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Multirobot motion planning is always one of the critical techniques in edge intelligent systems, which involve a variety of
algorithms, such as map modeling, path search, and trajectory optimization and smoothing. To overcome the slow running
speed and imbalance of energy consumption, a swarm intelligence solution based on parallel computing is proposed to plan
motion paths for multirobot with many task nodes in a complex scene that have multiple irregularly-shaped obstacles, which
objective is to find a smooth trajectory under the constraints of the shortest total distance and the energy-balanced
consumption for all robots to travel between nodes. In a practical scenario, the imbalance of task allocation will inevitably lead
to some robots stopping on the way. Thus, we firstly model a gridded scene as a weighted MTSP (multitraveling salesman
problem) in which the weights are the energies of obstacle constraints and path length. Then, a hybridization of particle swarm
and ant colony optimization (GPSO-AC) based on a platform of Compute Unified Device Architecture (CUDA) is presented
to find the optimal path for the weighted MTSPs. Next, we improve the A∗ algorithm to generate a weighted obstacle
avoidance path on the gridded map, but there are still many sharp turns on it. Therefore, an improved smooth grid path
algorithm is proposed by integrating the dynamic constraints in this paper to optimize the trajectory smoothly, to be more in
line with the law of robot motion, which can more realistically simulate the multirobot in a real scene. Finally, experimental
comparisons with other methods on the designed platform of GPUs demonstrate the applicability of the proposed algorithm in
different scenarios, and our method strikes a good balance between energy consumption and optimality, with significantly
faster and better performance than other considered approaches, and the effects of the adjustment coefficient q on the
performance of the algorithm are also discussed in the experiments.

1. Introduction

Robot technology is always a remarkably interdisciplinary
topic of study, one that can be applied to various engineering
practices as well as emerging industrial fields. The edge intel-
ligence, on the other hand, has been known as one of the
most difficult research areas to apply multirobot systems
(MRSs), in which the key technologies such as path plan-
ning, robustness, fault tolerance, and stability cooperation
of MRS need to be studied. Motion planning is an extension
of path planning, and there exist few differences between
them. Generally, path planning is to find the path between
starting node and target node in specific scenes by objectives
like the shortest distance or the shortest time, while motion

planning is to generate interactive trajectories in the situa-
tion when robots interact with their surroundings, where
there are usually many factors such as velocities, obstacles,
and energies that need be considered as constraints [1]. Path
planning has always been one of the important challenges,
which has been widely used in engineering practices, such
as underwater robot detection, UAV cruise, vehicle tracking,
warehousing, robot delivery, smart edge systems, and vari-
ous navigation scenarios [2]. Multirobot path planning
(MRPP) is to find the shortest way that allows each robot
to follow a safe and effective path to reach a goal from an ini-
tial node, optimize the motion path and avoid obstacles, and
generate a smooth motion path between nodes that con-
forms to the objectives.
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With decades of year development, there are various
studies of motion planner including traditional interpolating
and heuristics approaches employed effectively in multiro-
bot navigation over different environmental conditions so
far. Even though, it is still an open challenging for multiro-
bot regarding uncertain constraints, especially dynamic
adaptive, scalable, and online replanning are still open and
challenge problems for practical applications in real-world
with large-scale nodes [3–5], which are far from being
completely solved, and many practical engineering problems
are still tackled today using learning-based heuristics algo-
rithms, for the purpose of robustness, safety, speed, and effi-
ciency. The main advantages of these methods lie in their
ease of implementation, effectiveness for specific applica-
tions, and feasibility for small-scale and low dimensional
workspace. However, some of them fails to complicated
time-sequential motion planning, or limited robustness, or
computational expensive, or unknown environments, espe-
cially the large-scale problem still have to be faced by the
exponential growth of the search space and the disaster of
dimensionality.

The early graphics processing unit (GPU) did not design
a programming architecture for parallel computing. Pro-
grammers usually utilize special skills, such as Shader, to
realize algorithm parallelism, which result in limitations
and complexity of programming. With the development of
GPU, especially edge intelligence, in the field of scientific
computing, NVIDIA and AMD successively launched
GPU-based parallel software and hardware architecture
CUDA (Compute Unified Device Architecture) and ROCm
(radeon open computing platform). Similarly, ROCm stack
and provided a path for the parallel implementation of
large-scale evolutionary computing [6]. Modern GPUs use
multistream processor (SM) design and single instruction
multithreading (SIMT) instruction architecture, which pro-
vides a good hardware platform for parallel algorithms. In
reality, speed is essential in the applied scenes of MRSs,
when the energy consumption of multirobots is not bal-
anced, some robots may be stopped on the way, which will
affect the stability and persistence of the whole multirobot
system and even affect the completion of the task.

