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How to improve delay-sensitive traffic throughput is an open issue in vehicular communication networks, where a great number of
vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) links coexist. To address this issue, this paper proposes to employ a
hybrid deep transfer learning scheme to allocate radio resources. Specifically, the traffic throughput maximization problem is
first formulated by considering interchannel interference and statistical delay guarantee. The effective capacity theory is then
applied to develop a power allocation scheme on each channel reused by a V2I and a V2V link. Thereafter, a deep transfer
learning scheme is proposed to obtain the optimal channel assignment for each V2I and V2V link. Simulation results validate
that the proposed scheme provides a close performance guarantee compared to a globally optimal scheme. Besides, the proposed
scheme can guarantee lower delay violation probability than the schemes aiming to maximize the channel capacity.

1. Introduction

The rapid evolution of mobile communication technologies
invites all human beings to the era of the Internet of Every-
thing, where unprecedented changes will take place in all
walks of life and have a profound impact on every single
aspect of our daily interactions [1, 2]. Vehicular communica-
tions, widely regarded as a promising technology to enable
intelligent transportation, autonomous driving, and even
every potential application related to smart vehicles in
beyond 5G networks have attracted extensive attention from
both academia and industry [3]. Typically, the link types of
vehicular communications include vehicle to infrastructure
(V2I), vehicle to vehicle (V2V), and vehicle to everything
(V2X) [4]. Worth noting is that different communication
link types usually have to provide certain quality of service
(QoS) guarantees [5]. For instance, an autonomous driving
vehicle is expected to transmit its rough position information
to the infrastructure to help the base station (BS) perceive the
whole vehicular network. Besides, such vehicles are con-
stantly exchanging various types of their instantaneous infor-

mation with adjacent vehicles to ensure transportation safety.
Apparently, these two types of information should be trans-
mitted with low delay, where the exchange of the instanta-
neous information between adjacent vehicles using V2V
links is inherently more delay-sensitive than V2I communi-
cations. Moreover, since the spectrum resources are quite
limited in existing cellular systems, how to effectively provide
differentiated QoS guarantees for different traffic is a critical
issue for vehicular communication networks [6].

Traffic throughput maximization usually serves as an
objective to improve the overall spectrum efficiency of a
given communication network [7]. However, as a vehicular
network is generally required to provide different QoS guar-
antees for different traffic, traditional resource allocation
schemes that aim to maximize the channel capacity may be
no longer applicable. Considering the low delay constraint,
actual resource optimization problems are usually more
complex [8, 9]. Additionally, spectrum sharing is another
potential solution to improve the spectrum efficiency of
a communication system. In a vehicular network, V2I
and V2V communications can reuse the same channel
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to transmit data, which dramatically increases the number of
access links for vehicular communications. Nevertheless, the
introduced interference between the V2V and V2I links
further complicates the performance analysis of vehicular
networks. In summary, a fundamental challenge for vehicu-
lar communication networks is to design an efficient resource
allocation scheme to maximize the network traffic through-
put under diverse QoS requirements and various interference
constraints.

To address this challenge, this paper focuses on a vehicu-
lar network where V2I and V2V links share the limited spec-
trum resource. Specifically, an interference model and a
statistical delay model are both established, based on which
a traffic throughput maximization problem is formulated
aiming to acquire the optimal power allocation and spectrum
sharing scheme. Subsequently, the optimization problem is
decomposed into a power allocation subproblem for each
pair of cellular user (CUE) and V2V user (VUE) and a spec-
trum sharing subproblem for the whole vehicular network.
Firstly, the power allocation subproblem is solved analyti-
cally based on the effective capacity theory, with both the
statistical information of small-scale channel fading and the
instantaneous information of large-scale channel fading
taken into account. Secondly, a supervised deep learning
algorithm is proposed to solve the spectrum sharing problem.
Moreover, to overcome the mismatch problem caused by the
varying distribution of hidden network information and
states, we propose a deep transfer learning algorithm to adapt
fast to new scenarios and to achieve optimization under
certain QoS requirements for vehicular networks. Simula-
tion results validate the accuracy of our proposed learning
schemes, and the performance analyses show that traditional
channel capacity maximization schemes may incur a high
delay violation probability for delay-sensitive traffic, which is
systematically alleviated by our proposed learning schemes.

