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Mobile grid computing has been a popular topic for researchers due to mobile and IoT devices’ ubiquity and their evergrowing
processing potential. While many scheduling algorithms for harnessing these resources exist in the literature for standard grid
computing scenarios, surprisingly, there is little insight into this matter in the context of hybrid-powered computing resources,
typically found in Dew and Edge computing environments. This paper proposes new algorithms aware of devices’ power source
for scheduling tasks in hybrid environments, i.e., where the battery- and non-battery-powered devices cooperate. We simulated
hybrid Dew/Edge environments by extending DewSim, a simulator that models battery-driven devices’ battery behavior using
battery traces profiled from real mobile devices. We compared the throughput and job completion achieved by algorithms
proposed in this paper using as a baseline a previously developed algorithm that considers computing resources but only from
battery-dependent devices called Enhanced Simple Energy-Aware Schedule (E-SEAS). The obtained results in the simulation
reveal that our proposed algorithms can obtain up to a 90% increment in overall throughput and around 95% of completed jobs
in hybrid environments compared to E-SEAS. Finally, we show that incorporating these characteristics gives more awareness of
the type of resources present and can enable the algorithms to manage resources more efficiently in more hybrid environments
than other algorithms found in the literature.

1. Introduction

The popularity of mobile devices and their integration with
the Internet of Things in different environments have
increased the need to improve network technologies and
mobile devices’ capabilities. Cisco estimates that we will have
around 12.3 billion mobile devices connected around 2022
[1]. In recent years, the hardware in mobile devices has been
improved following Moore’s law. These days, we can find
cheaper devices twice as powerful in regard to their computa-
tion, memory, and storage than devices present two years
ago, capable of executing and managing complex tasks [2].
Due to these advances in mobile computing, researchers [3]
found the need to treat these mobile devices as first-class
resources in distributed computing environments, using
these devices for complex tasks like executing Artificial Intel-
ligence (AI) algorithms (for example, object detection, object

tracking, and image recognition). Thus, it has become possi-
ble to integrate various mobile devices, such as smartphones,
robots, sensors, and single-board computers (SBCs) in
Cloud-Fog-Dew environments [4].

One of the most common reasons to connect mobile
devices into a Cloud computing system is to increase mobile
devices’ capabilities using code offloading techniques, send-
ing work to compute into high-end devices located in the
Cloud [5, 6]. Using these techniques, developers can reduce
battery consumption and increase mobile devices’ capabili-
ties further than their hardware specifications [7–9]. With
the increasing demand for IoT devices in recent years [10],
the Cloud has begun to suffer bottlenecks in throughput
speed, latency, and storage. In response to this demand,
researchers have proposed new network architectures to
solve this problem. Concepts like Edge computing (encom-
passing Fog computing and Dew computing) bring
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computation power to close devices located nearby in geo-
graphical space. While these two paradigms help reduce the
network’s problems, they still depend (especially Fog com-
puting) on the network backbone that may not be available
or reachable in certain situations like working with IoT
devices in mines and on ships, in deserts, or in moving vehi-
cles. Dew computing is a new paradigm where connected
devices offload jobs to nearby devices in the same network.
This paradigm proposes an architecture that tries to reduce
network latency, the energy cost of remote data communica-
tion, and the costs inherent to Cloud infrastructure usage
[11]. Through this, Dew computing tries to optimize the
usage of mobile and IoT devices in the system. Firstly, it
treats mobile devices as clients on the network infrastructure
to offload their work to other devices located in the local
network to increase their capabilities [12]. Secondly, Dew
computing considers mobile and IoT devices and resources
to increase the available computational power from an exist-
ing system. In this approach, one device can offload its work
to another available device in the network (including other
mobile and IoT devices) [13, 14].

A network topology is needed to use mobile and IoT as
resources and to allow networking support to acquire
resource availability knowledge, distribute tasks, and collect
results [15]. The Smart Cluster at the Edge (SCE) is a topol-
ogy for infrastructure-based networks and can be used in
Edge and Dew computing environments. This topology
could be established wherever an access point and a group
of mobile and IoT devices coexist. This topology’s main
feature is that it has a central scheduler primarily used to
coordinate the task assignment for the network’s available
resources and manage the different capabilities and charac-
teristics of available resources connected to the network. This
central scheduler can be a server in Edge environments and
any other capable device in Edge and Dew environments
[16]. To use these resources, we need to consider these
devices’ particular traits like the power source (and the bat-
tery capacity for battery-dependent devices) and the number
of processors/CPU cores, storage, or sensors. These features,
along with the set of assigned jobs and information on avail-
able resources, result in many challenges for SCE [17, 18].
Several scheduling algorithms for CPU-bound jobs in SCE
are available in the current literature [15, 19]. However, these
algorithms only consider mobile devices with limited power
supply and disregard nodes hooked to a power grid which
lack this constraint.