Therefore, this work is focused on motion planning for
multirobot in a complex scene that has different surround-
ing obstacles. The goal is to design fast approaches that
enable a real-time calculation of trajectories for multirobot
systems which have balanced energies to finish their tasks.
After the problem is to be solved modeled as a weighted
MTSP, an improved RRT search combining slam construc-
tion method is proposed, which can help robots locate and
map unknown areas more quickly. Then, we use particle
swarm clustering and ant colony optimization methods to
find the point-to-point direct path satisfying the basic con-
straints in the low-dimensional space and then restore the
path to the actual scene through the trajectory generation
algorithm. At the same time, combined with the characteris-
tics of easy parallelization of swarm intelligence algorithm,
aiming at the problems of high accuracy but long execution
time of hybrid iterative algorithm, considering the energy
consumption balance of multiple robots, by developing a

GPU based on CUDA platform to accelerate the running
speed of the algorithm, a smooth grid path algorithm com-
bined with the minimum snap algorithm is proposed to
make the final path globally optimal, safe, and fast, colli-
sion-free, energy-balanced and meet the dynamic
constraints.

2. Related Works

2.1. Map Modeling. Multirobot motion planning mainly
involves three stages which are building the global map
model, generating a search path, and optimizing the motion
trajectories. The first stage is to model a map of the given
environment that is the input data for algorithms. There
are algorithms commonly used to model maps that cover
grid method, topology method, line of sight diagram
method, tangent diagram method, and Voronoi diagram
method [7, 8]. The former two are mostly utilized for global
path planning, while the latter three are mostly used for local
search. Among them, the grid method is simple and clear,
which is recognized as an algorithm with high safety [9].
In the algorithm, the environment can be discretely gridded
on a mesh map as fine as possible when the computing
resources permit, to reduce the time complexity of finding
both obstacles and target-nodes to Oð1Þ. As shown in
Figure 1, we assume that some irregular polygons are obsta-
cles, and triangles are target nodes on the original map. After
offline processing using the grid method, an original envi-
ronment, the gridded mesh, and the discretized matrix are
as shown in Figures 1(a)–1(c).

2.2. Solving Algorithms. Due to the characteristics and com-
plexity of MRPP, it is a difficult and complex NP hard prob-
lem, which is essentially an optimization problem with many
constraints. The shortest path planning with balanced-
energy consumption for each robot is often modeled as the
optimization objective. Researchers, so far, use heuristic
algorithms to solve the problems, mainly including hybrid
iterative method, divide and conquer method, and coevolu-
tion strategy. The A∗ algorithm is one of the most typical
graph-based in path search, and it inherits the idea of the
Dijkstra and makes it different improved variants [10, 11],
which can generate not only the shortest path but also the
path more in line with the preference of various models,
for example, it can be abstracted a variety of energies into
the problems to find the optimal solution [12]. But the dis-
advantage is its failure to the problems of large-scale nodes,
so, deep neural network (DNN) was employed to optimize
the evaluation functions gðnÞ and HðnÞ of the A∗ algorithm
[13]. The sampling-based algorithms mainly include the
probability spectrum method and RRT algorithm. The
nearest sampling nodes on the map for obstacle collision
detection are connected by trees, which can quickly find
a reachable path in a limited time. If there are a large num-
ber of obstacles or difficult areas in the environment, the
algorithm will run fast, but the algorithm has no percep-
tion of the environment. These algorithms are mostly used
in local search by combining with Slam (simultaneous
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localization and mapping), so that enhance the capabilities
of local perception [14].

