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In recent years, large usage of wireless networks puts forward challenge to the utilization of spectrum resources, and it is significant
to improve the spectrum utilization and the system sum data rates in the premise of fairness. However, the existing algorithms have
drawbacks in efficiency to maximize the sum data rates of orthogonal frequency division multiple access (OFDMA) systems in the
premise of fairness threshold. To address the issue, a novel artificial bee colony algorithm with update quantities of nectar sources is
proposed for OFDMA resource allocation in this paper. Firstly, the population of nectar sources is divided into several groups, and
a different update quantity of nectar sources is set for each group. Secondly, based on the update quantities of nectar sources set for
these groups, nectar sources are initialized by a greedy subcarrier allocation method. Thirdly, neighborhood searches and updates
are performed on dimensions of nectar sources corresponding to the preset update quantities. The proposed algorithm can not only
make the initialized nectar sources maintain high levels of fairness through the greedy subcarrier allocation but also use the preset
update quantities to reduce dimensions of the nectar sources to be optimized by the artificial bee colony algorithm, thereby making
full use of both the local optimization of the greedy method and the global optimization of the artificial bee colony algorithm. The
simulation results show that, just in the equal-power subcarrier allocation stage, the proposed algorithm can achieve the required
fairness threshold and effectively improve the system sum data rates.

1. Introduction

It has become an undisputed fact that spectrum resources are
limited wireless resources. Wireless networks have brought
great changes to the world and people’s lifestyles because of
their strong scalability and mobility. All kinds of electronic
products, such as mobile phones and tablet computers, have
gradually become necessities of life, and the rapid increase of
the demand for wireless networks causes spectrum resources
to become more and more precious. Therefore, how to
improve the utilization of spectrum resources to meet the
various requirements of wireless networks for the sum data
rates, power transmissions, energy efficiency, and so on has
become an important issue at present [1–5].

Orthogonal frequency division multiple access (OFDMA)
is a widely used modulation technology in wireless communi-
cations, which divides the bandwidth of a high-speed data

stream into several mutually orthogonal low-speed data
streams and effectively resists the frequency selectivity weak-
ening [6–8]. Besides, the performance of OFDAM systems,
such as signal detection and bit-error-rate evaluation, can be
further enhanced by deep neural networks [9, 10]. OFDMA
systems can adaptively allocate wireless resources such as sub-
carriers and power based on the rate adaptive (RA) criterion to
improve the transmission performance of the system [8]. In
the RA criterion, diversity gain is still an effective technical
means to improve the performance of OFDMA systems. Bal-
ancing the tradeoff between the sum data rates and fairness
in multiuser OFDMA systems has been widely concerned [7,
8, 11–28]. Fairness has been considered in different forms,
such as rate proportional fairness [11], capacity-outage fair-
ness [27], and delay-outage fairness [28]. The rate propor-
tional fairness is the constraint of users’ rate proportionality
while the capacity/delay-outage fairness is the constraint of
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the percentage of users satisfying minimum capacity/delay
performance. This paper focuses on the former.

Various techniques such as greedy algorithms [11, 15,
23], evolutionary algorithms [7, 12–14, 18, 19, 21, 22, 25,
26], game theory [24], and deep neural networks [16, 17,
20, 27] have been applied for resource allocations with fair-
ness in OFDMA systems. For example, Shen et al. [11] pro-
posed a greedy subcarrier allocation algorithm based on the
data rate proportional fairness. The algorithm allocates sub-
carriers according to a predetermined data rate proportional
coefficient with equal power, which can achieve a high level
of fairness. However, the algorithm proposed by Shen et al.
neglects the improvement of the sum data rates because of
blindly pursuing a high level of fairness. Inspired by Shen
et al., Wong et al. [15] first approximated the data rate pro-
portional coefficient as the subcarrier number proportional
coefficient and then allocated subcarriers, which improves
the system sum data rates in the way of reducing the level
of fairness. Yuan et al. [19, 26] used the artificial bee colony
algorithm (ABC) to allocate optimal power for further
improvement of the system sum data rates. However, the
works in [19, 26] improve the system sum data rates just by
simply sacrificing fairness, which lacks certain flexibility.

Since the fairness of OFDMA resource allocation can
affect the system sum data rates, setting the fairness threshold
for resource allocation can not only ensure fairness but also
improve the flexibility of resource allocation. For example,
Zhang and Zhao [14] first used an algorithm based on the
fairness threshold to allocate equal-power subcarriers to
achieve a rough compromise between the system sum data
rates and the fairness and then used particle swarm optimiza-
tion (PSO) to allocate power to ensure the required fairness
threshold. However, characteristics of the greedy optimiza-
tion of the algorithm based on the fairness threshold make
it difficult to ensure the fairness threshold just in the equal-
power subcarrier allocation stage. At the same time, in the
process of allocating power to ensure the fairness threshold
by PSO, improper inertia weights can easily lead PSO to be
premature and hence reduce the system sum data rates. As
another example, Sharma and Anpalagan [12] and Sharma
and Madhukumar [13] directly use an ABC algorithm and
a genetic algorithm (GA), for which the fairness threshold
can be set, for subcarrier allocation. Compared with the
greedy subcarrier allocation algorithm based on the fairness
threshold in [14], both the ABC algorithm [12] and the GA
[13] can allocate subcarriers globally and optimally. How-
ever, dimensions of variables to be optimized by both the
ABC algorithm and the GA increase rapidly with the number
of subcarriers increasing. The large-scale subcarrier alloca-
tion not only increases the difficulty of optimization but also
puts forward challenges to the optimization performance of
both the ABC algorithm and the GA. The optimization per-
formance of both the ABC algorithm and the GA is easily
decayed especially when subcarriers are relatively insufficient
in allocation to users [21]. In order to avoid the reduction of
the system sum data rates caused by ensuring the fairness
threshold as much as possible, Sun et al. [21] adopted a
method, which combines a greedy algorithm of local optimi-
zation with a Hungarian algorithm of global optimization. In

addition, an ABC algorithm was adopted in [21] to ensure
the required fairness threshold and obtain better resource
allocation solutions than those in [7, 12]. However, the
method in [21] does not make full use of the fairness thresh-
old in the subcarrier allocation stage, so it is still insufficient
to improve the utilization of subcarriers. In addition,
although the above algorithms in [12–14] can flexibly adjust
the fairness and the system sum data rates by setting a fair-
ness threshold, few algorithms can be superior to the Shen
algorithm [10] in both the fairness and the system sum data
rates at the same time, which shows the shortcomings of
the above algorithms in [12–14].