The contributions of this work are as follows:

(i) Improve existing resource allocation with three new
algorithms: Batch Processing Algorithm, Weighted
Random, and Weighted Round Robin. Those new
algorithms were designed for exploiting clusters of
Edge and Dew nodes with different computing capa-
bilities provided by the battery- and non-battery-
dependent devices. Examples of battery dependent
devices are smartphones, tablets, smartwatches, and
portable IoT devices; for non-battery-dependent
devices, we consider SBCs (single-board computers)
or other IoT devices directly connected to a power grid

(ii) Create an enhanced version of DewSim [3] to sup-
port hybrid networks to test our proposed algorithms

The rest of the paper is organized as follows. In the next
section, we will discuss state-of-the-art scheduling algo-
rithms used in SCE environments. Section 3 will show our
contribution to an existing simulator called DewSim to sup-
port mixed SCE environments. Section 4 will show our
proposed scheduling algorithms for SCE. Section 5 will show
our methodology and results from our experiments in the
extended simulator using our proposed heuristics. In Section
6, we will show our conclusions about the obtained results
and the planned future work.

2. Related Work

2.1. Scheduling Algorithms for Dew Computing. Exploiting
the computing capabilities of SCEs is a complex task that
requires scheduling logic to efficiently use smart devices, such
as smartphones and tablets, as a special kind of provider node
which is computing the available energy conditions’ service
provision in their primary source of power (batteries). Sev-
eral scheduling algorithms have been proposed regarding this
and other aspects concerning resource scavenging using this
type of smart device. For instance, in [20], the proposed
scheduling algorithm considers performance indicators of
wireless network bandwidth and mobile helper devices’ pres-
ence time to schedule jobs of a workflow with different data
dependencies. In [21], the task scheduling algorithm is mod-
eled as a mixed-integer programming problem that considers
unstable network links due to node mobility and resources
placed outside the local context where tasks are originated.
In [22–26], different algorithms were proposed for maximiz-
ing system utility or minimizing job execution time, using
mobile devices’ remaining energy as a formal constraint of
the resource allocation problem formulation. Such data is
easy to estimate by accessing the battery level through a
smartphone battery API. However, to operate, these algo-
rithms also assume complete and accurate information about
job requirements in terms of energy spent and execution time
for every candidate node, making it challenging to apply in
real-life scenarios.

In [27, 28], another kind of scheduler algorithm is pro-
posed that does not need complete knowledge of job require-
ments to operate. In other words, they do not need the job
information that algorithms discussed above require, e.g.,
job execution time or job energy spent in each candidate
node. These algorithms focus on reducing the job completion
time by exploiting nodes’ proximity and cost-effectiveness of
nodes’ transferring capabilities. Their primary focus is to
study node mobility’s effect on the job completion time
rather than balancing the load among nodes to mitigate the
limited operation time imposed by their batteries and their
computing resources.

Ranking-based heuristics from Hirsch et al. [16, 17] com-
bine mobile devices’ battery level information (remaining
energy or discharge time) with computing scores resulting
from benchmarks to exploit a set of nearby smartphones’
computing capabilities. The authors show that considering
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nodes’ remaining energy helps to complete more jobs with a
set of battery-powered mobile devices than using a classical
Round Robin scheduler. However, such heuristics assume
that the burden of processing all jobs is exclusively in charge
of battery-powered mobile devices. That means that such
heuristics’ performance is unknown for settings where the
battery- and non-battery-powered devices coexist in the
same Dew computing environment. Besides, non-battery-
powered hardware is severely underutilized.

The last scenario could be numerous local smart contexts,
where SBCs and similar IoT devices support much of the
processing burden. However, the extra load derived from for-
tuitous events or fluctuating demands is not well supported
without additional resources, such as passive battery-
powered devices in proximity. For exploiting such settings,
new load-balancing heuristics should be investigated, which
is the main objective of this work.