In recent years, there are numerous researches focused
on this issue concerning intelligent methods. In many fields
related to artificial intelligence, motion planning for multiro-
bot systems (MRS) is undoubtedly one of the crucial topics
that cover all kinds of applications based on swarm opti-
mizers [15–17], including ant colony optimization (ACO)
[16] and particle swarm optimization (PSO) [17], because
of their effective ways to take the advantages of population
information to enhance the overall solution quality and
accelerate the convergence speed [15]. For example, ACO
clustering with crowding mechanism and GA-based multi-
task scheduling methods were developed for drones safely
flight in a specific airspace [18], two phases heuristic algo-
rithm (TPHA) [19], an improved shuffled frog leaping algo-
rithm (SFLA) [20] was embedded into the trajectory smooth
path to determine an optimal subsequent position for each
robot, and so on. Neural networks and reinforcement learn-
ing (RL) are never absent from routing problems, an optimal
navigation strategy with energy-aware coverage designed by
using RL for self-reconfigurable robots [21], while deep
learning-based warm-starting optimizing motion planner
[22] was employed to reduce motion time for robots picking
an e-commerce warehouse. To make full use of the advan-
tages of various methods, hybrid intelligent methods have
been paid more and more attention recently, and a hybridi-
zation planning method is demonstrated [23] by integrating
0-1 optimization and EDA and GA for UAVs and UGVs to
cooperative complete the coverages with minimum travel
time in urban environments. When PSO planner applied
to an intricate unknown environment, Shukla et al. [24]
assessed its parameters including move (number of visited
nodes), coverage (area explored), energy (distance traveled),
and time (time elapsed). By making the best use of limited
time, Salah et al. [25] proposed a path-planning approach
for multidrones to conduct multiple photographic aerial
wildlife surveys.

Some theoretical methodologies are introduced to plan
the shortest path in static and dynamic environments. A
framework regarding Satisfiability Modulo Theory (SMT)
was proposed [26], which models the path as a connected
network of mass-spring-damper systems and leverages the
properties of Voronoi diagrams to handle complex con-
straints. To plan a path for the robot on the graph with edge
energies, a nonmyopic path planner based on a game-

theoretic framework was presented [27] by employing an
infinite-horizon Markov decision process. When facing
complex and changeable factors of traffic networks, the
shortest path with the maximum passing probabilities based
on the mobile trajectory can be effectively obtained by calcu-
lating the Markov chain and probabilistic symbolic model
[28]. To minimize the path length as well as to reduce the
number of handovers while sustaining the wireless connec-
tivity of the robots, a multirobot access node association
planner was presented [29] in millimeter-wave industrial
scenarios. When the motion control for multirobot naviga-
tion is used in large-scale dynamic scenarios, a personalized
route algorithm was presented by introducing the Polychro-
matic Sets (PS) for users to obtain real-time route that meet
their travel preferences [4], all obstacle features can be inte-
grated into a scalar potential field to make decisions [30], an
online adaptive replanning strategy for multiple drones fly-
ing in an urban environment with a number of dynamic
changes [5], and a reliable routing optimization scheme
based on the Manhattan mobility model is presented [31]
for UAV real-time planning in a vehicular ad hoc networks
(VANETs). While a real-time tracking method was designed
[32] that combines A∗ algorithm with dynamic window to
guarantee the ability of obstacle avoidance and path smooth-
ness. Thus, it has been observed that the heuristics are more
robust and conduct well in scenarios when compared to
other algorithms.

3. Energy-Balanced Motion Trajectory
Planning Algorithm

3.1. Problem Description and Modeling. This paper focuses
on the problem of multirobot motion planning, the first
stage of which can be abstracted as a single-point MTSP
problem. Assume that m traveling salesmen (denoted as b1
, b2 ⋯ bm) will visit n cities (denoted as T0, T1 ⋯ Tn) to sell
their goods, and all traveling salesmen start from the same
city T1 and finally meet in city T1; it is required that there
must be only one salesman to visit each city, and the total
energy and minimum route scheme of all salesmen are
obtained [12]. The objective function is

min Z = 〠
m

k=1
〠
n

i=1
〠
n

j=1
dijp

k
ij, ð1Þ
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0 0 0 0 0 0
0
0 0 2 2 2

2 2 1

1

1

1

2
222220

0
0 0 0 0 0

000

0

0

(c) Discretized matrix

Figure 1: Grid modeling.
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where pkij is denoted as equation (2) that is the direction
marking variable between cities i and j of the traveling sales-
man with serial number k.

pkij =
1, traveling salesman k travels from city i to j,

2, else:

((

ð2Þ

Then, we assume that a given environment as shown in
Figure 2, in which there are a large number of obstacles
(irregular polygons), m target nodes (triangles) Qiði = 1,⋯,
Þ, a given starting node P (diamond at the bottom left).
Now, n mobile robots will visit to m target nodes to perform
tasks, each node is only visited by one robot, and all robots
must return to the starting node after finishing their tasks.