Deep neural networks perform slightly poorer but with
lower computational complexity and latency than nondeep
learning algorithms [16, 17, 20, 27]. However, deep neural
networks need environment-specific design and training data
with labels for supervised learning [16, 17, 20, 27]. Evolution-
ary algorithms have advantages over global optimization [29,
30] and can be used to generate environment-specific train-
ing data with labels for training supervised-learning-based
deep neural networks in our future study. Motivated by these,
we apply ABC to maximize the system sum data rates while
ensuring the fairness threshold. The contributions of this
paper are stated as follows.

(1) In order to maximize the system sum data rates more
effectively in the premise of fairness threshold, this
paper proposes a novel ABC algorithm with update
quantities of nectar sources (ABC-UQ) for the
OFDMA resource allocation by combining a greedy
subcarrier allocation method based on the data rate
proportional fairness with the ABC algorithm

(2) The following measures are taken in our proposed
ABC-UQ algorithm. Firstly, the proposed ABC-UQ
divides the population of nectar sources into several
groups and sets a different update quantity of nectar
sources for each group. Secondly, based on the
update quantities of nectar sources set for these
groups, the proposed ABC-UQ initializes nectar
sources by using the greedy subcarrier allocation
method based on the data rate proportional fairness.
Thirdly, the proposed ABC-UQ performs neighbor-
hood searches and updates on dimensions of nectar
sources corresponding to the update quantities

(3) Because of the measures taken as above, our pro-
posed ABC-UQ can make full use of the advantages
of the greedy algorithm in local optimization and
the ABC algorithm in global optimization to maxi-
mize the system sum data rates in the premise of fair-
ness threshold, listed as the following two aspects. For
one thing, based on the preset update quantities of
nectar sources, the greedy subcarrier allocation
method based on the data rate proportional fairness
is used to initialize nectar sources, which not only
makes the initialized nectar sources maintain a
higher level of fairness but also reduces dimensions
to be optimized in nectar sources. For another, the
ABC algorithm is used for the global optimization
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on the reduced dimensions in nectar sources, which
is helpful in ensuring the fairness threshold and
enhancing the utilization of subcarriers and the sys-
tem sum data rates. Simulation results show that,
compared with the existing algorithms [12–14, 21]
using the fairness threshold for enhancing the system
sum data rates, the proposed algorithm is more effi-
cient in improving the system sum data rates in the
premise of fairness threshold just in the equal-
power subcarrier allocation stage

The rest of the paper is structured as follows. Section 2
provides the formulation of the OFDMA resource allocation
with constraint of the fairness threshold. The proposed ABC-
UQ for the OFDMA resource allocation is described in detail
in Section 3. Section 4 presents the simulation results, and
finally, Section 5 concludes this paper.

2. System Model

It is assumed that a multiuser OFDMA downlink system has
one base station, K users, and N subcarriers. In addition, the
transmission power of the base station transmitter is
assumed to be PT , and the base station is assumed to
completely know the channel state information. After a series
of processing such as the transmitter adaptive modulation,
IFFT and parallel-to-serial conversion, and adding cyclic pre-
fix, the data is transmitted through Rayleigh fading channel
with slow time variation and total bandwidth of B and then
sent to users after a series of processing including cyclic pre-
fix removal, serial-to-parallel and FFT conversion, and the
receiver adaptive demodulation [19].

Because of the constraint requirements of the fairness
threshold, the resource allocation problem of the multiuser
OFDMA is modeled as follows:

max
pk,n ,ck,n

〠
K

k=1
〠
N

n=1

B
N
ck,n log2 1 + pk,n hk,n

�� ��2
N0B/N

 !
, ð1Þ

〠
K

k=1
ck,n = 1, ck,n ∈ 0, 1f g,∀k, n, ð2Þ

〠
K

k=1
〠
N

n=1
ck,npk,n ≤ PT , pk,n ≥ 0,∀k, n, ð3Þ

F =
∑K

k=1Rk/λk
� �2
K∑K

k=1 Rk/λkð Þ2
≥ ε, ð4Þ

where Equation (1) is the objective function of the multiuser
OFDMA resource allocation problem; Equation (2) indicates
that each subcarrier is uniquely allocated to one single user;
Equation (3) represents the total transmit power constraint
of subcarriers; Equation (4) represents the fairness threshold
constraint required by the system; B is the total bandwidth
available to the system; N0 is the additive white Gaussian
noise power density; PT is the total transmission power of
the base station; pk,n represents the transmission power of

subcarrier n allocated to user k; Hk,n represents the channel
gain of user k on subcarrier n; ck,n indicates whether subcar-
rier n is allocated to user k; if subcarrier n is allocated to user
k, ck,n = 1; otherwise, ck,n = 0; and Rk is the data rate of user k,
which can be expressed as

Rk = 〠
N

n=1

B
N
ck,n log2 1 + pk,n hk,n

�� ��2
N0B/N

 !
, ð5Þ

where λk is the predetermined data rate proportional coeffi-
cient, F ∈ ð0, 1� is the fairness achieved by the system and F
is equal to 1 only if R1 : R2 : ⋯ : RK = λ1 : λ2 : ⋯ : λK , and
ε is the required fairness threshold.

It can be seen from Equations (1)–(5) that the multiuser
OFDMA resource allocation problem is an NP-hard prob-
lem, and the simultaneous joint allocation of subcarriers
and power may take a large computation cost [8]. However,
the computation cost can be reduced by allocating subcar-
riers and power separately [6]. For this reason, the equal-
power subcarrier allocation is used in this paper to solve
the OFDMA resource allocation problem (1)–(5), i.e., pk,n
= PT /N . So, the multiuser OFDMA resource allocation prob-
lem solved in this paper can be transformed as follows:

max
ck,n

〠
K

k=1
〠
N

n=1

B
N
ck,n log2 1 + pT hk,n

�� ��2
N0B

 !
, ð6Þ

〠
K

k=1
ck,n = 1, ck,n ∈ 0, 1f g,∀k, n, ð7Þ

g cð Þ = F − ε ≥ 0, ð8Þ

Rk = 〠
N

n=1

B
N
ck,n log2 1 + pT hk,n

�� ��2
N0B

 !
, ð9Þ

where c is a subcarrier allocation matrix composed by ck,n.