The contributions of this paper are summarized as
follows:

(i) An analytical model is established to jointly consider
the statistical delay guarantee and interchannel
interference. Compared to the traditional model
based on the average delay, our proposed analytical
model better fits the context of beyond 5G networks,
where the delay performance is commonly mea-
sured in a probabilistic dimension

(ii) A power allocation scheme is proposed to maximize
the throughput of delay-sensitive traffic for a given
CUE-VUE pair. The highlight of our proposed
scheme lies in that its computation complexity only
relates to the number of power levels, which enables
its application on a real-world vehicular transmitter.
In addition, the power allocation scheme can guar-
antee the traffic delay requirement for both CUE
and VUE while other conventional schemes only
guarantee either one of the vehicular links

(iii) A deep learning-based spectrum sharing scheme is
proposed to quickly obtain the optimal channel
reuse strategy. Based on the offline deep learning

algorithm, a deep transfer learning algorithm is
further developed to deal with the mismatch prob-
lem commonly encountered in new scenarios, where
the hidden information is dynamic and only few
training samples can be obtained

The remainder of this paper is organized as follows. In
Section 2, related work is introduced and discussed. In
Section 3, the network model, interference model, and delay
model are presented. Section 4 proposes the traffic maxi-
mization scheme, and Section 5 compares and discusses
the simulation results. Finally, the paper is concluded in
Section 6.

2. Related Work

In the literature, existing studies on throughput maximiza-
tion for vehicular communications can be briefly summa-
rized as follows.

In [10], a low complexity data routing policy was
designed to maximize the data throughput from vehicles to
roadside units. In [11], a data transmission and scheduling
scheme was proposed to maximize the traffic throughput
and reduce the resource contention for nonadjacent V2V
communications. In [12], an information spread problem
in vehicular networks with V2I and V2V links was formu-
lated and solved, where the channel capacity of V2I links
was maximized based on the Doppler effect. In [13], a coali-
tion game model was introduced to optimize resource alloca-
tion and maximize the throughput of individual V2V links
under a minimum V2I throughput requirement. In [14], a
novel power allocation and spectrum sharing algorithm
was proposed to optimize the throughput of V2I links
while guaranteeing the minimum throughput requirement
of V2V links. The abovementioned works [10–14] have
designed novel resource optimization schemes for different
scenarios. However, in these studies, the throughput perfor-
mance was simply characterized by the Shannon channel
capacity, and the transmission delay was not taken into
account.

Since the transmission delay is a critical metric in vehic-
ular communications, a significant number of researchers
have paid close attention to the improvements of the delay
performance. In the literature, the transmission delay was
usually analyzed in the average and used as an indicator to
calculate the tradeoff with other performance metrics based
on the Lyapunov theory [15–18]. In [15], the TV white space
bands were used to supplement the bandwidth for the com-
putation offloading of vehicular terminals. The computation
offloading and bandwidth allocation decisions were jointly
optimized to balance the task delay and the cost of the TV
white space bands. In [16], the extreme value theory and
Lyapunov theory were employed to analyze the tail distribu-
tion of the age of information in a given vehicular network. A
power control scheme was proposed to guarantee the mean
delay requirement. In [17], a vehicle-centric approach was
designed to optimize the node association and resource real-
location, by taking the additional latency caused by the over-
head into account. In [18], the long-term time-averaged total
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system capacity was maximized while satisfying the strict
ultrareliable and low-latency requirements of vehicle com-
munications. Generally, the mean delay is leveraged to
characterize delay-tolerant traffic. However, there are many
types of delay-sensitive traffic in vehicular networks where
the positions of vehicles, wireless channel states, and traffic
arrival intervals are all highly dynamic. Hence, the statistical
delay guarantee is more useful for practical vehicular net-
works. In [19], the capacity of V2I links was maximized
under a given delay and delay violation probability require-
ment, where the closed-form power allocation solution was
derived for each V2I and V2V reuse link. However, [19] only
considered the delay requirement of V2V links. To the best of
our knowledge, how to provide the delay guarantee for both
V2I and V2V links at the same time is still an open problem.

In addition, deep learning-based techniques are becom-
ing more and more popular in wireless communications
[20]. In [21], the authors integrated a convolutional neural
network and a long short-term memory network to predict
the channel state information. In [22], the authors con-
structed a feature learning framework for IoT applications
to effectively classify data and detect anomaly events, using
RBF-BP hybrid neural network. In [23], the deep learning
assisted optimization methods for resource allocation in
vehicular communications were introduced and compared.
In [24], a multiagent reinforcement learning framework
was proposed for the spectrum sharing in vehicular networks
with V2I and V2V links. It is evident that deep learning is
confirmed to be an effective tool for optimization in wireless
communications. Hence, in this paper, we propose a hybrid
deep transfer learning scheme to address the aforementioned
problem in vehicular communications.

3. System Model

3.1. SystemModel.We consider a multivehicle single-cell net-
work as depicted in Figure 1, where there are M vehicles as
CUEs and NðN ≤MÞ pairs of proximate vehicles as VUEs.
The CUEs transmit information to the BS through V2I com-

munications with orthogonal channels, while the VUEs
employ V2V communications to send and receive data
through sharing the spectrum resource with CUEs. The total
bandwidth of the considered network is Btot. We assume that
each CUE can only occupy one channel at a time, and a
channel can only be allocated to one CUE. Hence, the
channel bandwidth allocated to a CUE can be denoted as
B = Btot/M. In order to avoid the strong interference
between V2I and V2V links, each VUE can only reuse
one channel, and each channel can only be shared with
one VUE. For notational expedience, we use M = f1, 2, ::,
m,⋯,Mg and N = f1, 2, ::, n,⋯,Ng to denote the sets of
CUEs and VUEs, respectively. In addition, all the CUEs
and VUEs are equipped with a single antenna.

