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The lack of traffic data is a bottleneck restricting the development of Intelligent Transportation Systems (ITS). Most existing traffic
data completion methods aim at low-dimensional data, which cannot cope with high-dimensional video data. Therefore, this paper
proposes a traffic data complete generation adversarial network (TDC-GAN) model to solve the problem of missing frames in
traffic video. Based on the Feature Pyramid Network (FPN), we designed a multiscale semantic information extraction model,
which employs a convolution mechanism to mine informative features from high-dimensional data. Moreover, by constructing
a discriminator model with global and local branch networks, the temporal and spatial information are captured to ensure the
time-space consistency of consecutive frames. Finally, the TDC-GAN model performs single-frame and multiframe completion
experiments on the Caltech pedestrian dataset and KITTI dataset. The results show that the proposed model can complete the
corresponding missing frames in the video sequences and achieve a good performance in quantitative comparative analysis.

1. Introduction

In recent years, with the rapid development in the field of
Intelligent Transportation Systems (ITS), numerous data
with rich traffic information attract the widespread attention
of researchers [1–4]. Accurate and efficient real-time traffic
data can not only provide travelers with a better travel plan
but also assist the traffic management department to effec-
tively manage and guide traffic operations. However, in real-
ity, incomplete data will be collected due to the limitations of
the sensor placement [5, 6], the accidental deviation of the
intelligent system [7–10], and the camera occlusion [11].
These problems will affect the accuracy of traffic state analy-
sis and the timeliness of handling traffic problems [12]. Thus,
it is necessary to complete the missing data.

Most of the existing studies are carried out to complete
low-dimensional data (e.g., traffic flow [13], travel time [14,
15], and trajectory [16]), which cannot cope with high-
dimensional traffic video data containing more intuitive
information. This can be explained for two reasons. On one
hand, due to limited hardware facilities, the computing

power and processing speed of computers are restricted to
capture meaningful information from high-dimensional traf-
fic video. On the other hand, based on traditional statistical
tools and proper prior knowledge, the existing data comple-
tion models are proposed to handle low-dimensional data.
However, due to its high dimension and sparse representa-
tion, traffic video data is arduous to be modeled by statistical
models and prior knowledge. Moreover, traffic video scenes
are relatively complex, which usually include a large number
of vehicles and pedestrians. This results in the difficulties of
explicitly extracting semantic information in traffic scenes
with low-dimensional traffic completion models.

To deal with these drawbacks, based on the generative
adversarial network (GAN) [17], we proposed a traffic data
completion generative adversarial network (TDC-GAN) to
complete high-dimensional video sequences with the
enhancement of graphics processing unit (GPU) parallel
computing power. In the TDC-GAN, the Feature Pyramid
Network (FPN) [18] is used to extract the multiscale features
from the video frame in the generator. By learning latent rep-
resentation from high-dimensional data, this paper expands
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the field of traffic data completion research to high-
dimensional video sequences. In addition, this paper designs
global and local discriminators to capture the temporal and
spatial correlation of video sequences. The two discrimina-
tors learn the time information between consecutive frames
and the spatial semantic information within the frames to
generate reliable frames.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces some related work. Section 3 describes the
TDC-GAN model framework. Section 4 is the content of
experiments. Finally, Section 5 summarizes the TDC-GAN
model and makes a prospect for future work.

2. Related Work

In general, traditional traffic data completion methods can be
classified into the following three categories: prediction,
interpolation, and statistical learning [19].

The predictionmethod is to learn themapping of past data
to future data by establishing corresponding models. For
example, both the high-order smoothing exponential model
[20, 21] and the gradient boost regression tree (GBRT) model
[22] complete the traffic data by modeling traffic flow. Based
on the previous traffic information, Xu et al. [23] proposed a
prediction model, which combines the autoregressive inte-
grated moving average (ARIMA) model with Kalman filter.
However, because the continuous data in the past period of
time needs to be known, the application scenarios of the pre-
diction model are relatively limited. In addition, compared to
completion, it cannot use the subsequent adjacent data, which
is not conducive to consistent representation in time series.