3.2. Proposed Method. In this section, let us first explain what
is energy balance and why we should balance the energy of
multirobots. When each robot carries the same energy at
the starting node, how to ensure that the total traveling dis-
tance of all robots is the shortest, and how to avoid the
imbalance of energy consumption of each robot, that is,
some robots stop on the way due to insufficient energy, while
the others return to the starting node with a large amount of
energy remaining. Thus, we present our motion planning
scheme in this paper that has two optimization objectives,
one is to minimize the total length of the multirobot travel-
ing path, and another is to minimize the deviation of the
path length of the multirobot to ensure the energy consump-
tion balance. For these purposes, in our scheme, the environ-
ment information is simplified and merged according to the
target to be optimized, the quantitative data and the model
are established to solve the initial planning path in line with
the optimization target, and then the initial planning path is
added with obstacles constraints and dynamic constraints so
that the planned path can be truly used in the actual envi-

ronment. The scheme for multirobot motion planning in
obstacles is first proposed as Algorithm 1, and its methodol-
ogy stages of pathfinding, trajectory optimization, and
smoothing can be described in details next sections.

3.2.1. Improved A ∗ Algorithm for Path Search. Based on the
gridded environment, the A∗ algorithm can be selected for
pathfinding with efficiency. The core evaluation function of
the A∗ algorithm is as follows:

f nð Þ = g nð Þ + h nð Þ, ð3Þ

where f ðnÞ is the total evaluation value of the current node
n, gðnÞ is the evaluation generation value from the starting
node to the current node in the map, and hðnÞ is the evalu-
ation generation value from the current node to the end-
point. In the algorithm, Manhattan distance between nodes
is usually used as the evaluation basis:

D nð Þ = xd − xnj j + yd − ynj j: ð4Þ

The A∗ algorithm also needs two sets to record the inter-
mediate process: an open set and a closed set. The former is
used to store the nodes that have not passed under the
reachable condition, while the latter is used to store all nodes
that have passed or are not reachable. Thus, the method can
be presented as Algorithm 2, and the algorithm flowchart is
shown in Figure 3. In addition, we also give example graph
of fully connected paths with obstacle avoidance generated
by the improved A∗ algorithm as shown in Figure 4.

3.2.2. Trajectory Optimization. The path search algorithm
does not take into account dynamic constraints such as
speed and acceleration when the robot is moving on the
way. From the geometric of a view, the planned path is all
splicing of line segments, which leads to the connection
between the paths by turning points. It is impossible to
strictly follow this path in the process, because the motion
parameters such as speed and acceleration at the turning
point will change unless it is assumed that the speed and
acceleration at the turning point are reduced to 0, which will,
of course, reduce the motion efficiency of motions. Then, a
polynomial-based trajectory optimization method was pre-
sented by minimizing jerk (snap) to ensure that the gener-
ated trajectory polynomial is continuous and smooth in
both speed and acceleration [32–34]. The continuous trajec-
tories between two ends in a two-dimensional plane can be
described by the analytic polynomials xðtÞ and YðtÞ about
time t, taking the x-axis as an example, the polynomial
expression is as equation (5).

X tð Þ = pnt
n + pn−1t

n−1+⋯+p1t + p0 = 〠
k

n=0
pnt

n, ð5Þ

where k is the order of polynomial, p0, p1 ⋯ pn is a polyno-
mial coefficient, the corresponding velocity VðtÞ, accelera-
tion AðtÞ, and acceleration Sanp ðtÞ can be expressed as

Start

Figure 2: A schematic map of the environment with obstacles.
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equations (6)–(8). Thus, the trajectory XðtÞ can also be
expressed in a matrix form as equation (9).