3. Proposed ABC-UQ for Resource Allocation

ABC [29, 31] is a metaheuristic algorithm that imitates bees to
find and collect nectar, in which the position of nectar sources
corresponds to that of the solution of optimization problems,
while the process of searching and collecting nectar sources
by bees corresponds to that of solving optimization problems.
When the ABC algorithm is used for subcarrier allocation, the
scale of dimensions of nectar sources is determined by the
number of subcarriers [12]. However, the ABC algorithm
has drawbacks in slow convergence speed and weak exploita-
tion capacity [29, 31], and the large-scale subcarrier allocation
would undoubtedly increase the difficulty of bee colony opti-
mization, which easily decays the optimization solutions.

In order to use the ABC algorithm to guarantee the fair-
ness threshold and improve the subcarrier utilization and the
system sum data rates more effectively, this paper applies a
greedy subcarrier allocation method based on the data rate
proportional fairness to initialize the population of nectar
sources and proposes a novel artificial bee colony algorithm
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with update quantities of nectar sources (ABC-UQ) for the
resource allocation. The proposed ABC-UQ first divides the
population of nectar sources into several groups and sets a
different update quantity of nectar sources for each group.
After that, the proposed ABC-UQ uses the greedy subcarrier
allocation method based on the data rate proportional fair-
ness to initialize the population of nectar sources with the
help of the update quantities of nectar sources set for those
groups. At last, the proposed ABC-UQ performs neighbor-
hood searches and updates on dimensions of nectar sources
corresponding to the preset update quantities.

The proposed ABC-UQ for the resource allocation
includes several parts, such as initialization for the popula-
tion of nectar sources, fitness calculation for nectar sources,
phase of employed bees, phase of onlooker bees, storage of
the optimal nectar source, and phase of scout bees. In the fol-
lowing, each part is described detailedly.

3.1. Initialization for Population of Nectar Sources. In this
paper, a nectar source variable is defined as a vector with
dimension D equal to the number of subcarriers N . Denote
S as the population size of nectar sources, xi as the ith indi-
vidual of nectar sources, and xi,d as the element of the dth
dimension in xi, where xi,d ∈ ½1, K�, i ∈ f1, 2,⋯, Sg, d ∈ f1,
2,⋯,Dg.

The initialization for the population of nectar sources is
described in the following steps.

Step 1. According to the population size S, the population of
nectar sources is divided into �S groups and sets a different
update quantity of nectar sources N�s for each group �s, where
�S ∈ f2, 3,⋯, Sg, �s ∈ f1, 2,⋯, �Sg, N�s ∈ f1, 2,⋯,N − 1g.

Step 2. Obtain the minimal update quantity of nectar sources
Nmin

�s and �N =N −Nmin
�s . Then, the greedy subcarrier alloca-

tion method based on data rate proportional fairness is used
to generate �N binary allocation pairs, which is described in
detail in Steps 3–5. According to the generation order of
the binary allocation pairs, the generated �N binary allocation
pairs are denoted as Φ�n = hn�n, k�ni (�n = 1, 2,⋯, �N), where n�n
∈ f1, 2,⋯,Ng represents a subcarrier and k�n ∈ f1, 2,⋯, Kg
represents a user.

Step 3. R1 = R2 =⋯ = RK = 0, Ω = f1, 2,⋯,Ng, �n = 1, k = 1.

Step 4. while (k ≤ Kand �n ≤ �N) {
n = arg maxn∈Ωfjhk,nj2g
n�n = n
k�n = k,
Φ�n = hn�n, k�ni
�n = �n + 1
Rk = Rk + log2ð1 + pT jhk,nj2/ðN0BÞÞ
Ω =Ω − fng
k = k + 1}.

Step 5. while (�n ≤ �N) {
k = arg mink∈f1,2,⋯,KgfRk/λkg
n = arg maxn∈Ωfjhk,nj2g

n�n = n
k�n = k
Φ�n = hn�n, k�ni
�n = �n + 1
Rk = Rk + log2ð1 + pT jhk,nj2/ðN0BÞÞ
Ω =Ω − fng}.

Step 6. Use the binary allocation pairs Φ�n = hn�n, k�ni
(�n = 1, 2,⋯, �N) generated in Step 2 to initialize the nectar
sources of each group, shown as Steps 7-9.

Step 7. For each group�s (�s ∈ f1, 2,⋯, �Sg) and its correspond-
ing update quantity of nectar sources N�s, compute �N�s =N
−N�s. Because N�s ≥Nmin

�s , N −N�s ≤N −Nmin
�s , i.e., �N�s ≤ �N

comes into existence.

Step 8. Initialize �N�s dimensions of each nectar source xj in
each group �s by using the first �N�s binary allocation pairs,
i.e., Φm = hnm, kmi (m = 1, 2,⋯, �N�s), shown as

xj,nm = km m = 1, 2,⋯, �N�s

� �
, ð10Þ

where km ∈ f1, 2,⋯, Kg, nm ∈ f1, 2,⋯,Ng.

Step 9. Initialize the remaining N�s dimensions of each nectar
source xj in each group �s by using random real numbers in
½1, K�, shown as

xj,�nl = 1 + rl K − 1ð Þ l = 1, 2,⋯,N�sð Þ, ð11Þ

where rl ∈ ½0, 1� is a uniformly distributed random real num-
ber and �nl ∈Ω�s, where the set Ω�s contains the remaining N�s
dimensions of each nectar source xj in each group �s,
expressed as Ω�s = f1, 2,⋯,Ng − fn1, n2,⋯, n�N�s

g. Obvi-
ously, Ω�s is just the set corresponding to the preset update
quantity N�s of each nectar source xj in the group �s.