3.2. Communication Model. We denote the channel power
gain from the mth CUE to the BS by gCm = φC

mh
C
m, where φ

C
m

and hCm characterize the large-scale and small-scale fading
components, respectively. The large-scale fading parameter
can be further modeled as φC

m = ϕωC
mðlCmÞ

−α
, where ϕ denotes

the path loss constant, ωC
m is the random log-normal shadow-

ing parameter, l represents the distance between the CUE and
the BS, and α is the power decay exponent. Similarly, we use
gV
n = φV

n h
V
n , gn,B = φn,Bhn,B, and gm,n = φm,nhm,n to represent

the channel power gain of the nth VUE, the interference
power gain from the nth VUE to the BS, and the interference
power gain from the mth CUE to the nth VUE, respectively.
In addition, due to the high mobility of vehicles and the vary-
ing delay requirement of different data traffic, it is impractical
for the BS to always obtain the instantaneous small-scale fad-
ing information. However, the statistical information is easily
accessible by the BS from the feedback of vehicles within
hundreds of time slots. Hence, in this paper, we assume all
the CUEs and VUEs undergo the small-scale Rayleigh fading.
In other words, small-scale fading parameters hCm, h

V
n , hn,B,

and hm,n follow the independent and exponential distribution
with unit mean in each time slot.

VUEn

CUEm

BS

V2I link
V2V link
Interfering link

gm,n

gn,B

gCm

gVm

Figure 1: A typical vehicular network with CUEs and VUEs.
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As the channel (interference) power gain is time-varying
for both V2I and V2V links. The considered network should
make a decision on the power management and spectrum
sharing for all CUEs and VUEs when the statistical channel
information changes. The transmission power of the mth
CUE and the nth VUE is denoted by pCm and pVn , respectively.
Besides, binary indicator τm,n is employed to characterize the
channel reused by the mth CUE and the nth VUE, where
τm,n = 1means themth CUE and the nth VUE share the same
channel. As a result, the signal to interference plus noise ratio
(SINR) of the mth CUE and the nth VUE holds as

γCm = pCmg
C
m

N0B +∑N
n=1τm,npVn gn,B

, ð1Þ

γVn = pVn g
V
n

N0B +∑N
n=1τm,npCmgm,n

, ð2Þ

where N0 denotes the power spectral density of background
noise. According to the Shannon’s Theorem, the channel
capacity of the mth CUE and the nth VUE in each time slot
can be obtained as

RC
m = B log2 1 + γCm

� �
, ð3Þ

RV
n = B log2 1 + γVn

� �
: ð4Þ

3.3. Performance Metric and Problem Formulation. Typically,
a vehicle generates delay-sensitive traffic periodically and
sends it to the BS or other vehicles in a V2X network, where
the traffic is assumed to be infinitesimal. The corresponding
cumulative arrivals during ð0, t� are denoted by AC

mðtÞ and
AV
n ðtÞ. Similarly, the cumulative departures are denoted by

AC
m
∗ðtÞ and AV

n
∗ðtÞ. At t, the traffic delay can be obtained as

DC
m tð Þ =max d : AC

m tð Þ ≥ AC
m
∗
t + dð Þ

n o
,

DV
n tð Þ =max d : AV

n tð Þ ≥ AV
n
∗
t + dð Þ

n o
:

ð5Þ

In order to characterize the delay performance more
intuitively, we model the delay metric according to the
philosophy behind 5G ultrareliable low latency communica-
tions (uRLLC). Specifically, statistical delay characteristics
are analyzed in this paper, as shown in

Pr DC
m tð Þ > dCm

n o
≤ εCm,

Pr DV
n tð Þ > dVn

n o
≤ εVn :

ð6Þ

For themth CUE, its statistical delay performance means
the traffic delay exceeding threshold dCm should be controlled
with probability εCm, which also holds for the nth VUE. In a
V2X network, a vehicle sustaining a higher traffic arrival rate
under a specific delay requirement means that this vehicle is
able to update its information to other vehicles or the infra-

structure more timely. Let λCm (m ∈M) and λVn (n ∈N )
denote the maximum arrival rate (i.e., traffic throughput)
sustained by the mth CUE and the n VUE under the delay
requirement, respectively. We model the traffic throughput
under the delay requirement as follows

λCm =max λ : Pr DC
m tð Þ > dCm

n o
≤ εCm

n o
,

λVn =max λ : Pe DV
n tð Þ > dVn

n o
≤ εVn

n o
:

ð7Þ

In this paper, we aim to maximize the traffic throughput
for the considered network under diverse delay requirements
through optimizing the power and spectrum allocation for
each CUE and VUE. The optimization problem regarding
to resource allocation can be formulated as