In general, these existing algorithms show that they can
improve the performance and job completion rate of SCEs.
However, they are unable to handle cases where non-
battery-powered devices are part of the network. If we
consider these resources, we must address new requirements
because there is a need to distribute the jobs in an optimal
way considering these two types of devices: battery- and
non-battery-dependent devices.

2.2. Dew Computing Simulation. Simulation is an accepted
practice in distributed computing because it allows
researchers to simulate events and heuristics without the cost
of hardware and infrastructure, with the consequent reduc-
tion in evaluation times. Also, simulation provides a way to
repeat experiments easily without worrying about costs, and
it eases the process of simulating real-life events.

Simulation frameworks with built-in support for model-
ing computing-related concerns are commonly used for grid
computing research. One notable example is GridSim [29].
This event-driven simulation toolkit provides abstractions
for modeling large-scale distributed computing systems in
which millions of resources with single or multiprocessors,
with shared or distributed memory managed by time- or
space-shared schedulers, are integrated.

SimGrid [6] is a more versatile option, a tool with specific
models for simulating various distributed systems, including
clusters, content sharing in extensive and local area networks,
data centers, and Cloud environments. However, these
models only allow simulating the behavior of dedicated
computing resources connected through wired networks.
Modeling nondedicated computing resources is a crucial
aspect of mobile grid computing.

CloudSim [30] is a toolkit for simulating Cloud comput-
ing infrastructures. It provides different abstractions to rep-
resent virtual machines running in a server collection
located in a data center. It is used to study different ways to
manage Cloud computing scenarios.

EdgeCloudSim [31] provides a simulation environment
specific to Edge computing scenarios where it is possible to
conduct experiments that consider both the computational
and networking resources. EdgeCloudSim is based on Cloud-
Sim but adds additional functionalities to be used for Edge

computing scenarios more efficiently. However, this simula-
tor has the same problem as CloudSim, and it cannot simu-
late interactions and resource sharing between mobile
devices. Similarly, Flores et al. [32] built a simulator based
on CloudSim that adds mobile devices’ presence to allow task
offloading to the Cloud. It also adds the concept of battery-
dependent devices but cannot simulate interactions with
other mobile devices connected to the network.

iFogSim [33] permits model entities present in IoT sce-
narios. It uses CloudSim as a base simulation engine. It pro-
vides abstractions to model sensors and actuators, commonly
associated with the data source and data sink roles, and Fog
nodes that can be loaded with different modules to serve dif-
ferent IoT applications. Fog nodes play the role of computing
and/or data relays to communicate with other Fog nodes or
even the Cloud to offload computations. Fog nodes can be
parametrized with power consumption values to enable stud-
ies that consider energy-aware resource allocation. However,
to model battery-dependent Fog nodes, such as smartphones
and tablets, it is essential to consider battery behavior and not
only power consumption.

IoTSim-Edge [34] is another framework built upon
CloudSim. In this simulator, low-powered devices such as
smartphones and Raspberry Pi are considered first-class
computing resource providers, i.e., Edge data centers’ Edge
nodes. The framework considers modeling battery drainage
of Edge nodes and IoT devices through linear relationships
between resource usage and battery capacity which is known
to be an oversimplified way of representing the way batteries
behave.

Smartphones are also modeled as first-class computing
resource providers in DewSim [3]. In DewSim, a trace-
driven approach is used to model battery behavior. It means
that battery level decrements are obtained from real battery
traces profiled from mobile devices, representing realistic
relations between computing resource utilization and battery
drainage. DewSim is considered an infrastructure-level
topology where mobile devices are registered with a proxy
node as resource providers. The proxy is responsible for
assigning received jobs to mobile devices. The simulator has
been used with allocation algorithms where jobs are distrib-
uted only among battery-dependent devices. Resource alloca-
tion logic to exploit the synergy between the battery- and
non-battery-dependent devices has not been explored yet.
On the other hand, this simulator has an architecture that
allows adding new types of nodes and scheduling algorithms
using its interfaces.

Table 1 summarizes the main characteristics of these
frameworks and their capabilities. It shows existing simula-
tors in the literature that facilitate the research on resource
allocation in distributed computing; the first column shows
the type of nodes on which the distributed computing is per-
formed. The next column shows if the simulator supports
mobile devices as a client or as a computing device. The third
column shows if the simulation allows battery modeling for
mobile devices and which type of modeling is used. The off-
loading task column indicates if they support task offloading
simulation to other network devices and where the task can
be offloaded. The “Energy discharge profiles” field shows if
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the simulation supports real devices’ use and discharge rate
in different energy resource demands (e.g., screen on/off,
CPU loads, and network usage).