The following takes the initialization for the population
of nectar sources with the number of subcarriers N = 16
and the number of users K = 4 as an example. In Step 1, the
population size of nectar sources is set as S = 12, and the
number of groups of nectar sources is set as �S = 6
(�s = 1, 2,⋯, 6), and each group contains 2 nectar sources,
and the update quantities of nectar sources for the six groups
are set as N1 = 1,N2 = 2,N3 = 4,N4 = 6,N5 = 7, andN6 = 8,
respectively. In Step 2, the minimal update quantity of nectar
sources Nmin

�s = 1, and �N = 15, and then, the 15 binary alloca-
tion pairs are sequentially generated by the greedy subcarrier
allocation method based on the data rate proportional fair-
ness, assumed to be Φ1 = h11, 2i, Φ2 = h4, 1i, Φ3 = h6, 4i, Φ4
= h16, 3i, Φ5 = h13, 4i, Φ6 = h7, 3i, Φ7 = h5, 1i, Φ8 = h14, 4i,
Φ9 = h12, 2i, Φ10 = h15, 3i, Φ11 = h3, 1i, Φ12 = h2, 2i, Φ13 =
h1, 4i, Φ14 = h8, 3i, Φ15 = h10, 2i. In Step 6, initialize �N�s
dimensions of each nectar source in each group �s by using
the first �N�s binary allocation pairs, where �N1 = 15, �N2 = 14,
�N3 = 12, �N4 = 10, �N5 = 9, and �N6 = 8. After that, initialize
the remaining N�s dimensions of each nectar source in each
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group �s by using random real numbers in ½1, K�. Results of
initialization for the population of nectar sources are shown
in Table 1.

It can be seen from Table 1 that the sets Ω�s (�s = 1, 2, 3,
4, 5, 6) are corresponding to the preset update quantities
(N�s = 1, 2, 4, 6, 7, 8) of the six groups of nectar sources. In
addition, initialization values corresponding to dimensions
inΩ�s are the elements in the bold areas in Table 1. Obviously,
it can enable the initialized nectar sources to maintain a high
level of fairness by using the greedy subcarrier allocation
method based on the data rate proportional fairness shown
in Steps 3–5 for initialization. The nectar sources with
smaller update quantities are more likely to have high fair-
ness. For example, the nectar sources x1 and x2 in the group
�s = 1 with the update quantity N�s = 1 are more likely to have
high fairness than x11 and x12 in the group �s = 6 with the
update quantity N�s = 8. However, it is helpful to keep the
diversity of the population of nectar sources by setting differ-
ent update quantities for different groups of nectar sources.

3.2. Fitness Calculation for Nectar Sources. Because the mul-
tiuser OFDMA resource allocation problem (6)–(9) is a con-
strained optimization problem, the fitness function should be
designed to consider feasible solutions satisfying the con-
straints and infeasible solutions not satisfying the constraints
and can guide the ABC algorithm to transit from the space of
infeasible solutions to that of feasible solutions [31, 32].

Based on the above, the fitness function designed in this
paper is shown as below:

Fit xið Þ =
1

1 + f �xið Þ , if f �xið Þ ≥ 0,

1 + f �xið Þj j, if f �xið Þ < 0,

8><
>: ð12Þ

where FitðxiÞ is the fitness function of nectar source xi and �xi
is the vector obtained by rounding the elements of nectar
source xi, and f ð�xiÞ is the objective function of the vector
�xi, expressed as follows:

f �xið Þ =
f0 + g Xið Þj j, if g Xið Þ < 0,
−T Xið Þ, if g Xið Þ ≥ 0,

(
ð13Þ

where f0 is a positive constant and gð⋅Þ = F − ε is the func-
tion of the fairness threshold constraint, and Xi is the K
-row and N-column subcarrier allocation matrix trans-
formed from �xi. The transformation from the vector �xi
to the matrix Xi is shown as

Xi½ �k,n =
1, if �xi½ �n = k,
0, if �xi½ �n ≠ k,

(
ð14Þ

where ½Xi�k,n is the element in the kth row and the nth column
of the subcarrier allocation matrix Xi and ½�xi�n is the element
in dimension n of the vector �xi. TðXiÞ is expressed as

T Xið Þ = 〠
K

k=1
〠
N

n=1

B
N

Xi½ �k,n log2 1 + PT hk,n
�� ��2
N0B

 !
: ð15Þ

Firstly, it can be seen from Equations (12) and (13) that
the fitness function (12) is determined by the objective func-
tion (13), while the objective function (13) is affected by feasi-
ble solutions satisfying the fairness threshold constraint and
infeasible solutions not satisfying the fairness threshold con-
straint. From that, it can be concluded that the fitness value
of a feasible solution is greater than that of an infeasible

Table 1: Results of initialization for the population of nectar sources with the number of subcarriers N = 16 and the number of users K = 4.

Update quantities
N�s

Nectar sources
xi,n

Subcarrier n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N1 = 1
i = 1 4 2 1 1 1 4 3 3 3.11 2 2 2 4 4 3 3

i = 2 4 2 1 1 1 4 3 3 3.67 2 2 2 4 4 3 3

N2 = 2
i = 3 4 2 1 1 1 4 3 3 3.65 3.95 2 2 4 4 3 3

i = 4 4 2 1 1 1 4 3 3 1.64 2.93 2 2 4 4 3 3

N3 = 4
i = 5 2.76 2 1 1 1 4 3 2.19 3.29 2.93 2 2 4 4 3 3

i = 6 3.84 2 1 1 1 4 3 3.79 2.42 3.05 2 2 4 4 3 3

N4 = 6
i = 7 2.02 1.51 3.6 1 1 4 3 2.53 2.07 2.59 2 2 4 4 3 3

i = 8 3.06 3.03 1.38 1 1 4 3 2.05 1.94 1.53 2 2 4 4 3 3

N5 = 7
i = 9 3.66 2.18 3.74 1 1 4 3 3.81 3.73 3.74 2 2 4 4 2.51 3

i = 10 2.36 2.82 1.07 1 1 4 3 1.38 2.23 1.78 2 2 4 4 2.12 3

N6 = 8
i = 11 2.60 3.63 3.89 1 1 4 3 3.78 1.48 1.42 2 1.61 4 4 1.55 3

i = 12 1.72 1.44 2.95 1 1 4 3 3.78 1.66 3.86 2 2.85 4 4 3.31 3

Sets corresponding to the bold areas of each group are Ω1 = f9g, Ω2 = f9, 10g, Ω3 = f1, 8, 9, 10g, Ω4 = f1, 2, 3, 8, 9, 10g, Ω5 = f1, 2, 3, 8, 9, 10, 15g, and Ω6 =
f1, 2, 3, 8, 9, 10, 12, 15g, respectively. Elements of the bold areas in each nectar source are initialized by Equation (11), and the rest elements are initialized
by Equation (10).
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solution. Secondly, it is not difficult to find out from Equations
(12), (13), and (15) that among the feasible solutions satisfying
the fairness threshold constraint, the preferred feasible solu-
tion has a larger system sum data rate and a larger fitness
value. Finally, it can be known from Equations (12) and (13)
that among the infeasible solutions that do not satisfy the fair-
ness threshold constraint, the superior infeasible solution also
has a larger fitness value than the inferior infeasible solution.
The above analyses show that the designed fitness function
accords with the principle that superior solutions should have
larger fitness, which is conducive to guiding the ABC algo-
rithm to transit from the space of infeasible solutions to that
of feasible solutions and can search for better feasible solutions
in the space of feasible solutions.