P1 max
τm,nf g, pCmf g, pVnf g

〠
m∈M

λCm + 〠
n∈N

λVn

s:t: C1 : Pr DC
m tð Þ > dCm

n o
≤ εCm∀m ∈M

C2 : Pr DV
n tð Þ > dVn

n o
≤ εVn ∀n ∈N

C3 : 0 ≤ pCm ≤ pCmax∀m ∈M

C4 : 0 ≤ pVn ≤ pVmax∀n ∈N

C5 : 〠
m∈M

τm,n ≤ 1,∀n ∈N

C6 : 〠
n∈N

τm,n ≤ 1,∀m ∈M

: ð8Þ

In P1, C1 and C2 represent the delay constraints for
CUEs and VUEs, respectively. C3 and C4 constrain the trans-
mission power range of CUEs and VUEs, respectively. C5
and C6 are the spectrum sharing constraints ensuring that
the channel of each CUE is reused by at most one VUE and
each VUE reuses the channel of at most one CUE. Consider-
ing C5 and C6, P1 is a mixed integer nonlinear programming
(MINP) that cannot be solved by traditional convex optimi-
zation approaches. Moreover, due to the lack of tractable
expressions to characterize C1 and C2, it is more challenging
to solve P1, compared with other MINP problems, especially
when the traffic throughput is modeled using the channel
capacity without considering delay requirements. Therefore,
we propose a hybrid deep transfer learning method to
achieve the optimal resource allocation.

4. Joint Power Allocation and CUE-VUE
Association Optimization

As the interference only exists in a channel that is reused
by a CUE and a VUE, P1 can be decomposed into a
power allocation subproblem P2 for a given CUE-VUE
pair and CUE-VUE association subproblem P3 for a given
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power allocation. Specifically, P2 and P3 can be formu-
lated as in

P2 max
pCm ,pVn

λCm + λVn

s:t: C1 − C4
, ð9Þ

P3 max
τm,nf g

〠
m∈M

λCm + 〠
n∈N

λVn

s:t: C5 − C6
: ð10Þ

4.1. Power Allocation for CUE-VUE Pair. In order to solve
P2, we need to first deduce the delay constraint for a
given CUE-VUE pair. Without loss of generality, we ran-
domly choose the mth CUE and the nth VUE as a pair
for the subsequent analysis. According to the effective
capacity theory, the delay violation probabilities for the
mth CUE and the nth VUE can be obtained as

Pr DC
m tð Þ > dCm

n o
≤ e−θ

C
mβ

C
m θCmð ÞdCm , ð11Þ

Pr DV
n tð Þ > dVn

n o
≤ e−θ

C
nβ

V
n θVnð ÞdVn , ð12Þ

where βC
m and βV

n denote the effective capacity and θCm and
θCm are the nonnegative QoS exponential parameters that
can be further optimized. For a stable vehicular network,
the effective capacity of CUE and VUE can be calculated
as [25].

βC
m θCm

� �
= −

ln E e−θ
C
mR

C
m

h i
θCm

≥ λCm, ð13Þ

βV
n θVn

� �
= −

ln E e−θ
V
n R

V
n

h i
θVn

≥ λVn :
ð14Þ

Combining (11) and (13), we have

Pr DC
m tð Þ > dCm

n o
≤ E e−θ

C
mR

C
md

C
m

h i
, ð15Þ

Pr DV
n tð Þ > dVn

n o
≤ E e−θ

V
n R

V
n d

V
n

h i
: ð16Þ

From (15), the delay violation probability of CUE can
be improved by increasing θCm. However, according to (13),
the effective capacity of CUE decreases with θCm, which
implies that a low λCm is guaranteed. Similar results can

be derived for VUE. Hence, P2 can be transformed into
the following feasible problem

P4 max
pCm ,pVn ,θCm ,θVn

−
ln E e−θ

C
mR

C
m

h i
θCm

−
ln E e−θ

V
n R

V
n

h i
θVn

s:t: C1 : E e−θ
C
mR

C
md

C
m

h i
≤ εCm

C2 : E e−θ
V
n R

V
n d

V
n

h i
≤ εVn

C3 : 0 ≤ pCm ≤ pCmax∣

C4 : 0 ≤ pVn ≤ pVmax

: ð17Þ

To solve P4, the following theorem is derived.