The interpolation method generally estimates the missing
data by averaging the traffic data in adjacent time periods or
using the historical data of other days that are similar to the
missing data. Typical interpolation methods are k-nearest
neighbor (k-NN) and local least squares (LLS) [24, 25]. Liter-
ature [26, 27] is based on an improved adaptive k-NNmethod,
which comprehensively considers spatial neighboring points,
sliding windows, spatiotemporal weights, and other spatial
heterogeneity features to complete missing traffic data. The
improved LLS method attempts to replace the missing traffic
data with the average of the known data and iteratively obtains
the weight of the nearest neighbor by using the Euclidean dis-
tance. However, the interpolation method assumes that the
adjacent traffic states have strong similarities. This method is
unreliable when the state is relatively random.

The statistical learning method uses the statistical charac-
teristics to complete the missing traffic information by estab-
lishing an iterative model of the probability distribution of
the data. Typical methods are Markov Chain Monte Carlo
(MCMC) [28] and probabilistic principal component analy-
sis (PPCA) [29]. However, due to the complexity of the urban
road traffic system, the learning ability of the statistical learn-
ing method is limited, and its convergence is difficult to
guarantee.

Recently, with the advances of modern GPU and neural
networks [30, 31], deep learning-based methods have
appeared to complete traffic data [32–34]. As an important
technique of deep learning, GAN has been increasingly

applied in video completion due to its outstanding learning
ability.

Mathieu et al. [35] showed that traditional loss functions
based only on pixel loss often lead to image blurring; how-
ever, an adversarial loss can effectively solve this problem.
This is the first time GAN has been applied to the modeling
of video sequences. Subsequent research on the video frame
with the GAN attempted to decompose it into two modules
containing different information, which were studied sepa-
rately. Vondrick et al. [36] separated the background and
foreground of the video scene, and the GAN was used to
force static background and moving foreground to predict.
The Motion and Content Generative Adversarial Network
(MoCoGAN) model [37] divided the potential space of video
frames into content and motion. The model can generate a
video that contains the same object performing different
operations or different objects performing the same opera-
tion. Liang et al. [38] divided the video sequence into future
frames and future streams and used two GAN models to
feedback each other for training. These methods separate
video frames according to different factors, which requires
expensive computing power. In addition, due to complex
operating procedures, they are limited to a single and simple
data set. Therefore, it is difficult to effectively model complex
traffic scenarios.

Different from the abovementioned methods, Future-
GAN [39] and Retrospective Cycle-consistency Generative
Adversarial Network (CycleGAN) [40] attempt to use the
original video frames as input. The idea of not decomposing
the video frame is consistent with our method, which allows
the network to learn more overall information about the
input frame. Inspired by this, the TDC-GAN model directly
receives unlabeled raw traffic video frames. In the generator
model, the FPN is used to learn the information of multiple
scales of the video frame by synthesizing the feature maps
of multiple levels. By combining the lower-level feature
map with more target location information and the upper-
level feature map with more feature semantic information,
the frames generated by the generator will be more realistic
and accurate. In addition, in the discriminator model, the
global discriminator mainly grasps the overall information
of consecutive frames in the time series, and the local dis-
criminator can supplement the detailed information in the
space, which provides a guarantee for the temporal and spa-
tial consistency of the generated frames. Therefore, the TDC-
GAN model is capable of solving the problems of missing
high-dimensional traffic video frames.

3. Methodology

3.1. Generative Adversarial Network. In recent years, deep
learning methods have become an important tool for video
sequences modeling, especially the proposal of GAN, which
is good at capturing complex features in high-dimensional
data due to its outstanding learning capability. In this study,
based on GAN, the TDC-GAN model is proposed to com-
plete the missing traffic video data.

Since Goodfellow proposed the GAN, the idea of adver-
sarial has gradually been applied to the framework of
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generative models. As shown in Figure 1, The original GAN
includes a generator and a discriminator. The generator is
used to capture the distribution of sample data. By converting
the distribution of the original input information into the
parameters in the maximum likelihood estimation, the train-
ing deviation is finally converted into a sample of the speci-
fied distribution. During training, the generator learns to
generate data samples that can confuse the discriminator,
and the discriminator is used to judge the difference between
the real sample and the generated sample. In constant adver-
sarial learning, they will eventually reach a balance.