3.3. Phase of Employed Bees. In solving optimization prob-
lems by the ABC algorithm, it is beneficial to improve opti-
mization solutions by reducing dimensions to be optimized
in nectar sources. Hence, according to the preset update
quantity N�s of nectar sources in the group �s, this paper pro-
poses to perform neighborhood searches and updates just
on N�s dimensions of each nectar source in the group �s. Note
that,Ω�s is the set corresponding to the preset update quantity
N�s of each nectar source in the group �s, and jΩ�sj =N�s.

In this paper, the following neighborhood searches and
updates of nectar sources for phases of employed bees and
onlooker bees are proposed, shown as

vi,n =

xi,n + φi,n xi,n − xq,n
� �

,

if rn < δð Þ and n ∈Ω�s ið Þ
� �

,

xi,n, otherwise,

8>>><
>>>:

ð16Þ

vi,n =max min vi,n, Kð Þ, 1ð Þ, ð17Þ
where Equation (17) is used to limit vi,n generated by Equa-
tion (16) to the range of ½1, K�,�sðiÞ ∈ f1, 2,⋯, �Sg is the group
to which the ith nectar source belongs, Ω�sðiÞ is the set of
dimensions corresponding to the preset update quantity of
nectar sources in the group �sðiÞ, xq,n is the element on the n
th dimension of the qth nectar source, q is a randomly gener-
ated integer satisfying q ∈ f1, 2,⋯, Sg and q ≠ i, φi,n ∈ ½−1, 1�
is a uniformly distributed random real number, vi,n is the
newly generated element of the nth dimension of the ith nec-
tar source, rn ∈ ½0, 1� is a uniformly distributed random real
number, and δ ∈ ½0, 1� is the predetermined real number.

The following takes the nectar sources i = 12 and i = 1 in
Table 1 as an example to explain the neighborhood searches
and updates described in Equation (16). For convenience, the

neighborhood searches and updates described in Equation
(16) are shown in Figure 1, where the nectar sources i = 12
and q = 1 correspond to the nectar sources i = 12 and i = 1
in Table 1, respectively, and the elements in the shadow areas
of the nectar source i = 12 corresponding to the set Ω�sð12Þ
(Ω�sð12Þ =Ω6 = f1, 2, 3, 8, 9, 10, 12, 15g) are those that the
neighborhood searches and updates are performed on, and
the sign “↑” is used to indicate the elements which take part
in the neighborhood searches and updates in the nectar
source q = 1.

Equations (16) and (17) suggest that the neighborhood
searches and updates for nectar sources in the group �s are
performed just on dimensions in the set Ω�s corresponding
to the preset update quantity N�s of these nectar sources.
Because ∣Ω�s ∣ =N�s and N�s <N , the neighborhood searches
and updates described in Equations (16) and (17) can effec-
tively reduce dimensions of nectar sources to be optimized
compared to the ABC algorithm proposed by Sharma and
Anpalagan [12] and benefit to the enhancement of optimiza-
tion of the ABC algorithm.

In the phase of employed bees, the employed bees per-
form the neighborhood searches and updates for each nectar
source xi and generate a new nectar source vi for xi by using
Equations (16) and (17) and calculate the fitness FitðxiÞ for xi
and the fitness FitðviÞ for vi by using Equations (12)–(15).
In addition, the employed bees take comparisons between
FitðxiÞ and FitðviÞ to determine whether to adopt the new
nectar source vi and simultaneously modify the nonimprove-
ment number Basi, shown as

xi = vi, Basi = 0, if Fit við Þ > Fit xið Þ,
xi = xi, Basi = Basi + 1, if Fit við Þ ≤ Fit xið Þ:

(
ð18Þ

3.4. Phase of Onlooker Bees. In the phase of onlooker bees, the
probability pðxiÞ for selecting nectar sources xi calculated by
onlooker bees is expressed as

p xið Þ =

1
2 1 + Fit xið Þ

∑S
s=1Fit xsð Þ

 !
, if Fit xið Þ > 1,

1
2 1 − Fit xið Þ

∑S
s=1Fit xsð Þ

 !
, if Fit xið Þ ≤ 1:

8>>>>><
>>>>>:

ð19Þ

The onlooker bees use the probability of Equation (19) to
select S nectar sources by the way of roulette. Then, similar to
the phase of employed bees, the onlooker bees perform the
neighborhood searches and updates for each nectar source
xi and generate a new nectar source vi for xi by using

Update quantities
Ns

Nectar sources
xi,n

Subcarriern
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N1=1

_

q=1 4 2 1 1 1 4 3 3 3.11 2 2 2 4 4 3 3

N6=8 i=12 1.72 1.44 2.95 1 1 4 3 3.78 1.66 3.86 2 2.85 4 4 3.31 3

Figure 1: Schematic diagram of the neighborhood searches and updates by taking the nectar sources 12 and 1 in Table 1 as an example.
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Equations (16) and (17) and calculate the fitness FitðxiÞ for xi
and the fitness FitðviÞ for vi by using Equations (12)–(15).
Following that, the employed bees use Equation (18) to deter-
mine whether to adopt the new nectar source vi and modify
the nonimprovement number Basi at the same time. That
is, if FitðxiÞ > FitðviÞ, then xi = vi and Basi = 0; otherwise, xi
remains unchanged and Basi = Basi + 1.

3.5. Storage of Optimal Nectar Source. Before the phase of
scout bees, the nectar source with the largest fitness from
the population of nectar sources was obtained, and the
obtained nectar source was saved as the current optimal
solution.

3.6. Phase of Scout Bees. Same as [12], a fixed interval of
cycles, i.e., ρ, is used to generate the scout bees. If the current
iteration number of ABC, Cycle, satisfies Cycle modulo ρ
equal to zero, then check whether the largest nonimprove-
ment number is larger than the predetermined constant,
Limit. If Basi attached with the nectar source xi is the largest
nonimprovement number and larger than Limit, then aban-
don the original nectar source xi, and create a new nectar
source belonging to the same group as the original nectar
source xi, and set Basi = 0. What is more, if the fitness of
the newly generated nectar source is greater than that of the
optimal solution, the newly generated nectar source is saved
as the current optimal solution.