3. DewSim Extended Simulator

Since the simulators available in the literature were not pre-
pared to handle topologies based on mixed networks or capa-
ble of handling battery- and non-battery-dependent devices,
we built a custom simulator (available code and simulated
environments in https://github.com/psanabriaUC/mobile-
grid-simulator) to adequately address these scenarios. We
based our simulator on the previous work of DewSim [3].
DewSim was chosen as a base simulator because it supports
modeling different features present in an SCE. The main fea-
tures of DewSim are the simulation of the arrival of tasks,
completeness metrics, battery consumption, network activity
derived from the transfer of input/output data of tasks, and
status notifications of devices based on events. The simulator
allows modeling battery consumption in mobile devices
thanks to its method based on profiles extracted from real
devices, that is, traces that contain information (not syn-
thetic) about the relationship between battery events and
CPU usage.

DewSim manages all the devices using the device class, as
shown in the class diagram in Figure 1. The device class has
all inherent attributes that can describe a resource in the
network. This device interacts with two essential classes: the
battery manager, which manages information related to the
remaining energy available in the devices, and the execution
manager, which manages information related to the compu-
tation of jobs assigned to a device.

DewSim handles the device’s battery depletion simulat-
ing different events that cause energy depletion and estimates
in this way, by using the battery profiles extracted from real
devices, the remaining battery. The simulated events sup-
ported by DewSim are events related to CPU usage, network
usage, or screen activity. DewSim initially did not handle
devices with unlimited power supply. We added a new device
extending a new battery manager that implements the same

interface implemented before but adapted to an infinite bat-
tery source in our new version. Because the energy source is
not limited to a battery and it will always have a constant
energy source, the new logic implemented in this battery
manager is that it always reports 100% of the remaining
battery to the scheduler and does not respond to energy
depletion events.

We added a new attribute to the devices present in the
network. This attribute is used to distinguish between both
types of devices. It helps scheduling algorithms and the event
manager discriminate between devices and decides how they
can handle the arrived jobs to the SCE.

Figure 2 shows the logic behind the behavior of the sim-
ulator. When the simulation begins, it receives a list of events,
like job arrivals, battery status updates, and message sending
between devices. The simulation ends when all the events are
processed. Every event is sent to a device to process it and
send the job information to the battery manager. The battery
manager is responsible for calculating the remaining battery
using the job information and sending the corresponding
event to be processed in the simulation. In non-battery
devices, the default infinite battery manager class maintains
the behavior of the base battery manager. However, it always
sends its battery status as a fully charged device. In this way,
the simulation maintains its consistency and can manage
both the battery and non-battery devices using the same
interfaces.

4. Proposed Scheduling Heuristics

There are various scheduling algorithms for SCE systems. To
analyze the consequences of adding non-battery-dependent
mobile devices, we need to test them when adding this type
of device into SCE systems. In this work, we will test current
algorithms designed to be used with mobile grid systems.
Rodriguez et al. [35] proposed the SEAS (Simple Energy-
Aware Schedule) algorithm to minimize the per-device
energy consumed per job executed. This algorithm’s main
feature is that it is easy to implement in real-life environ-
ments, using only OS (Operative System) information

Table 1: Distributed computing simulator comparison table.

Simulator Computing node
Mobile

device role
Battery
modeling

Task offloading
Energy discharge

profiles

GridSim High-end servers in a cluster N/A N/A Between dedicated servers No

SimGrid High-end servers in a cluster N/A N/A Between dedicated servers No

CloudSim High-end servers located at the Cloud Client N/A
Cloud devices and
dedicated servers

No

EdgeCloudSim
Mid/high-end servers located at the

Cloud and the Edge
Client No

Cloud devices and
dedicated servers

No

MobileCloudSim High-end servers located at the Cloud Client No
Cloud devices and
dedicated servers

No

iFogSim Mid-end servers located at the Fog Client No Devices located at the Fog No

IoTSim-Edge Mobile devices
Computing

device
Linear
model

Mobile devices No

DewSim Mobile devices
Computing

device
Trace-
driven

Mobile devices Yes
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available in conventional power-constrained devices. This
algorithm operates by assigning jobs to a centralized proxy
that manages and distributes the jobs to the network’s avail-
able resources. It ranks all subordinated mobile devices
according to which one can be assigned a job and knows
which device is the best candidate to do the job. It uses the
estimated device uptime, the device’s capabilities (previously
measured with benchmarks), and the remaining jobs. Hirsch
et al. [17] extended this algorithm. They called it Enhanced-
SEAS. This algorithm uses the combination of three
components, including the current node battery level, the
computation capabilities of the node measured in MIPS,
and the jobs the node has in its job queue.

