have some future rewards compared to other actions.
The update of Q̂cðd, jÞ is given as

Q̂c d, jð Þ← Q̂c d, jð Þ + β Q̂c d, ið Þ + Q̂i d, jð Þ� �
, ð12Þ

where β ð0 ≤ β ≤ 1Þ is a scaling constant and indicates the
impact of the transitivity on the FDQLR protocol.

4.3. Hot Zone and Drop Mechanisms. In the FDQLR proto-
col, we store the information of nodes that the current node
has met within a time period T0 into an encounter table,
which includes the node ID and the last encounter interval.
When the current node carrying messages meets other nodes,
they exchange and update the encounter tables firstly. If the
current node finds that its neighbor has met the destination
node of the message within T0, then the neighbor is called a
node in the hot zone. The hot zone strength of a node is
related to the contact interval between the node and the des-
tination node. The definition of the hot zone strength of node
i is shown as

Hc tið Þ = eT0/ti , if i ∈ hot zone,
0, otherwise,

(
ð13Þ

where tið0 ≤ ti ≤ T0Þ represents the contact interval between
node i and the destination node in the hot zone.

The values of HcðtiÞ should also age over time since node
i met the destination node the last time; the aging of HcðtiÞ
can be shown as

External trace
Movement models

SPMBM

Message event
Event generators

etc.

FDQLR
Routings

etc.
Simulation

engine

Connectivity
data

Reports
Simulation results

etc.

Routing data

Figure 4: The ONE simulation environment for FDQLR.
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Hc tið Þ←Hc tið Þoldγ2μ2 , ð14Þ

where γ2ð0 ≤ γ2 < 1Þ is the aging constant of hot zone and μ2
is the number of elapsed time units since last updated.

In the FDQLR protocol, we consider both the future
reward and the hot zone strength when selecting the next
hop node and define Ucðd, i, tiÞ as the joint utility function
whose update rule is shown as

Uc d, i, tið Þ← ωQ̂c d, ið Þ + 1 − ωð ÞHc tið Þ, ð15Þ

where ωð0 ≤ ω ≤ 1Þ represents the joint coefficient.
In addition, the node buffer is an important kind of

resource and basis for improving the delivery ratio of routing
in DTNs. Therefore, it is necessary to use the drop mecha-
nism to manage the node buffer reasonably.

In this paper, we notice that when the node buffer is full,
the message copies that have been sent to the destination
node or waited for a long time can be considered invalid mes-
sage copies. These invalid message copies will waste network
resources of DTNs; therefore, they should be dropped. Here,
a drop mechanism is proposed to control the number of mes-
sage copies in the network without reducing the delivery
ratio. The drop mechanism is simple and only has the follow-
ing two rules:

(1) Regardless of whether the node buffer is full or not,
each node drops the copies of the message that has
been delivered to the destination node. This ensures
that the node can have more buffer size to receive
new copies of messages

(2) When the node buffer is full and a copy of each mes-
sage is not delivered to the destination node, the mes-
sage copy with a longer carrying time should be
preferentially dropped, but the message of the source
node should be kept in the network

4.4. Routing Algorithm. Based on the mechanisms proposed
above, the pseudocode of FDQLR is presented in
Algorithm 1.

According to Algorithm 1, the FDQLR protocol uses a
fuzzy logic-based approach to evaluate the node status. Each
node will periodically update the node information and
encounter table. Then, the FDQLR protocol calculates the
status of the node according to characteristics of NAF, CIF,
and MSF, and uses fuzzy logic to consider these different
indicators comprehensively to update the fuzzy reward coef-
ficient FcðdÞ. In order to improve the adaptability of the
fuzzy system, the parameters used in fuzzy logic (e.g., mem-
bership functions and fuzzy rules) are stored in external files.
Currently, these parameters are configured according to the
proposed mechanism aforementioned. In the future, we can
also adjust them by experiments to make the system adapt
to different network environments. Moreover, we use the
Double Q-Learning algorithm to update the two Q values of
the future reward values and the intermediate value mecha-
nism to update the Q values of the potential relay nodes. In
addition, the hot zone mechanism is proposed to give the

relay node in the hot zone a higher priority. Besides, nodes
will drop unnecessary message copies according to the drop
mechanism. Therefore, the FDQLR protocol can effectively
find the best next hop node and improve the efficiency of
message forwarding.