Theorem 1. If fpC∗m , pV∗
n , θC∗m , θV∗

n g denotes the optimal solu-
tion for P4, the following equations must hold

E e−θ
C∗
m RC

m pC∗m ,pV∗nð ÞdCmh i
= εCm, ð18Þ

E e−θ
V∗
n RV

n pC∗m ,pV∗nð ÞdVnh i
= εVn : ð19Þ

Proof. Firstly, we assume that for the optimal solution fpC∗m ,
pV∗n , θC∗m , θV∗n g,

E e−θ
C∗
m RC

m pC∗m ,pV∗nð ÞdCmh i
< εCm: ð20Þ

According to (13), the effective capacity of CUE, i.e.,
βC
mðθCmÞ is a continuously decreasing function in θCm while

the delay violation probability E½e−θCmRC
mðpCm ,pVn ÞdCm � is also a

continuously decreasing function in θCm. As a result, there

always exists eθCm = σθC∗m < θC∗m ðσ⟶ 1−Þ meeting the delay
constraint as

E e−θ
C∗
m RC

m pC∗m ,pV∗nð ÞdCmh i
< E e−

eθC∗m RC
m pC∗m ,pV∗nð ÞdCm

� �
≤ εCm: ð21Þ

Also,

−
ln E e−θ

C∗
m RC

m pC∗m ,pV∗nð Þh i
θC∗m

< −
ln E e

eθCmRC
m pC∗m ,pV∗nð Þ

� �
eθCm : ð22Þ

Hence, power allocation scheme fpC∗m , pV∗
n , eθCm, θV∗n g

guarantees a higher traffic throughput than fpC∗m , pV∗n , θC∗m ,
θV∗n g under the delay and power constraints, which is a
contradiction. On the other hand, we assume that for the
optimal solution fpC∗m , pV∗

n , θC∗m , θV∗
n g, the following equa-

tion holds

E e−θ
V∗
n RV

n pC∗m ,pV∗nð ÞdVnh i
< εVn : ð23Þ
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And a similar contradiction to the assumption can be
observed. As a result, the optimal power allocation must
meet C1 and C2 equally.

According to (18), the effective capacities of CUE and
VUE can be further simplified as

βC
m θCm

� �
= −

ln E e−θ
C
mR

C
m

h i
θCm

= ln 1/εCm
dCm

1
θCm

,

βV
n θVn

� �
= −

ln E e−θ
V
n R

V
n

h i
θVn

= ln 1/εVn
dVn

1
θVn

:

ð24Þ

Therefore, P4 can be further transformed to

P5 max
pCm ,pVn

Γm,n pCm, pVn
� �

≜
ln 1/εCm
dCm

1
θCm

+ ln 1/εVn
dVn

1
θVn

s:t: C1 : E e−θ
C
mR

C
md

C
m

h i
= εCm

C2 : E e−θ
V
n R

V
n d

V
n

h i
= εVn

C3 : 0 ≤ pCm ≤ pCmax

C4 : 0 ≤ pVn ≤ pVmax

:

ð25Þ

Note that θCm and θVn can be directly obtained according
to C1 and C2 of (31) when transmission power fpCm, pVn g is
determined. And another theorem is proposed to further
optimize the power allocation.

Theorem 2. The optimal solution to P5 always satisfies either
pC∗m = pCmax or p

V∗
n = pVmax.

Proof. Firstly, we denote the optimal power allocation by
fpC∗m , pV∗

n g and assume the following two expressions hold
at the same time.

0 ≤ pC∗m < pCmax,
0 ≤ pV∗

n < pVmax:
ð26Þ

Additionally, let pC∗m < ~pCm = ξpC∗m < pCmax and pV∗n < ~pVn =
ξpV∗n < pVmax, where ξ⟶ 1+. According to (1), the following
expressions hold

γCm ~pCm, ~p
V
n

� �
= ξpC∗m gCm
N0B + ξpV∗

n gn,B

= pC∗m gCm
N0B/ξ + pV∗

n gn,B
> pC∗m gCm
N0B + pV∗n gn,B

= γCm pC∗m , pV∗
n

� �
,

γVn ~pCm, ~p
V
n

� �
= ξpV∗

n gVn
N0B + ξpC∗m gm,n

= pV∗
n gVn

N0B/ξ + pCmgm,n
> pV∗n gVn
N0B + pC∗m gm,n

= γVn pC∗m , pV∗
n

� �
: ð27Þ

According to (3), we have RC
mð~pCm, ~pVn Þ > RC

mðpC∗m , pV∗n Þ
and RV

n ð~pCm, ~pVn Þ > RV
n ðpC∗m , pV∗

n Þ. From C1 and C2 in P5, θCm
is decreasing with RC

m, and θVn is decreasing with RV
n , and

therefore

ln 1/εCm
dCm

1
θCm ~pCm, ~p

V
n

� � + ln 1/εVn
dVn

1
θVn ~pCm, ~p

V
n

� �
> ln 1/εCm

dCm

1
θCm pC∗m , pV∗

nð Þ
+ ln 1/εVn

dVn

1
θVn pC∗m , pV∗

nð Þ
:

ð28Þ

Apparently, power allocation scheme f~pCm, ~pVn g guaran-
tees a higher traffic throughput than fpC∗m , pV∗n g, under
the delay and power constraints, which is also a contra-
diction to the assumption. Furthermore, for power alloca-
tion fpCm < pCmax, pVn < pVmaxg, we can improve the traffic
throughput under C1-C6 through increasing pCm and pVn with
an equal proportion until one of them reaches the corre-
sponding maximum. Consequently, Theorem 2 is proved.