The equation for the GAN can be defined as

min
G

max
D

V D,Gð Þ = 1
m
〠
m

i=1
logD xi

� �

+ 1
m
〠
m

i=1
log 1 −D G zi

� �� �� �
,

ð1Þ

wherem represents the batch size, xi ∈ Pdata represents the i
− th sample of m real samples, and zi ∈ Pnoise represents the
i − th sample of m noise samples.

Equation (1) indicates that the discriminator needs to
learn to assign a higher score to the real sample data and to
assign a lower score to the sample data generated by the gen-
erator. The generator needs to generate samples that confuse
the discriminator as much as possible.

Video is composed of continuous images with a certain
frame rate; so, the high-dimensional traffic missing data
studied in this paper are video frames in continuous time.
In the training process, the TDC-GAN model can learn the
mapping from existing frames xT1 = fx1, x2,⋯xTg to com-
plete frames ~xT1 = f~x1, ~x2,⋯~xTg. xT1 represents some known
frames from 1 to T , that is, the data input to the generator.
~xT1 represents the corresponding missing frame from time 1
to T , that is, the output of the generator.

3.2. Network Architecture. As shown in Figure 2, the network
structure of the TDC-GAN model includes a generator and
two discriminators. The generator employs the FPN network,
which includes three paths of bottom-up, top-down, and hor-
izontal connection. The bottom-up path retains more position
information through less downsampling, and the top-down
upsampling path is used to obtain feature maps with more
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Figure 1: The original structure of the GAN.
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Figure 2: The structure of the TDC-GANmodel. (a, b) are the structure diagrams of generator and discriminator, respectively. Each module
in the figure is represented by a different color, and modules with the same network structure are represented by the same color. The bottom
of the figure indicates the specific network layers of the two convolution modules.
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semantic information and higher resolution. In the horizontal
connection, 1 × 1 convolution is used to fuse the two parts of
position information and semantic information; so, more
high-dimensional feature information can be learned through
the TDC-GAN model. Upsampling and convolutional layers
are added to the end of our generator network to keep the res-
olution of the input video frame consistent.

In the discriminator network, to obtain the completion per-
formance with temporal and spatial consistency, the TDC-
GANmodel designs two discriminator models, global and local.
The global discriminator integrates the complete spatial envi-
ronment by alternately receiving the generated frame and the

real frame to obtain the rough motion state of the video frame
in continuous time. However, the global discriminator weights
the entire frame image, ignoring local spatial details. Therefore,
the TDC-GAN model introduces a local discriminator, which
randomly crops a certain number of patches on the whole frame
and sends them to the discriminator. By performing feedback
learning on each spatial local unit to obtain more details, high
resolution and high details can be maintained. In addition, a
Leaky Rectified Linear Unit (LReLU) is used to increase nonlin-
earity, and the batch normalization layer follows each LReLU.

As shown in Figure 3, to speed up training and improve
network performance, the backbone module of the TDC-
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Figure 3: The structure diagram of InceptionResNet-v2. The left side of the picture is the backbone network, and (a)–(f) correspond to 6
important modules.
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GAN introduces the pretrained InceptionResNet-v2 [41]
network, which can make full use of the characteristics of
the training data image and reduce the feature loss in the
convolution process. By introducing the residual module,
the convergence can be accelerated, and the training error
will not increase with the increase of the network depth.

The TDC-GAN model can complete the missing frames
of the video conditioned on the incomplete frame sequences.
During training, the generator network only receives pixel
values of the original video frames as input and does not
depend on other constraints. To complete the real and effec-
tive missing frames, the spatial and temporal components of
the video sequence will be captured simultaneously. The dis-
criminator is trained to distinguish between true and false
video frames by receiving the real sequence and the generated
sequence as input alternately.