V tð Þ = X 1ð Þ tð Þ = 〠
k

n=0
pn:nt

n−1, ð6Þ

A tð Þ = X 2ð Þ tð Þ = 〠
k

n=0
pn:n n − 1ð Þtn−2, ð7Þ

Snap tð Þ = X 4ð Þ tð Þ = 〠
k

n=0
pn:

n!
n − 4ð Þ! t

n−4, ð8Þ

X tð Þ = 1, t, t2,⋯, tn
� �

· p0, p1,⋯, pn½ �T : ð9Þ

Similarly, the motion state description functions such as
X ðtÞ and AðtÞ can be expressed in matrix form. In path

Input: Structured 2D plan map of the environment
Output:m motion trajectories
1 define the starting node, target node, and obstacles
2 parameter settings, swarm size, the adjustment coefficient q
3 for the structured map of the environment
4 discretize for using griding method in section 2.1
5 create a gridded mesh and discretized matrix
6 until all target nodes and obstacles are discretized on the mesh
7 initialize the open set and closed set of nodes by calling A∗ algorithm
8 while the open set is not empty
9 generate all direct path between nodes
10 end while//all nodes are reachable on the fully connected path graph
11 while two nodes is not on a direct path
12 calculate the unit energies for all not direct path
13 Endwhile modelling the problem of MTSP with energies
14 for each robot of m, using GPSO-AC (args)
15 generate m route trajectories that met the objectives
16 Endfor
17 for m route trajectories using minimum snap algorithm
18 trajectories optimization to reduce unnecessary turning points
19 Endfor
20 for m route trajectories using improve A∗ and RRT algorithm
21 solving trajectory polynomial and remove all breakpoints
22 Endfor generate m smoothed motion trajectories

Algorithm 1: Parallel swarm intelligent motion planning scheme.

Input: Open set, closed set for all nodes on a map
Output: Full direct path graph
1 add all nodes with obstacles to the closed set
2 set the starting node to the current node and add it to the open set.
3 for all reachable nodes
4 collect the current node that are not in the closed set
5 Endfor
6 while (the open set is not empty)
7 calculate f(n) of each reachable node, and add it to the open set
8 find a node with the smallest f(n) from the open set
9 set the node as the current node, and add it to the open set
10 set its parent node as the previous current node
11 delete the previous current node from the open set and add it to the closed set
12 for all reachable nodes in the open set
14 select the node with the smallest g(n) in the open combination

As the current node, and add it to the open set
15 End for
16 End do

Algorithm 2: Improved A∗ algorithm.
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planning, the multisegment trajectory between multiple tar-
get nodes can be denoted as equation (10).

X tð Þ =

1, t, t2,⋯, tn
� �

· PT
1 t0 ≤ t < t1,

1, t, t2,⋯, tn
� �

· PT
2 t1 ≤ t < t2,

⋯

1, t, t2,⋯, tn
� �

· PT
k tk−1 ≤ t < tk:

8>>>>><
>>>>>:

ð10Þ

To determine the trajectory of each path, it is necessary
to define the value of each coefficient matrix P, minimize
the SnapðtÞ function of multistage trajectories to obtain
high-order continuous and smooth trajectories, that is, to
ensure that the coordinates, velocities, and accelerations at
the breakpoint between each trajectory are continuous, to
ensure that the actual trajectory of the robot is in line with
the dynamic constraints in the real world, and can maintain
a steady-state continue to be in a stable state of motion. Con-
sidering that SnapðtÞ can be negative and square, the objec-

tive function of minimizing snap can be established as
follows:

J Tð Þ =minimize snap Tð Þ2� �
=
ðTi

Ti−1

X 4ð Þ tð Þ
� �2

dt = PTQP:

ð11Þ

Among them, the total time of T segment trajectory, P is
the parameter matrix of each section, and Q is the weight
matrix. After the establishment of the objective function,
the constraint conditions are specified, and the initial state
values of the positions, velocities, and acceleration at both
ends and internal nodes of a trajectory can be specified:

〠
k

n=0
pnt

n = x0, 〠
k

n=0
pn:nt

n−1 = v0, 〠
k

n=0
pn:n n − 1ð Þtn−2 = a0:

ð12Þ

Algorithm begin

Algorithm initializes and adds 
obstacles to the closed set

Set the starting point as the 
current point and add it to the 

open collection

Collect reachable 
points around current 

nodes

Detect whether 
the reachable 
point is in the 

open set

The f(n) value of each
reachable point is 

calculated and added to 
the open set to find the 

next current node

Find the next current node 
according to g(n) 

Determine 
whether the open 

set is empty

Find path 
fail

Determine whether 
the end point is in 

the open set

Find path 
success Algorithm end

Yes

no

No

Yes

Figure 3: Flowchart of an improved A∗ algorithm.

6 Wireless Communications and Mobile Computing



Then, we can establish equality constraints on matrix P:

APi = C, ð13Þ

where A is the coefficient matrix of T , and C is the initial
matrix. It can be seen from equations (11)–(13) that what
needs to be solved is a quadratic programming problem
(QP). There are many algorithms for solving QPs omitted
here. Similarly, we use the same method for y-axis to find
the polynomial parameters.