From Theorem 2, P5 is decomposed into two one-
dimension optimization problems, i.e., optimizing pVn to
maximize Γm,nðpCmax, pVn Þ and optimizing pCm to maximize
Γm,nðpCm, pVmaxÞ. Thereafter, through comparing the corre-
sponding optimal Γ∗

m,nðpCmax, pVn Þ with Γ∗
m,nðpCm, pVmaxÞ, we

can choose the greater one as the optimal power allocation
solution for P5. Note that in the procedure of solving the
abovementioned two one-dimension optimization problems,
the optimal θCm and θVn can be derived by using the bisection
method on C1 and C2 in P5. Algorithm 1 summarizes how to
ascertain the optimal power allocation for a given CUE-VUE
pair. What should be highlighted is that, given power accu-
racy Δp, if C1 and C2 in P5 can be solved analytically, the
computation complexity of Algorithm 3 is OðpCmax + pVmax/
ΔpÞ. Otherwise, according to the bisection method, the com-
putation complexity is Oðlog2ðθmaxÞpCmax + pVmax/ΔpÞ, where
θmax denotes the maximum value of the QoS exponent. Typ-
ically, such a maximum value is small, and thus, the bisection
method can converge rapidly.

4.2. Deep Learning-Based CUE-VUE Matching. After obtain-
ing the optimal power allocation and the maximum traffic
throughput under the delay constraints of each CUE-VUE
pair, we further propose a supervised deep learning approach
to solve P3 in (10). In order to get the training label, we apply
Hungarian algorithm to optimize the CUE-VUE matching,
and the deep learning model should be properly trained to
guarantee high accuracy.
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As the number of CUEs may be greater than that of
VUEs, i.e., M >N , in this case, there are ðM −NÞ channels

that are not reused by any VUE. In order to maximize the
traffic throughput of those ðM −NÞ CUEs under their delay
requirements, we introduce a set of virtual VUEs, denoted
by N ′ and defined as

N ′ =
N + 1,N + 2,⋯,Mf g, if N<M
∅, if N =M

 
: ð29Þ

Also, for a given CUE-VUE pair, if the VUE is a
virtual VUE, we fix its transmission power as 0, and
then, (31) can be transformed into a simple power opti-
mization problem for a single CUE. It is easy to verify
that the effective capacity of the CUE is an increasing
function of transmission power pCm. Hence, the optimal
power allocation for this CUE-VUE pair can be obtained
as fpCmax, 0g, and the maximum traffic throughput can be
calculated by

Γ∗
m,n =

ln 1/εCm
dCm

1
θCm

, ð30Þ

where θCm can be obtained by solving E½e−θCmRC
mðpCmax,0ÞdCm � = εCm.

Therefor, P3 can be transformed into

Note that P6 is a bipartite matching problem [26] and
can be effortlessly solved by the classical Hungarian algo-
rithm. Specifically, the Hungarian algorithm is a sequential
and combinatorial optimization algorithm first proposed to
solve assignment problems [27]. The computation complex-
ity of the Hungarian algorithm calculating the optimal CUE-
VUE pair fτ∗m,ng is OðM3Þ, which is prohibitively high when
the number of CUEs is large. Hence, we develop a supervised
deep learning approach to solve P6 after obtaining the offline
labels from the Hungarian algorithm.

Firstly, we generate channel realizations with random
positions of CUEs and VUEs. In each channel, 106 small-
scale fading realizations are generated to solve C1 and C2
in P5. And then, we calculate the maximum traffic through-
put Γ∗

m,n sustained for each CUE-VUE pair and form a
throughput matric as fΓ∗

m,ng. The total number of the train-
ing samples K train is 5 × 104. In each sample, the traffic
throughput for a CUE-VUE pair varies in a large value range

and may be very different from those in other samples, which
takes a long time to obtain the optimal training parameters.
As a result, we normalize Γ∗

m,n for each training sample as in

Γ∗
m,n ⟸

Γ∗
m,n −min Γ∗

m,n
� 	

max Γ∗
m,n

� 	
−min Γ∗

m,n
� 	 ,m ∈M, n ∈N ∪N ′:

ð32Þ

For each training sample, we can easily deduce corre-
sponding label fτ∗m,ng. Note that there are M “1” and
MðM − 1Þ “0” elements in each fτ∗m,ng. This implies that
each label is quite sparse and a latent poor training perfor-
mance. Hence, we focus on the position of “1” elements for
eachm ∈M and use a fixed number from 1 toM to represent
it. For example, when “1” is spotted at the 5th column of the
considered row, that row can then be characterized by 5.
Therefore, the sparsity of the labels can be avoided.