Additionally, other relevant algorithms are called Job
Energy-aware Criterion (JEC) and FutureWork-aware Crite-
rion (FWC). The first algorithm considers the relationship
between the energy used and the number of jobs finished
by a device. FWC, on the other hand, considers that the
future computational power of a node could be estimated
by analyzing the computational power the node presented
in the past. In other words, FWC assumes that the through-
put achieved by a node in the past could be maintained in
the future as well [17].

This paper proposes three new scheduling algorithms
inspired by algorithms such as Batch Processing Algorithm,
Weighted Random, and Weighted Round Robin. The Batch

+ addjob(job: job)

+ removeJob(index:lnt):Job
+ getJobQueueSize():lnt

+ onFinishJob(job:Job)
+ onCPUEvent(cupUsage:Float)
+ getnNumberOFJobs():lnt
+ getMIPS():lnt
+ getCPUUsage():Float
+ shutdown()

<<Interface>>
Execution manager

Default execution manager

- NO_OPS:Int = 0
- device:Device
- mips:Int
- cpu:Float
- pending Jobs:List<Job>
- batteryManager:DefaultBatteryManager
- executing:Job
- executedOps:lnt
- lastEventTime:lnt
- lastEvent:Event
- finishedJob:lnt = 0

# startExecute()
# isExecuting():Boolean

+ getDevice ():Device
+ setDevice(device:Device)

+ getBatteryManager():DefaultBatteryManager
+ setBatteryManager(batteryManager:DefaultBatteryManager

+ addProfileData(prof:int, data:ProfileData)

+ setSEASExecutionManager(seasEM:DefaultExecutionManager) 
+ getSEASExecutionManager():DefaultExecutionManager

+ getDevice():Device

<<Interface>>
Default battery manager

+ setDevice(device:Device)

Default infinite battery manager

-MAXCHARGE:lnt = 1000000

- startTime:lnt
- device:Device

- lastAddedEvent:Event

- lastMeasurement:lnt
- executionManager:DefaultExecutionManager

Device

- batteryManager:DefaultBatteryManager
- executionManager:DefaultExecutionManager

<<Interface>>
battery manager 

+ onBatteryEvent(level:int)
+ getCurrentBattery():lnt
+ getEstimatedUptime():lnt
+ startWorking()
+ getStartTime():lnt
+ getCurrentSOC():Float

Figure 1: Class diagram of the infinite battery manager.

Simulation

runSimulation() receiveEvent()

Device Default infinite battery manager Event

processEvent()

onStartup()

startWorking() createEvent()

BatteryUpdateEvent
addEvent(BatteryUpdateEvent)

BatteryUpdateEvent
is only added once,
on device startup

Figure 2: Sequence diagram of the infinite battery manager.
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Processing Algorithm (BPA) considers the job loaded into
the devices and the current hardware capabilities to predict
the first device that finishes the assigned job. The scheduler
assigns and enqueues the job to the predicted device. The
formula we use for this job is as follows:

Δt =
∑OPjobs

MIPS ∗ Battery , ð1Þ

where OPjobs is the current job load that the device has
enqueued measured in how many operations are needed to
finish the task, MIPS is the device’s capabilities (processor
speed) measured in mega instructions per second, and
Battery is the remaining battery of the device expressed in
values between the range of 0 < Battery ≤ 1. The pseudocode
of this algorithm is in Figure 3, where “assignedOPS” is a
hashtable containing a registry of the current load of the
devices, “selected” is the device to be assigned a job, and
“deviceList” is the list of devices connected to the network.
We also apply a Job-Stealing technique, which means a
device does not wait to be assigned jobs to execute them
but asks other devices for unfinished jobs upon becoming
idle. However, in this case, we treat the battery- and non-
battery-dependent devices in different ways. We have two
approaches. The first one is to assign the jobs using the same
techniques proposed before, using our schedulers and the

previously designed schedulers like E-SEAS, JEC, or FWC.
The second approach is treating the non-battery-dependent
devices as first-class devices. That means that the scheduler
assigns jobs, using a previously studied algorithm, to non-
battery-dependent devices first. After that, the scheduler
waits for battery-dependent devices to steal jobs from the
non-battery-dependent devices.