Next, we analyze the computational complexity of Algo-
rithm 1. Since the algorithm adopts the distributed learning
scheme, for forwarding a single message, the current node c
needs to maintain the set of its neighbors (i.e., Dc). Hence,
the outer loop statement of Algorithm 1 (Line 1) will iterate
at most ∣Dc ∣ times. Furthermore, node c also needs to main-
tain the neighbor set of its neighbor node i (i.e., Di) for the
intermediate value mechanism, and thus, the inner loop
statement of Algorithm 1 (Line 11) will iterate ∣Di ∣ times.
Usually, the nested loop in the algorithm will iterate ∣Dc ∣ ·∣
Di∣ times. However, in the worst case, all n nodes in the net-
work can become neighbors, that is, ∣Dc ∣ = ∣Di∣ = n. There-
fore, the computational time and space complexity of the
algorithm are both O (n2). By comparing with other algo-
rithms, we can find that FDQLR has the same computational
time and space complexityO (n2) as DQLR, which adopts the
intermediate value mechanism as well. Although the algo-
rithm of PRoPHET only maintains a table of delivery pre-
dictability for each node and has the computational time
and space complexity of O (n), the performance evaluation
in Section 5 shows that PRoPHET cannot be as efficient as
the proposed algorithm.

5. Performance Evaluation

5.1. Experiment Setup. In this paper, we use the Opportunis-
tic Network Environment (ONE) [26] network simulator to
simulate the FDQLR protocol. The ONE simulator is a
Java-based tool offering a broad set of DTN protocol simula-
tion capabilities in a single extensible framework, which
mainly consists of movement models, event generators, rout-
ings, and simulation results, etc.

Figure 4 shows the ONE simulation environment for
FDQLR. Two movement models are used in our simulation
experiments. The first movement model is the external trace
model, which is derived from the RioBuses dataset on
CRAWDAD and contains the real mobile trajectories cover-
ing 1,200 square kilometers and involving 17,723 buses in
Rio de Janeiro, Brazil. The second movement model is the
Shortest Path Map-Based Movement (SPMBM) model,
where the nodes move on the shortest path decided by the
Dijkstra algorithm in the simulation map. Additionally, the

Table 4: Simulation parameters.

Parameters RioBuses SPMBM

Simulate time 477,000 s 43,200 s

Terrain size 35 km × 25 km 4:5 km × 3:2 km
Transmission range 50m 10m

Transmission speed 250 kbytes 25 kbytes

Message size 500 kbytes, 1M 1 kbytes

Number of nodes 55 80
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message event generator is used to create messages to be
delivered randomly. Then, both the mobility traces and mes-
sage events are fed to the simulation engine to produce the
connectivity data that drives the routing modules including
FDQLR and other routings. Finally, by collecting the feed-
back routing data, the simulation engine can obtain the sim-
ulation results and generate reports, which contain the
message stats (e.g., delivery ratio, delivery delay, overhead,
and hop count) for different scenarios of the performance
evaluation. In this paper, FDQLR is implemented as a class
by extending the ActiveRouter class in the ONE. The node
characteristics, the set of neighbors, the double Q values,
and related parameters are all maintained as members of
the FDQLR class. And the fuzzy system of FDQLR is as
defined as a separate class called Fuzzy Attribute, where all
components of the fuzzy logic are implemented. Based on
this, all functions of the FDQLR algorithm are complete
(e.g., the fuzzy inference, double Q value update, hot zone,
and intermediate value mechanisms) to select the optimal
node of the next hop.