3.3. Loss Function. For the problem of traffic videos comple-
tion, Wasserstein generative adversarial network-gradient
penalty (WGAN-GP) [42] with a loss function of gradient
penalty term is used to optimize the discriminator which is
defined as

LD = E
~x~Pg

D ~xð Þ½ � − E
x~Pr

D xð Þ½ � + λ E
x̂~Px̂

∇x∧D x∧ð Þk k2 − 1
� �2h i

,

ð2Þ

where Pr and Pg are the real sample distribution and genera-
tor sample distribution, respectively. The gradient-penalty
coefficient is represented by λ. Px̂ is the random sampling
between the two sampling points connecting Pr and Pg.

To train the generator of the TDC-GAN model to gener-
ate more realistic completion samples, our overall loss func-
tion is defined as

LG = λ1 × Lp + λ2 × Ladv + λ3 × LX , ð3Þ

where λ1, λ2, λ3 is the weight coefficient. We use the mean
square error (MSE) loss (L2 loss) between the real image xt
and the generated image ~xt as the value of the first term Lp,
and it is defined as

Lp = 〠
n

t=1
xt − ~xtð Þ2: ð4Þ

To solve the problem of image blur caused by using the Lp
loss function, the adversarial loss Ladv is introduced in the
second term, which is defined as

Ladv = 〠
n

t=1
−D ~xtð Þ: ð5Þ

The third term LX [43] is the loss function proposed for
the general content of the restored images, and we use it for
image generation. In Equation (6), φi,j stands for the feature
map, where i and j denote the convolution and the max pool-

ing layer, respectively.Wi,j andHi,j represent the dimensions
of the feature map.

LX = 1
Wi,jHi,j

〠
n

t=1
〠
Wi, j

x=1
〠
Hi, j

y=1
φi,j xt+1ð Þx,y − φi,j G xtð Þð Þx,y

� �2
: ð6Þ

4. Results and Discussion

4.1. Datasets. In the experimental part, we noticed a large-
scale urban traffic dataset Caltech pedestrian dataset [44],
which consists of about 10 hours of 640 × 480 pixel video.
The video was captured by the onboard camera of a vehicle
traveling through normal traffic in an urban environment.
Because it contains comprehensive traffic information, many
video-related pedestrian detection, target recognition, and
other tasks use this dataset [45, 46]. In addition, the open
source and easy-to-download attributes guarantee a fair
comparison and analysis of research performance in subse-
quent research. Experimenting on this public dataset makes
the TDC-GAN model more convincing. Since our research
aims to complete the missing traffic data and no other infor-
mation is needed in the training data, the annotation infor-
mation of pedestrians in this dataset is ignored. Moreover,
to verify the versatility of the proposed TDC-GAN model,
we verified it on the KITTI dataset [47], which contains real
video data collected in scenes such as urban areas, rural areas,
and highways, and each frame can contain up to 15 cars and
30 pedestrians. To adapt to the network structure of TDC-
GAN, we changed the video pixel to 480 × 480.

4.2. Training Details. The TDC-GAN model is implemented
in PyTorch, and the computer is configured as a single NVI-
DIA GTX 2080ti GPU under Linux. The ADAM optimizer is

t = 1 t = 2 t = 3 t = 4 t = 5

(a)

(b)

(c)

Figure 4: The completion results of single frame on Caltech
pedestrian dataset. (a) Input/ground truth. (b) Output. (c) Details.

Table 1: PSNR and SSIM results.

Caltech
pedestrian

KITTI

PSNR SSIM PSNR SSIM

Single frame 27.9 0.89 25.6 0.81

Multiple frames 26.8 0.85 24.7 0.77
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used to optimize our algorithm, and the relevant parameters
were set to β1 = 0:1, β2 = 0:999, and l = 0:001. The weights of
the loss function are set to λ = 10, λ1 = 0:1, λ2 = 0:5, and λ3
= 0:02. To quantitatively evaluate the network, we provided
the values of peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) between the ground truth and the com-
pleted video frames. And they are defined as

PSNR = 10 × log10
2n − 1ð Þ2
MSE

" #
, ð7Þ

where n is the bit of each sampled value, and MSE is the cor-
responding mean square error.