1. Initialize statistical information of small-scale fading, loca-
tions of CUEs and VUEs, pCm = 0, pVn = 0, pC∗m = 0, pV∗n = 0,
optimal traffic throughput Γ∗

m,n = 0, power accuracy Δp;
2. Fix pC+m = pCmax;
3. while pVn ≤ pVmaxdo
4. Solve θCm from C1 in P5.
5. Solve θVn from C2 in P5.
6. Calculate Γm,n according to (31).
7. if Γm,n > Γ∗

m,n then
8. Γ∗

m,n = Γm,n, p
C∗
m = pCmax, p

V∗
n = pVn ;

9. pVn = pVn + Δp;
10. end if
11. end while
12. Fix pV+n = pVmax, p

C
m = 0;

13. while pCm ≤ pCmax do
14. Solve θCm from C1 in P5.
15. Solve θVn from C2 in P5.
16. Calculate Γm,n according to (31).
17. if Γm,n > Γ∗

m,n then
18. Γ∗

m,n = Γm,n, p
C∗
m = pCm, p

V∗
n = pVmax;

19. pCm = pCm + Δp;
20. end if
21. end while
22. Output pC∗m , pV∗n , Γ∗

m,n.

Algorithm 1: Optimal power allocation algorithm.

P6 max
τm,nf g

〠
m∈M

λCm + 〠
n∈N

λVn = 〠
m∈M

〠

n∈ N ∪N ′gτm,nΓ∗
m,ns:t:C5 : 〠

m∈M
τm,n ≤ 1,∀n ∈N C6 : 〠

n∈N
τm,n ≤ 1,∀m ∈M:

(
ð31Þ
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In the model training stage, we construct a fully con-
nected neural network (FNN) with KFNN = 5 layers. In each
layer, there are some neurons to be optimized and one activa-
tion function to introduce the nonlinear characteristics, as
depicted in Figure 2. In detail, there are 1000 neurons in each
middle (hidden) layer, and the ReLU activation function is
employed. Besides, the input and output vectors of the kth
layer are denoted by xk and yk, and we have

yk = ReLU Wkxk + bk
� �

xk+1 = yk

0@ , ð33Þ

where Wk and bk are the weight and bias vectors in the kth
layer. In order to predict the CUE-VUE pair matching from
1 to M, the output layer has M outputs, i.e.,

yKFNN =WKFNNxKFNN + bKFNN : ð34Þ

The training parameters of the FNN are initialized with
Gaussian variables with zero mean and unit variance. In each
epoch, a batch of training samples is randomly chosen from
all training samples for parameter training. The loss function
is defined as

loss = 1
K train 〠

K train

i=1
〠
M

j=1
yi,j − y∧i,j

� �2
, ð35Þ

where yi,j denotes the jth element of the label in the ith
sample and ŷi,j denotes the training result. The training
parameters can be optimized by the Adam algorithm to
minimize the loss function [28]. The deep learning-based
CUE-VUE pairing can be summarized by Algorithm 2.

4.3. Deep Transfer Learning for New Scenarios. As the FNN is
trained offline, it works well only for a V2V network with the
identical data distribution. However, in practical V2V net-
works, the traffic arrivals, channel fading, and positions of
vehicles are highly dynamic and nonstationary. Since we only
train the FNN with the maximum traffic throughput, hidden
parameters such as the positions of vehicles and large scale
channel fading are missing but have significant impacts on
both the throughput matric and the optimal CUE-VUE
matching. If the distribution of these parameters changes,
the throughput matric will be affected, where the offline
FNN will no longer perform well.

To address the mismatch problem, one potential approach
is to retrain the FNN for each new scenario. However, it is
hard to acquire enough training samples from a new scenario,
and the traffic of both CUEs and VUEs is delay-sensitive.
Hence, we resort to deep transfer learning to overcome the
mismatch, especially when new training samples cannot be
effectively obtained within a short time. The transfer learn-
ing framework is depicted in Figure 3. Specifically, we
choose offline trained model fW, bg as the initial parameter
setting. In addition, fine-tuning is employed to adjust the

Output y

Output layerHidden layerInput layer

Input x

W1 W2 WKFNNWKFNN–1

Figure 2: Fully connected neural network.

1. Initialize statistical information of small-scale fading, locations of CUEs and VUEs, the realization of large-scale fading;
2. Padding virtual VUEs to the considered network;
3. Obtain the maximum traffic throughput fΓ∗

m,ng sustained for each CUE-VUE pair from Algorithm 1;
4. Calculate the optimal matching scheme fτ∗m,ng as training labels;
5. Deal with the training samples fΓ∗

m,ng according to (32);
6. Deal with the training labels fτ∗m,ng to reduce the sparsity;
7. Train the FNN parameters with data samples until the loss function converges;
8. Output the optimal model.

Algorithm 2: Deep learning-based CUE-VUE matching.
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model parameters. Because the position of vehicles and the
large-scale fading both depend on the velocities of vehicles,
we need to fine-tune all the layers of the FNN.

5. Simulation Results

In this section, simulation results are presented and dis-
cussed. Network parameters and scenarios involved are set
as follows, unless otherwise stated.