TheWeighted Random (WR) algorithm works by assign-
ing a weight to each device on the grid. The weight is simply a
combination of the device’s capability measured in MIPS
multiplied by the current battery level (measured in values
between 0 and 1). Therefore, the scheduler assigns a given
job at random, but given the weight, devices with higher
capabilities and more battery levels have a higher chance of
being selected. For this study, we assigned the next range.
For devices with more than 1000 MIPS, 20 jobs are assigned;
for devices with more than 75 MIPS but less than 100 MIPS,
ten jobs are assigned; for devices with more than 10MIPS but
less than 75 MIPS, seven jobs are assigned; and finally, for
devices with less than 10 MIPS, one job is assigned.

The Weighted Round Robin (WRR) algorithm works
using the classic Round Robin algorithm, assigning a previ-
ously determined number of jobs to each grid device until
every job has been assigned. Again, this number depends
on each device’s capabilities multiplied by the battery level
(measured in values between 0 and 1). For this study, we
determined the following thresholds: devices with less than

assignJob (job)
assignedOPS = deviceList . getCurrentLoad ()
selected null
foreach device in deviceList

if (selected == null)
selected device

else
dtselected (job . OPS + assignedOPS [selected]) /

dtdevice (job . OPS + assignedOPS [device]) /

if (dtdevice < dtselected)

if (selected != null)

selected device
end

end
end

queueJob (selected, job)
end

end

1 :
2 :
3 :
4 :
5 :
6 :
7 :
8 :
9 :

10 :
11 :
12 :
13 :
14 :
15 :
16 :
17 :
18 :
19 :
20 :

device . FLOPS ⁎ device . batteryLevel

selected . FLOPS ⁎ selected . batteryLevel

Figure 3: Pseudocode of the Batch Processing Algorithm scheduler.

Table 2: Execution environments used in experiments.

Device MFLOPS Total battery (joules) Battery-dependent only Hybrid Non-battery-dependent only

A100 61.665 40680 20 10 0

Galaxy Tab 2 179.832 53280 30 15 0

L9 56.433 29520 50 25 0

Raspberry Pi 3 58.380 N/A 0 35 70

ODROID XU4 35.770 N/A 0 35 70
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10 MIPS are assigned one job; devices with more than 10
MIPS and less than 75 MIPS are assigned seven jobs; devices
with more than 75 MIPS and less than 100 MIPS are assigned
ten jobs; and devices with more than 100MIPS are assigned 20
jobs. We defined some thresholds considering the simulated
devices’ capabilities, creating a heterogeneous distribution of
work. In practice, assigned jobs could be determined similarly
using a function that takes as input the number of available
jobs and the spectrum of MIPS among devices in the SCE.

5. Experimentation

To know how well the scheduling algorithms manage the
available resources in the network, we need to test and com-
pare the performance and reliability of job completion and
compare it against other existing algorithms. In this paper,
we compare our new algorithms against E-SEAS. In previous
works, E-SEAS has shown that it gets better results in manag-
ing systems with battery-dependent devices compared to
other algorithms found in the literature [16]. As this is the
case, we use E-SEAS as a baseline because it can hint at
how our algorithms behave in similar situations. On the
other hand, there is no evidence about this algorithm’s, nor
other previously developed algorithms’, behavior in more
hybrid networks likely found in Dew computing grids. For
that reason, we also use E-SEAS as a baseline to hint at how
other algorithms behave in hybrid networks and compare
them with our algorithms.

5.1. Methodology. To compare the algorithms’ performance,
as mentioned earlier, we considered three distinct scenarios:

(1) Battery-Dependent Only. We only use a set of devices that
are battery-dependent.

(2) Non-Battery-Dependent Only. We only use a set of devices
that are non-battery-dependent.

(3) Mixed Setup. We use the same devices used in the previ-
ous two experiments.

The metric used in these experiments will be the overall
system throughput in GIPS (giga instructions per second)
and total job completion. For that reason, we will measure
the total time used by the SCE and the total executed instruc-
tions in the simulator to get the GIPS. The obtained GIPS by
the SCE tells us how efficient the system is at finishing the
assigned tasks after the scheduling algorithms distribute the
tasks: more GIPS would mean more efficiency finishing a
given set of tasks. On the other hand, the number of finished
jobs, measured as a percentage, will show us how a schedul-
ing algorithm can handle the risk of losing jobs when a
specific device becomes unavailable (more completed jobs
would mean more awareness of the network).