Finally, judge whether the current iteration number,Cycle,
is equal to the maximal iteration number,Maxcycle. IfCycle is
equal to Maxcycle, stop calculating and output the optimal
solution as well as its corresponding fairness and the system
sum data rate; otherwise, Cycle = Cycle + 1 and continue to
run by moving to the phase of employed bees.

4. Simulations and Analyses

In the simulations, it is assumed that the wireless channel of
the multiuser OFDMA system is a six-path Rayleigh fading
channel with exponential attenuation, where the multipaths
of exponential attenuation are set as 0, -8.69, -17.37, -26.06,

-34.74, and -43.43 dB [7]. In addition, the number of subcar-
riers N is set as 64, and the total bandwidth and transmit
power of the base station are set as 1MHz and 1W, respec-
tively. Results of both the fairness and the sum data rates
are average values taken with 200 different experiments.

4.1. Simulations on Fairness Threshold ε = FShen. In order to
verify that the proposed ABC-UQ in this paper has the ability
to guarantee a higher fairness threshold and obtain larger
sum data rates simultaneously, the fairness FShen obtained
by the Shen algorithm [10] is used as the fairness threshold,
i.e., ε = FShen, since the Shen algorithm tends to achieve
higher fairness than other algorithms [21, 26]. For compari-
sons, the proposed ABC-UQ, ABC-OSA [12], and PSO-EQ
[14] are used to solve the resource allocation with the fairness
threshold constraint (F − FShen ≥ 0). The parameters of the
proposed ABC-UQ are set as the following: S = 60, f0 =
1000, δ = 0:6, ρ = 12, Limit = 10, Maxcycle = 1000, S′ = 6,
N1 = 1, N2 = 4, N3 = 6, N4 = 8, N5 = 10, and N6 = 12, and
there are 10 nectar sources in each group for the proposed
ABC-UQ. In addition, the data rate proportional coefficient
is set as λ1 : λ2 : ⋯ : λK = 1 : 1 : ⋯ : 1, λ1 : λ2 : ⋯ : λK = 8
: 1 : ⋯ : 1, and λ1 : λ2 : ⋯ : λK = 16 : 1 : ⋯ : 1, and the
number of users K varies from 6 to 16. To be fair, the popu-
lation size and the maximal iteration number in PSO-EQ are
set the same as the above. The fairness and the sum data rates
obtained in the simulations are listed in Tables 2 and 3.

It can be seen from Tables 2 and 3 that the proposed
ABC-UQ can surpass the Shen algorithm in both the fairness
and the sum data rates at the same time. This makes our pro-
posed ABC-UQ different from the previous algorithms in [7,
12–15, 19, 21, 26] which are superior to the Shen algorithm in
only one single aspect of the fairness or the sum data rates.
ABC-OSA simply applies an improved ABC for subcarrier
allocation but still lacks an effective mechanism to improve
the optimization efficiency and performance of ABC for the
resource allocation with the fairness threshold constraint.
Therefore, with users increasing, both the fairness and the
sum data rates obtained by ABC-OSA become inferior to
even lower and lower than the Shen algorithm. Different

Table 2: Fairness obtained by various algorithms as the fairness threshold is set as ε = FShen.

K
λ1 : λ2 : ⋯ : λK = 1 : 1 : ⋯ : 1 λ1 : λ2 : ⋯ : λK = 8 : 1 : ⋯ : 1 λ1 : λ2 : ⋯ : λK = 16 : 1 : ⋯ : 1

Shen
Proposed
ABC-UQ

ABC-
OSA

PSO-
EQ

Shen
Proposed
ABC-UQ

ABC-
OSA

PSO-
EQ

Shen
Proposed
ABC-UQ

ABC-
OSA

PSO-
EQ

6 0.9992 0.9993 0.9993 0.9993 0.9958 0.9961 0.9734 0.9961 0.9892 0.9900 0.9113 0.9896

7 0.9989 0.9990 0.9985 0.9990 0.9954 0.9957 0.9635 0.9957 0.9890 0.9896 0.9104 0.9896

8 0.9987 0.9987 0.9972 0.9987 0.9948 0.9952 0.9681 0.9951 0.9884 0.9892 0.9236 0.9889

9 0.9983 0.9983 0.9959 0.9984 0.9940 0.9943 0.9543 0.9941 0.9869 0.9875 0.9166 0.9865

10 0.9979 0.9979 0.9922 0.9980 0.9936 0.9939 0.9584 0.9937 0.9864 0.9869 0.9259 0.9862

11 0.9975 0.9976 0.9886 0.9977 0.9931 0.9934 0.9540 0.9932 0.9859 0.9865 0.9264 0.9859

12 0.9970 0.9971 0.9862 0.9972 0.9928 0.9932 0.9487 0.9928 0.9865 0.9871 0.9252 0.9866

13 0.9966 0.9967 0.9820 0.9968 0.9918 0.9922 0.9517 0.9917 0.9859 0.9868 0.9300 0.9855

14 0.9958 0.9958 0.9750 0.9960 0.9899 0.9902 0.9495 0.9893 0.9851 0.9859 0.9276 0.9845

15 0.9949 0.9950 0.9680 0.9952 0.9889 0.9892 0.9474 0.9889 0.9859 0.9869 0.9275 0.9859

16 0.9944 0.9945 0.9663 0.9945 0.9873 0.9875 0.9427 0.9870 0.9852 0.9860 0.9240 0.9847
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from ABC-OSA, PSO-EQ uses the fairness threshold-based
greedy algorithm to allocate subcarriers and applies PSO-
based power allocation to guarantee the fairness threshold
and maximize the sum data rates. Hence, fairness obtained
by PSO-EQ can exceed the Shen algorithm. However, the
sum data rates obtained by PSO-EQ is lower than that of
the Shen algorithm. That is, PSO-EQ cannot be superior to
the Shen algorithm in both the fairness and the sum data
rates simultaneously.