We run the ONE simulation of performance evaluation
on a computer with a Windows operation system, 3.4GHz
CPU main frequency, and 6.0GB memory. In the simulated
network environment, we employ the RioBuses dataset as
the main movement model and concentrate on a 12-hour
period from 7 am to 7pm and 55 buses as nodes in the area
of 35 km × 25 km of the dataset. Furthermore, we also adopt
the SPMBM model as a different network scenario for com-
parison. In running the simulation, when any two nodes
meet each other, i.e., move within the transmission range,
they exchange and update the node states and information
firstly. If any of them carries a message to be forwarded, the
corresponding routing protocol (e.g., FDQLR or other
related protocols) is invoked to determine the next hop of
the message. The process of message forwarding will con-
tinue until the message reaches the destination node. We let

the simulator run long enough that at least 500 messages
were generated and delivered. Then, at the end of the simula-
tion time, we calculate the mean and 95% confidence interval
for the performance metrics reported by the simulator. Con-
sidering the real network scenario, the settings of simulation
parameters of the two movement models are shown in
Table 4.

The following metrics are used in our simulations:

(i) Delivery ratio: the ratio of the number of messages
that reached the destination and the number of mes-
sages generated in the system

(ii) Delivery delay: the average time a message takes to
reach the destination node

(iii) Overhead: the average number of copies of a message
in the system, at the time of reaching the destination

(iv) Hop count: the average hops a message takes to reach
the destination node

5.2. Impact of Parameters. The learning rate δ and the dis-
count factor η are critical parameters in our routing protocol.
Next, we evaluate the impact of the two parameters on the
delivery ratio of the FDQLR protocol using the RioBuses
dataset. From Figure 5(a), we can find that when δ is larger
than 0.9, the delivery ratio drops. Because δ determines the
ability of new information to cover old information, if we
choose δ = 1, it means that agents only consider the newest
information and ignore old information. Therefore, we
choose δ = 0:88 for the FDQLR protocol. In Figure 5(b), the
delivery ratio rises with the increase of η. Because η deter-
mines the importance of future rewards, if η is too low, the
immediate rewards are mainly optimized in learning; if η is
high, the future rewards are obtained. Therefore, we choose
η = 0:4 for the FDQLR protocol.
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Figure 5: Performance of delivery ratio against learning rate and discount factor.
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The relationship between the fuzzy reward coefficient
FcðdÞ and the immediate reward ~Rcðd, iÞ is observed by
adjusting the fuzzy weight σ. When σ = 1 and σ = 0, ~Rcðd, iÞ
is completely related and unrelated to FcðdÞ, respectively.
In particular, ~Rcðd, iÞ is partially related to FcðdÞ when σ =
0:5. In order to study the effect of fuzzy logic, we evaluate
the performance of FDQLR with different values of σ. It
can be seen from Figure 6 that the delivery ratio, delivery
delay, and overhead of the FDQLR protocol are improved
continually with the increase of σ. That is, the fuzzy logic
has a greater impact on the performance of the protocol.
Moreover, notice that the results of FDQLR with σ = 0 are
equivalent to those of DQLR with a hot zone and a drop
mechanism added. These phenomena validate fuzzy logic as
well. Hence, we take σ = 1 in the following performance eval-
uation of the FDQLR protocol.
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Figure 6: Performance of FDQLR with different σ.

Table 5: Protocol parameters.