SSIM x, ~xð Þ = 2μxμ~x + c1ð Þ 2σx~x + c2ð Þ
μ2x + μ2~x + c1
� �

σ2x + σ2~x + c2
� � , ð8Þ

where μ and σ2 are the average value and variance of the real
frame x or the generated frame ~x, respectively. And the
covariance of x and ~x is represented by σx~x. The value of
SSIM is between 0 and 1, and the generated frame close to
1 is what we expect.

4.3. Experimental Results and Analysis

4.3.1. Single Frame Completion. We first complete the next
frame based on the previous frame. Figure 4 shows the single
frame completion results of the TDC-GAN model.

The generator receives the video frame z = ðxtÞ at
time t and generates the video frame GðzÞ = ð~xt+1Þ at
time t + 1.

By comparing the details of 5 consecutive video frames
between generated frames and the ground truth, we can see
that the TDC-GAN model can effectively complete the miss-
ing video frames. And the quantitative results are shown in
Table 1. PSNR and SSIM can reach 27.9 and 0.89,
respectively.

4.3.2. Multiple Frame Completion. We also tried to train the
generator to input multiple missing frames to test the com-
pletion effect of the TDC-GAN model.

Figures 5 and 6 are the results of multiple frame comple-
tion on the two datasets. The input sequence of the generator
can be expressed as z = ðxt+1, xt+3, xt+5Þ, which represents the
input video frames at times 1, 3, and 5, and we want to com-
plete the sequence of video frames GðzÞ = ð~xt+2, ~xt+4, ~xt+6Þ at
times 2, 4, and 6.

As can be seen from the details circled in red and green
boxes in the figures, the TDC-GANmodel can not only com-
plete the missing video frames but also ensure that the video
frames have temporal and spatial consistency. Moreover, the
multiple frame quantitative results are given in Table 1, and
the best PSNR and SSIM values of the TDC-GAN model
can reach 26.8 and 0.85, respectively. It is worth noting that
the TDC-GAN model has good performance on both data
sets. The versatility of this model is of great significance to
our further research.
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xt + 1 xt + 3 xt + 5

t + 2 t + 3 t + 4 t + 5 t + 6

(a)

(b)

(c)

~
xt + 4
~

xt + 6
~

Figure 5: The completion results of multiple frames on Caltech pedestrian dataset. (a) Input. (b) Details. (c) Output.
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Figure 6: The completion results of multiple frames on the KITTI dataset. (a) Input. (b) Details. (c) Output.
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In addition, Figure 7 shows the quantitative performance
of each completed frame in the multiple frame experiment
on the Caltech pedestrian dataset. As the number of comple-
tion frames increases, the values of PSNR and SSIM gradually
decrease. It is explained as that the past information becomes
less valuable to facilitate the completion in the longer future,
which causes the reduction of the performance. However, in
terms of the overall effect of the completion, it is still
satisfactory.

5. Conclusion

This paper proposes a TDC-GANmodel for completing traf-
fic video sequences. In the TDC-GAN model, the designed
generator network learns multiscale features from video
sequences with the help of the FPN. Meanwhile, the discrim-
inator network includes two branches (i.e., the global branch
and the local branch), which takes into account the time
information between frames and the space information
within each frame. The adversarial loss is utilized to improve
the stability of training, and the perceptual loss calculates the
semantic difference between the generated frame and the real
frame, which enhances the performance of the proposed
model. With the Caltech pedestrian dataset and KITTI data-
set, the experimental results show that this TDC-GANmodel
can effectively complete missing frames in traffic videos. In
summary, the TDC-GAN model is well suited to complete
travel videos under various scenarios.

In the future, we will add technologies such as scene
understanding to optimize our model to solve more complex
problems (such as solving traffic video problems with more
missing frames). Moreover, encouraged by the promising
performance of the TDC-GAN, it is interesting to propose
more GAN-based methods in the traffic field.

Data Availability

The address of our experimental datasets can be found in the
link: http://www.vision.caltech.edu/Image_Datasets/
CaltechPedestrians, http://www.cvlibs.net/datasets/kitti/
raw_data.php.
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