In order to show the influence of different data rate pro-
portional coefficients on the optimization of various algo-
rithms, the average values of the fairness and the sum data
rates of each algorithm with different data rate proportional
coefficients obtained from Tables 2 and 3 are plotted in
Figures 2 and 3. It can be seen from Figures 2 and 3 that
the average values of both the fairness and the sum data rates
obtained by various algorithms decrease with the increase of

λ1 of the data rate proportional coefficients. The main reason
is that, with the increase of λ1 of the data rate proportional
coefficients, the subcarrier resources cannot better meet the
requirements of users. However, Figures 2 and 3 show that
the proposed ABC-UQ is superior to the Shen algorithm,
ABC-OSA, and PSO-EQ in the average values of both the
fairness and the sum data rates at different data rate propor-
tional coefficients.

The above simulations on the fairness threshold ε = FShen
indicate that the proposed ABC-UQ can obtain both the
higher fairness and the larger sum data rates than other algo-
rithms at the same time.

4.2. Simulations on Fairness Threshold ε = 0:96. In this sub-
section, the fairness threshold ε is set as 0.96 to further dem-
onstrate that, as the required fairness threshold is slightly
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Figure 3: Average sum data rates obtained by various algorithms at
the fairness threshold ε = FShen and different data rate proportional
coefficients.
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Figure 2: Average fairness obtained by various algorithms at the
fairness threshold ε = FShen and different data rate proportional
coefficients.

Table 3: Sum data rates obtained by various algorithms as the fairness threshold is set as ε = FShen.

K
λ1 : λ2 : ⋯ : λK = 1 : 1 : ⋯ : 1 λ1 : λ2 : ⋯ : λK = 8 : 1 : ⋯ : 1 λ1 : λ2 : ⋯ : λK = 16 : 1 : ⋯ : 1

Shen
Proposed
ABC-UQ

ABC-
OSA

PSO-
EQ

Shen
Proposed
ABC-UQ

ABC-
OSA

PSO-
EQ

Shen
Proposed
ABC-UQ

ABC-
OSA

PSO-
EQ

6 6.7521 6.7620 6.0765 5.0167 6.3974 6.4125 6.0292 4.6196 6.2310 6.2593 6.0008 4.4852

7 6.7743 6.7835 5.9236 4.6187 6.5422 6.5643 5.9861 4.5059 6.3984 6.4292 5.9924 4.3756

8 6.7658 6.7759 5.7334 4.3100 6.6257 6.6547 5.8688 4.3838 6.5083 6.5470 5.9028 4.3974

9 6.8319 6.8387 6.0783 4.2254 6.5043 6.5392 5.9465 4.0943 6.3006 6.3493 5.9914 4.0499

10 6.7527 6.7635 6.0173 3.9591 6.5036 6.5432 6.0887 3.9509 6.3416 6.3904 6.0490 3.9988

11 6.8644 6.8718 5.9319 4.0581 6.6729 6.7181 6.0291 3.9823 6.5180 6.5692 6.0748 4.2105

12 6.8817 6.8896 5.8397 3.9750 6.7380 6.7801 5.769 4.0723 6.5706 6.6152 5.8154 4.2431

13 6.8593 6.8683 5.9789 3.8879 6.7369 6.7846 6.0962 3.9729 6.5550 6.6127 6.0902 4.1121

14 6.8752 6.8856 5.8702 4.2726 6.6658 6.7106 6.0309 3.7581 6.4395 6.5034 5.9803 3.9005

15 6.8901 6.8982 5.8957 3.8421 6.7944 6.8307 5.9402 3.8370 6.6409 6.7135 5.9824 3.9419

16 6.8838 6.8928 5.9583 3.8014 6.7806 6.8168 6.0025 3.7733 6.6502 6.7200 5.9301 3.8404
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lower, the proposed ABC-UQ is more effective to improve
the sum data rates. In the following simulations, parameters
of the proposed ABC-UQ remain the same as the above.
For comparisons, the algorithms including the proposed
ABC-UQ, Shen [10], ABC-OSA [12], GA [13], PSO-EQ
[14], Wong-ABC-1 [19], GHS-ABC [21], and Wong-ABC-
2 [26] are used to solve the resource allocation with the fair-
ness threshold constraint (F − 0:96 ≥ 0). Note that Shen [10],
Wong-ABC-1 [19], and Wong-ABC-2 [26] do not have the
parameter of the fairness threshold ε, which means that Shen
[10], Wong-ABC-1 [19], and Wong-ABC-2 [26] cannot
improve the system sum data rates flexibly with the required
fairness threshold.

Both the fairness and the sum data rates of various algo-
rithms at different user numbers K and different data rate
proportional coefficients λ1 : λ2 : ⋯ : λK are shown in
Figures 4–6. It can be seen from Figures 4–6 that, because
of the increase of λ1 of the data rate proportional coefficients,
subcarrier resources are becoming more and more insuffi-
cient relative to the requirements of users, so that the sum
data rates obtained by various algorithms are becoming lower
and lower. However, with the increase of λ1, the advantage of
the proposed ABC-UQ over other algorithms in sum data
rates becomes more and more obvious in the premise of the
fairness threshold. Although the proposed ABC-UQ obtains
lower sum data rates than the GHS-ABC [21] in some cases
at λ1 = 1, the proposed ABC-UQ obtains larger sum data
rates than the GHS-ABC [21] at λ1 = 8 and 1.

Because PSO-EQ [14] combines the fairness threshold-
based greedy subcarrier allocation and PSO-based power

allocation, it can guarantee the required fairness threshold
for the resource allocation. However, the premature PSO
leads to the sum data rates lower than other algorithms.

At λ1 = 1 where subcarrier resources are relatively suffi-
cient, ABC-OSA [12] and GA [13] can guarantee the fairness
threshold at the expense of reducing the sum data rates. How-
ever, at λ1 = 8 and 16 where subcarrier resources are relatively
insufficient, ABC-OSA [12] and GA [13] can neither guaran-
tee the fairness threshold nor improve the sum data rates. The
main reason is that both ABC-OSA [12] and GA [13] do not
take more effective measures for subcarrier allocation.

Simulation results in Figures 4–6 show that, compared
with the existing algorithms [12–14, 21] using the fairness
threshold for enhancing the system sum data rates, the pro-
posed algorithm is more efficient in improving the system
sum data rates in the premise of fairness threshold just in
the equal-power subcarrier allocation stage. Due to the lack
of the fairness threshold ε, the algorithms including Shen
[10], Wong-ABC-1 [19], and Wong-ABC-2 [26] can achieve
higher fairness but cannot effectively improve the subcarrier
utilization and the sum data rates, which suggests that Shen
[10], Wong-ABC-1 [19], and Wong-ABC-2 [26] are ineffi-
cient in improving the utilization of spectrum resources.