Similar with [14], we set up a simulation scenario with a
6-lane freeway (3 lanes in each direction) passing through a
single cell, where the BS is located at the center of the road-
side. The lane width is set to 4m. The vehicles are randomly
dropped according to a Poisson point process with density
2.5 s × v, where v (km/h) denotes the velocity of the vehicle.
Then, we randomly choose CUEs and VUEs. Note that the
CUE-VUE pair always includes two adjacent vehicles. In
the simulation, the carrier frequency is set to 2GHz, and
the cell radius is set to 500m. For the BS, the antenna height
is set to 25m, the antenna gain is set to 8 dBi, the receiver
noise is set to 5 dB, and the distance to the freeway is set to
35m. For each vehicle, the antenna height is set to 1.5m,
the antenna gain is set to 3 dBi, the receiver noise is set to
9 dB, and the velocity is set to 60 km/h. The numbers of CUEs
and VUEs are both set as M =N = 5. The total bandwidth of
the considered vehicular network Btot is set to 10MHz, and
thus, the bandwidth for each CUE is B = 2MHz. The delay
requirement and the maximum tolerable violation probabil-
ity for each CUE are set to dCm = 1ms and εCm = 10−3. The
delay requirement and the maximum tolerable violation
probability for each VUE are set to dDn = 1ms and εDn = 10−5.
Also, the maximum transmission power of each CUE and
VUE is set to pCmax = pDmax = 20dBm. We simulate 2000 chan-
nel realizations and output the average result.

Figure 4 depicts the maximum traffic throughput sus-
tained by a CUE-VUE pair under different vehicle velocities.

It is shown that the throughput of both CUE and VUE
decreases as the velocity increases. This is because the V2V
distance increases with the vehicle velocity. As a result, the
data transmission capability of VUEs degrades seriously
due to the path loss. Hence, the VUE has to increase trans-
mitting power to guarantee the low delay requirement, which
introduces higher interchannel interference to the CUE.
Though the communication distance from the CUE to the
BS changes slightly, the high interference from the VUE still
affects the traffic throughput of the CUE.

Figure 5 depicts how the loss function varies over
training epochs of our proposed FNN tackling the channel
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Figure 3: Deep transfer learning framework.
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Figure 4: Traffic throughput for a CUE-VUE pair under given delay
constraints.
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assignment problem with offline data samples. It is observed
that both training loss and testing loss converge within
around 110 epochs. Note that we need to predict M integers
whose values are from 1 to M, and consequently, the loss is
low enough to guarantee the optimal channel assignment.
In addition, the training accuracy is also presented in
Figure 6, which verifies that our proposed FNN model is
effective in solving the channel assignment problem with
the testing accuracy above 90%. Hopefully, the model accu-
racy can be further improved if more training samples are
fed into the FNN.

Figure 7 depicts the traffic throughput supported by dif-
ferent channel assignment schemes. Specifically, the global

optimal scheme calculated by the Hungarian algorithm has
the complexity of OðM3Þ. Our proposed FNN is a deep
learning-based channel assignment scheme, where the chan-
nel capacity of the optimal scheme is leveraged to find the
optimal channel assignment that maximizes the network
throughput under given delay constraints. Obviously, the
throughput prediction by our proposed FNN is close to that
calculated by the Hungarian algorithm. Hence, we can use
the trained model to predict traffic throughput rapidly while
only incurring slight resource overheads. In addition, the
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Figure 6: Accuracy in training epochs.
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channel capacity provided by FNN is always higher than the
corresponding traffic throughput while satisfying the delay
constraint. In short, if the channel assignment aims for the
channel capacity maximization, it will lead to a severe overes-
timation of the traffic throughput.

Figure 8 depicts the performance improvement by the
deep transfer learning on the FNN training of new scenarios,
where the distribution of hidden parameters varies. In the
FNN training, the vehicle velocity is set to v = 100 km/h,
whereas in the transfer learning process, we initialize the
parameter as v = 60 km/h. It is verified that with the knowl-
edge transfer, our proposed FNN model converges much
faster than those with a random initialization. Hence, the
proposed transfer learning scheme can rapidly retrain the
channel assignment model for new sceneries and guarantee
sufficiently high accuracy.

6. Conclusion

In this paper, a joint power allocation and spectrum sharing
scheme was proposed to maximize the delay-sensitive traffic
throughput for vehicular communications. Specifically, the
interchannel interference model and traffic delay model were
established, respectively, to derive the optimal power alloca-
tion for each CUE-VUE pair. Thereafter, a FNN was
designed to deal with the channel assignment problem and
speed up the allocation decision. Furthermore, a deep trans-
fer learning scheme was proposed to leverage the offline
knowledge to learn new scenarios where hidden parameters
were unstable and training samples were insufficient. The
effectiveness of the hybrid deep transfer learning scheme
was also validated by extensive simulations. The results and
analyses revealed that using the channel capacity to char-
acterize the traffic throughput would incur a severe per-
formance overestimation and degrade the traffic delay
performance.
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