5.2. Experimental Setup and Results. The topology used in
different environments is explained in Table 2. We used a
tool based on LINPACK benchmarks (https://play.google
.com/store/apps/details?id=com.sqi.linpackbenchmark) to
get the device processing capacity (MIPS). To get the CPU
battery consumption profiles, we used a tool developed
together with DewSim to get those profiles. The devices used
to get a profile were as follows: Acer A100 tablet, Samsung
Galaxy Tab 2 tablets, LG L9 smartphones, Raspberry Pi 3
Model B, and ODROID XU4.

The job datasets are composed of synthetic jobs whose
input and output vary in size (between 1 and 500MB) and
the number of operations required to complete. CPU opera-
tions relate in n ∗ log ðnÞ, n2, or n3 to the input data size in
KB to generically express various real-life codes (e.g., sorting
data or performing 2D/3Dmatrix operations). We used three
job sets consisting of 1500, 2500, and 3500 jobs for each
experiment in every topology. The obtained results for 1500
jobs are shown in Table 3, results for 2500 jobs are shown

Table 3: Obtained results for 1500 jobs.

Environment GIPS Completed jobs Completed on non-battery Completed on battery

Battery

Enhanced-SEAS 0.585115579 63.47% 0.00% 63.47%

BPA 0.570180123 55.93% 0.00% 55.93%

BPA-Stealing 0 0.00% 0.00% 0.00%

W-Random 0.5677372 68.29% 0.00% 68.29%

W-Round Robin 0.621309887 68.40% 0.00% 68.40%

Non-battery

Enhanced-SEAS 0.534927378 100.00% 100.00% 0.00%

BPA 0.549990732 100.00% 100.00% 0.00%

BPA-Stealing 0.035535733 100.00% 100.00% 0.00%

W-Random 0.606253274 100.00% 100.00% 0.00%

W-Round Robin 0.483890686 100.00% 100.00% 0.00%

Hybrid

Enhanced-SEAS 0.523443085 100.00% 100.00% 0.00%

BPA 0.533033243 91.80% 52.80% 39.00%

BPA-Stealing 0.035535733 97.07% 78.47% 18.60%

W-Random 0.805195744 90.45% 49.96% 40.49%

W-Round Robin 1.0406022 96.02% 55.53% 40.49%
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in Table 4, and finally, results for 3500 jobs are shown in
Table 5.

5.3. Discussion. Figure 4 shows the overall performance of the
system. We can see that BPA and E-SEAS behave similarly in
different environments and job loads. We observe that BPA
has a range of 2% and 18% throughput gain over E-SEAS
in non-battery and hybrid environments. On the other hand,
we can see that WR and WRR have better throughput in
hybrid environment situations than the other algorithms.
In the case of WRR, this algorithm obtained 51% and 90%
of throughput gain in hybrid environments when the job
load was about 2500 and 1500 assigned jobs, respectively.
On the other hand, the behavior was similar to E-SEAS when

the job load was 3500 assigned jobs. WRR behavior was simi-
lar to E-SEAS in battery-dependent only and non-battery-
dependent only environments. In WR’s case, the obtained
results show that this algorithm has a more consistent
throughput gain in hybrid environments (between 20% and
40%). However, with homogeneous device-type environments
(battery-dependent only and non-battery-dependent only),
the behavior was better only when the job load was 1500 jobs
assigned and E-SEAS obtained better results in other situa-
tions. The overall results show that we can have better
throughput with energy-aware scheduling algorithms in the
hybrid environment, especially when the job load is not heavy.

Figure 5 indicates that, in a hybrid environment, E-SEAS
job assignments are all to non-battery-dependent devices.

Table 5: Obtained results for 3500 jobs.

Environment GIPS Completed jobs Completed on non-battery Completed on battery

Battery

Enhanced-SEAS 0.735704316 22.97% 0.00% 22.97%

BPA 0.793065449 24.11% 0.00% 24.11%

BPA-Stealing 0 0.00% 0.00% 0.00%

W-Random 0.704779595 32.61% 0.00% 32.61%

W-Round Robin 0.77958216 33.42% 0.00% 33.42%

Non-battery

Enhanced-SEAS 1.421876509 100.00% 100.00% 0.00%

BPA 1.449449702 100.00% 100.00% 0.00%

BPA-Stealing 0.03556378 100.00% 100.00% 0.00%

W-Random 1.184283041 100.00% 100.00% 0.00%

W-Round Robin 0.811127206 100.00% 100.00% 0.00%

Hybrid

Enhanced-SEAS 0.968977662 100.00% 100.00% 0.00%

BPA 0.994339283 73.71% 52.71% 21.00%

BPA-Stealing 0.034761667 98.46% 88.83% 9.63%

W-Random 0.950427366 70.60% 49.68% 20.92%

W-Round Robin 0.916302079 74.91% 55.40% 19.51%

Table 4: Obtained results for 2500 jobs.