In order to further reveal differences between the pro-
posed ABC-UQ and other algorithms, iterations of the fair-
ness and the sum data rates of optimal solutions at K = 16,
ε = 0:96, and λ1 : λ2 : ⋯ : λK = 16 : 1 : ⋯ : 1 are plotted in
Figure 7. As can be seen from Figures 7(c)–7(f), at the begin-
ning of iterations, the fairness level of the optimal solutions of
both ABC-OSA [12] and PSO-EQ [14] is far lower than the
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required fairness threshold, and then, the fairness level of the
optimal solutions increases with the iterations increasing,
which results in the sum data rates decreasing first and then
increasing. Since PSO-EQ [14] can achieve the required fair-
ness threshold in Figure 7(e), the sum data rates can be opti-
mized by PSO-EQ [14] so that the sum data rates increase
steadily. However, due to the premature PSO, the increasing
of the sum data rates becomes stagnated at about 500 itera-
tions in Figure 7(f). Since ABC-OSA [12] cannot achieve
the required fairness threshold in Figure 7(c), it can only
optimize the fairness as much as possible while not optimiz-
ing the sum data rates at all so that the sum data rates become
unstable in Figure 7(d). Different from ABC-OSA [12] and
PSO-EQ [14], the proposed ABC-UQ effectively combines
the greedy subcarrier allocation method based on the data
rate proportional fairness with ABC, so that the proposed
ABC-UQ can make the fairness achieve the required fairness
threshold at the beginning of iterations, as shown in
Figure 7(a). As a result, the sum data rates optimized by the
proposed ABC-UQ increase steadily in Figure 7(b).

Simulations and analyses in Subsections 4.2 and 4.3 show
that the proposed ABC-UQ can not only guarantee the fair-
ness threshold but also effectively improve the subcarrier uti-
lization and the sum data rates.

4.3. Simulations on Optimal Update Quantity to Ensure
Fairness Threshold. In this subsection, relationships between
the update quantities of the optimal solutions and the
required fairness thresholds are analyzed by simulations. In
the following simulations, the population of nectar sources
is set as S = 60, and the number of groups for the population
is set as S′ = 30, and each group contains 2 nectar sources.
The corresponding update quantities for the groups are set

as 1, 2, …, 30, respectively. In addition, the required fairness
thresholds vary from 0.86 to 0.98, and the rest parameters
remain unchanged. As the number of users K is equal to 6
and 16, the relationships between the average update quanti-
ties of the optimal solutions and the required fairness thresh-
olds are plotted in Figures 8 and 9.

Figures 8 and 9 suggest that whether the number of users
K is equal to 6 or 16, the average update quantities of the
optimal solutions decrease gradually with the increase of
the fairness thresholds. The main reason can be described
as follows. According to Section 3, as the update quantity is
equal to N�s, there are N −N�s elements of the nectar sources
generated by the greedy subcarrier allocation based on the
data rate proportional fairness. Since the greedy subcarrier
allocation based on the data rate proportional fairness can
maintain high fairness, the fairness is more likely to be high
as N −N�s is large. That is, the fairness is more likely to be
high as the update quantity N�s decreases. Therefore, as the
required fairness threshold increases, the optimal solutions
tend to have lower update quantities.

Besides the fairness thresholds, both λ1 of the data rate
proportional coefficients and the number of users K have
effects on the average update quantities of the optimal solu-
tions. On the one hand, as can be seen from Figures 8(a)–
8(c) and 9(a)–9(c), as λ1 of the data rate proportional coeffi-
cients varies from 1 to 16, the average update quantities of the
optimal solutions gradually decrease for both K = 6 and 16.
On the other hand, comparing Figure 8(a) with Figure 9(a),
Figure 8(b) with Figure 9(b), and Figure 8(c) with
Figure 9(c), it can be found out that when the number of
users K varies from 6 to 16, the average update quantities
of the optimal solutions at the corresponding data rate pro-
portional coefficients also gradually decrease. The main
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Figure 7: Iterations of fairness and sum data rates of optimal solutions obtained by the proposed ABC-UQ, ABC-OSA, and PSO-EQ at K
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reason is that, whether λ1 of the data rate proportional coef-
ficients varies from 1 to 16 or the number of users K varies
from 6 to 16, both of them make the subcarrier resources rel-
atively insufficient in allocation to users, so that the proposed
ABC-UQ has to reduce the update quantities to ensure the
required fairness threshold in the process of searching the
optimal solution.

5. Conclusions

This paper proposes a novel ABC-UQ for resource allocation
to improve the sum data rates effectively in the premise of

fairness threshold. First, the proposed ABC-UQ divides the
population of nectar sources into several groups and sets a
different update quantity for each group. Then, based on
the update quantities set for the groups, the proposed ABC-
UQ applies the greedy subcarrier allocation method based
on the data rate proportional fairness for initialization of nec-
tar sources of ABC and performs neighborhood searches and
updates on the corresponding dimensions of nectar sources.
By combining the advantages of the greedy subcarrier alloca-
tion in local optimization and ABC in global optimization,
the proposed ABC-UQ can not only make nectar sources
maintain a higher fairness level but also reduce dimensions
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Figure 9: Relationships between the average update quantities of the optimal solutions and the fairness thresholds at the number of users
K = 16 and different data rate proportional coefficients with (a) 1:1:…:1, (b) 8:1:…:1, and (c) 16:1:…:1.
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Figure 8: Relationships between the average update quantities of the optimal solutions and the fairness thresholds at the number of users
K = 6 and different data rate proportional coefficients with (a) 1:1:…:1, (b) 8:1:…:1, and (c) 16:1:…:1.
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to be optimized in nectar sources. Results of simulations on
different fairness thresholds indicate that the proposed
ABC-UQ can achieve the required fairness thresholds and
effectively improve the sum data rates just in the equal-
power subcarrier allocation stage. In addition, small update
quantities are more conducive to maintaining a high degree
of fairness than large update quantities. As the data rate pro-
portional coefficients or the number of users makes the sub-
carrier resources relatively insufficient in allocation, the
proposed ABC-UQ with smaller update quantities can guar-
antee the required fairness thresholds and improve the sub-
carrier utilization and the sum data rates.

Data Availability

The data used in the experiments are generated randomly
with Rayleigh distribution. All the data included in this study
are available from the corresponding author (Ming Sun, e-
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