Routing protocol Q-Learning DQLR FDQLR

δ (learning rate) 0.88 0.88 0.88

η (discount factor) 0.4 0.4 0.4

ε (encounter weight) — — 0.1

α (balance factor) — 0.75 0.75

β (scaling constant) — 0.1 0.1

γ1 (aging constant of Q value) 0.13 0.13 0.13

γ2 (aging constant of hot zone) — — 0.35

ω (joint coefficient) — — 0.82

σ (fuzzy weight) — — 1
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5.3. Performance Comparison. Firstly, we compare the per-
formance of the FDQLR protocol with the PRoPHET, Q
-Learning, and DQLR protocols with regard to the delivery
ratio, delivery delay, overhead, and hop count while changing
the buffer size of nodes and TTL of messages. The PRoPHET
protocol is one of the early routing protocols in DTNs, which
determines whether to forward messages based on the histor-
ical information about the encounters between nodes and
deliveries of messages. The Q-Learning protocol utilizes a
simple forwarding strategy, which determines whether to
forward messages according to future rewards. The DQLR
protocol is our previous work that uses the Double Q
-Learning algorithm to decouple the selection from the eval-
uation, and it also uses the dynamic reward mechanism and
intermediate value mechanism to improve forwarding effi-
ciency. The FDQLR protocol extends the DQLR protocol,
which is based on fuzzy logic, and proposed the hot zone
mechanism and the drop mechanism additionally. The
parameters in the Q-Learning, DQLR, and FDQLR protocols
are shown in Table 5, where the values of δ, η, and σ are

determined according to the simulation results in Section
5.2, and other parameters are set by our experiences that
make FDQLR perform better. For comparison under the
same condition, the same parameters of different protocols
are set to the same values. Besides, the PRoPHET protocol
has four parameters, and we use the default PRoPHET proto-
col parameters as recommended in the ONE simulator.

Figures 7(a)–7(d) show the simulation results of the
delivery ratio, delivery delay, overhead, and hop count versus
buffer size for different protocols using the RioBuses dataset.
It can be seen from Figure 7(a) that the delivery ratio of dif-
ferent protocols increases with the buffer size because there
can be more message copies stored in the network as the
buffer size increases, which makes more messages to be deliv-
ered successfully. The delivery ratio of PRoPHET is lower
than that of the other three protocols since PRoPHET for-
wards messages only according to the historical information,
but the other Q-Learning-based protocols utilize the future
rewards further. In addition, DQLR obtains a larger delivery
ratio than the Q-Learning protocol due to the unbiased
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Figure 7: Performance of protocols with different buffer sizes (RioBuses).
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Double Q-Learning algorithm. Furthermore, the delivery
ratio of FDQLR is obviously higher than that of other proto-
cols, e.g., when the buffer size is 25M, FDQLR can effectively
improve the delivery ratio by about 18%, 20%, and 22% com-
pared with the DQLR, Q-Learning, and PRoPHET protocols,
respectively. This is because FDQLR uses fuzzy logic to
jointly consider the node characteristics with the dynamic
reward mechanism and largely avoids forwarding messages
to nodes with poor status. Besides, it has been shown in
Figure 6 that FDQLR is better than DQLR with the hot zone
and drop mechanisms added, which verifies the effectiveness
of fuzzy logic as well. Figure 7(b) shows the delivery delay of
different protocols. Their delivery delay also increases with
the buffer size, because when the buffer increases, the number
of messages to be forwarded also increases, and the average
delivery delay will increase as more messages are delivered.
Furthermore, the queuing delay may increase when more
messages are stored in the buffer. It can be seen from
Figure 7(b) that the delivery delay of Q-Learning and DQLR
is smaller than that of PRoPHET. However, for FDQLR,

when the buffer size is small (e.g., ≤25M), the delivery delay
of FDQLR is relatively high, since the larger delivery ratio of
FDQLR will lead to more messages with higher delay to be
delivered. Otherwise, when the buffer size is increased (e.g.,
>25M), the delivery delay of FDQLR becomes the lowest
compared with the other three protocols. In this case, the
drop mechanism of FDQLR plays an important role to dis-
card those older messages and reduce the delivery delay. In
Figure 7(c), the overhead of different protocols decreases
with the increase of the buffer size as a whole. The reason is
that the average number of copies of each message decreases
with the increase of delivered messages in the network, and
thus, the overhead is reduced. Besides, we can see that the
overhead of FDQLR protocol is greatly lower than other pro-
tocols because FDQLR uses the drop mechanism, which dis-
cards both the delivered and the older message copies in the
network to provide buffer space for new coming messages.
Figure 7(d) shows the hop count of different protocols. Their
hop count is maintained at about 3, which does not change
obviously with the increase of the buffer size. Thus, all of
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Figure 8: Performance of protocols with different TTL (RioBuses).
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these four protocols perform very well on the hop count met-
ric, while none of them shows the advantage obviously.