Environment GIPS Completed jobs Completed on non-battery Completed on battery

Battery

Enhanced-SEAS 0.702226488 39.12% 0.00% 39.12%

BPA 0.734560767 39.52% 0.00% 39.52%

BPA-Stealing 0 0.00% 0.00% 0.00%

W-Random 0.650641616 48.44% 0.00% 48.44%

W-Round Robin 0.675704095 49.68% 0.00% 49.68%

Non-battery

Enhanced-SEAS 1.417140659 100.00% 100.00% 0.00%

BPA 1.060698678 100.00% 100.00% 0.00%

BPA-Stealing 0.035566736 100.00% 100.00% 0.00%

W-Random 0.90438383 100.00% 100.00% 0.00%

W-Round Robin 1.107414652 100.00% 100.00% 0.00%

Hybrid

Enhanced-SEAS 0.844525553 100.00% 100.00% 0.00%

BPA 0.997901846 83.96% 52.28% 31.68%

BPA-Stealing 0.038224314 98.32% 86.24% 12.08%

W-Random 1.103836675 81.35% 50.25% 31.10%

W-Round Robin 1.278510946 83.84% 55.48% 28.36%
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Figure 4: System giga operations per second.
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The node ranking logic cannot distinguish between the non-
battery- and battery-dependent devices. This behavior can be
explained using the main logic of E-SEAS. E-SEAS assigns
jobs depending on the estimated uptime and the device’s
capabilities. However, as in the case of hybrid environments,
the non-battery devices report that their uptime will be infi-
nite; they always get a better rank compared to the battery
devices. That is, the battery devices never got a chance to
get selected.

On the other hand, for a hybrid environment, we can see
that BPA obtained between 70% and 92% of the job comple-
tion rate, and WR obtained between 75% and 90% of the job
completion rate. Finally, WRR obtained between 75% and
95% of the job completion rate. In battery-dependent envi-
ronments, we can see that BPA, WR, and WRR obtained
between 25% and 68% of the job completion rate, which is
slightly better than the E-SEAS job completion rate. Putting
both results together, we can see that BPA, WR, and WRR
have a better completion rate, resulting in more processed
jobs and, in some cases, better network performance. That
is, these algorithms are scheduling and finishing more jobs
without sacrificing network performance.

In the case of BPA with Job-Stealing, we got a peculiar
result. This algorithm has the best completion rate of all the
other algorithms, so this technique has the best awareness
of the different kinds of devices present in the system. How-
ever, this technique shows the worst throughput in the exper-
iments. We observed that this technique raises the network
requirements due to the constant communication between
nodes and permanent job transferring. This high traffic
causes a bottleneck in the network affecting the overall
performance of the system.

6. Conclusions

In this paper, we explored the capability of state-of-the-art
schedulers. We proposed new ones to exploit the cooperation
among low-powered battery- and non-battery-dependent
devices to accomplish resource-intensive jobs at the Edge,
i.e., exploitation of hybrid environments. The obtained
results in the simulation reveal that our proposed algorithms,
BPA, WR, and WRR, can obtain up to a 90% increment in
overall throughput and around 95% of completed jobs in
hybrid environments. We also showed that incorporating
these characteristics gives more awareness of the type of
resources present and can enable the algorithms to manage
resources more efficiently in hybrid environments than other
algorithms found in the literature. We also showed that Job-
Stealing could contribute to better job distribution by taking
advantage of idle devices in the network. However, it can
only be used in scenarios where performance is not essential.
In this way, in the future, we must address the performance
problem by improving the network traffic and optimizing
the communication between nodes.

We expect to improve and polish these proposed sched-
uling algorithms and incorporate them into real scenarios
outside of a simulator in future work. We also expect to test
these algorithms using more powerful non-battery-
dependent devices to test their behavior in scenarios where

these kinds of devices are more common in topologies based
on Edge computing.

Data Availability
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