Figures 8(a)–8(d) show the simulation results of the
delivery ratio, delivery delay, overhead, and hop count versus
TTL for these four protocols using the RioBuses dataset. As
shown in Figure 8(a), with the increase of the TTL, the deliv-
ery ratio of all protocols increases, because messages will have
a longer time to be delivered when the TTL becomes larger.
The delivery ratio of FDQLR is also higher than that of other
protocols, e.g., when the TTL is 120min, FDQLR can effec-
tively improve the delivery ratio by about 3%, 5%, and 8%
compared with the DQLR, Q-Learning, and PRoPHET pro-
tocols, respectively. Furthermore, in Figure 8(b), we can see
that the delivery delay increases with the TLL since the aver-
age lifetime of the delivered messages increases as the TTL
increasing, and FDQLR protocol shows better performance
in delivery delay as a whole. Additionally, as shown in
Figure 8(c), the overhead of the Q-Learning, DQLR and
PRoPHET protocols increases with the TTL because the

number of copies of each message will increase when the
TTL becomes large. On the contrary, FDQLR protocol shows
very low overhead compared with others. In addition, it is
interesting that the overhead of FDQLR protocol decreases
with the TTL. The main reason for this phenomenon is that
the FDQLR protocol uses a drop mechanism, which will
actively discard older message copies with the increase of
the TTL, and so the number of older messages in the network
will decrease. Next, Figure 8(d) also shows that these four
protocols have a similar performance on hop count, which
is between 2 and 3 within the change range of TTL.

To evaluate the behaviour of the proposed protocols with
different scenarios, node densities, and mobility models, the
SPMBMmodel is used to compare the performance of differ-
ent protocols. Figures 9(a)–9(c) show the simulation results
of delivery ratio, delivery delay, and overhead versus TTL
for these four protocols using the SPMBM model. It can be
seen that the results of the SPMBM model are similar to the
previous experiments, that is, FDQLR can achieve the highest
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delivery ratio and lowest delivery delay and overhead com-
pared with the PRoPHET, Q-Learning, and DQLR protocols.
In conclusion, the FDQLR protocol can improve the delivery
ratio with lower delivery delay and overhead through the
proposed mechanisms in this paper.

6. Conclusion

In this paper, the routing protocol FDQLR is proposed,
which considers the complexity, dynamics, and uncertainty
of characteristics in the DTNs and integrates the fuzzy logic
and Double Q-Learning algorithm to optimize messages for-
warding. Then, the fuzzy-based dynamic reward mechanism
is proposed to comprehensively evaluate the status of the
nodes with fuzzy logic, and the fuzzy reward coefficient is
obtained with the fuzzy rules in the fuzzy process. Besides,
the hot zone mechanism is proposed based on the encounter
table to improve the efficiency of message forwarding. Fur-
thermore, the drop mechanism is proposed to discard the
delivered and older message copies to reduce the buffer occu-
pation. The simulation results show that the fuzzy logic can
obviously improve the performance of the FDQLR protocol,
which can achieve a satisfactory delivery ratio with low for-
warding overhead compared with other routing protocols
of DTNs.

In the future, we are going to evaluate the proposed fuzzy
system with different methods of fuzzy inference and defuz-
zification as well as fuzzy rule base and membership func-
tions to increase its efficiency. We are also planning to
optimize the parameters of the proposed protocol to improve
its performance by more extensive simulations under differ-
ent mobility models and traces. Last but not least, we will
research on the adaptive learning mechanism of the protocol
so that the FDQLR protocol can be more suitable for the real
network environment of DTNs.
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