3.2.3. Solve the Weighted MTSP Problem with Balanced
Energy. The energy-balanced MTSP problem extends the
MTSP problem modeled in Section 2.2. Considering the dif-
ferent traffic energies of each path section, we let the unit
energy (UE) of connecting nodes ith and jth is vij, and the
energy Cij consumed by the robot traveling between nodes
i and j is denoted as equation (14).

Cij = dij × Energyij, ð14Þ

where dij is the distance between nodes i and j. To find the
total energy of all robots and the smallest route plan, the objec-
tive function equation (1) must be rewritten as equation (15).
At the same time, it is required to minimize the variance of the
energy of traveling between robots by equation (16).

min Z = 〠
m

k=1
〠
n

i=1
〠
n

j=1
dijvijp

k
ij, ð15Þ

miniY =
∑m

i=1 Ci − �C
� �2
n

: ð16Þ

(1) Establish the Path Weight between Nodes. The goal of this
stage is to transform the problem into a weighted MTSP prob-

lem in which the weights between nodes are the energies of
obstacle constraints and path length. Based on the fully con-
nected path graph with obstacle avoidance (as shown in
Figure 4 generated by the improved A∗ algorithm), considering
the increase of energy consumption between nodes due to the
need to avoid obstacles, the unit energy (UE) consumed by a
robot traveling two nodes is approximately defined as eq. (17).

Energy =
x1 − x2j j + y1 − y2j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x2ð Þ2 + y1 − y2ð Þ2

q , ð17Þ

where the upper of eq. (17) actually is the Manhattan distance
between two nodes, while the lower is the Euclidean distance
directly connected between two nodes. If there are obstacles
between two nodes, as shown in Figures 5 and 6 intercepted
from the upper right corner of Figure 4, the unit energies
(UEs) indicate the difficulties of moving on the direct paths
between the two nodes, which are obviously more expensive
than those without obstacles. The estimation matrix of UEs
does not require additional information about obstacle avoid-
ances. Therefore, when considering the obstructedMTSP prob-
lem with energies consumed by robots traveling between nodes,
the objective is solved as eq. (15) that is a preparation for the
optimal path of energy balance.

(2) Parallel PSO-AC Algorithm for Weighted MTSP with
Energy-Balanced. In this section, we propose a hybridiza-
tion of PSO and ACO algorithm to solve the weighted
MTSPs. In our method, the PSO k-means algorithm is
used to find clustering central nodes for each robot.
Because the right initial clustering center can speed up
the convergence and improve the clustering quality, this
paper uses a rough classification method to classify the
initial nodes by using equations (18) and (19), where the
total energy Ri is consumed by a robot traveling from each
node to other cities, and the total energy R is consumed
by robots traveling the global path sections.

Ri = 〠
n

j=0
dijvij, i = 0, 1, 2⋯ , n, ð18Þ

R = 〠
n

i=0
〠
n

j=0
dijvij, i ≠ j: ð19Þ

Then, sort the distances from the samples to the clus-
tering centers and then traverse the samples in turn. If the
traversal condition satisfies equation (20), the nodes that
have been traversed are classified into one route, and the
clustering centers are updated using equation (21).
Assume that m is the number of robots and the number
of clusters, and f is a Boolean label variable. If the kth

robot visits ith node, it will be 1, and otherwise, it will
be 0. In the iterative process, the reclassification process
is restricted by the condition of equation (20). The

Figure 4: Fully connected path graph with obstacle avoidance.
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purpose is to ensure that the total energy for each route is
roughly balanced to m robots.

〠
n

i=0
f ikRi ≤

R
m
, ð20Þ

Cjp =
∑n

i=1 ωijXip

∑N
i=1 ωij

, whereωij

=
1 1The sample belongs to route j,

0 The sample does not belong to route j:

( ð21Þ

Next, ACO is utilized to calculate the minimum energy
of traveling around a node that is currently classified as a
route of nodes. After that, the pheromone and taboo tables
of the algorithm are updated, and the fitness of the current
particle, fitness, is calculating by equation (22), where Ck
is the minimum energy, SðCkÞ represents the node disper-
sion of a route by variance function S, and the smaller the
variance, the more balanced approximately the traversal
energy consumption for robots. The normalization
method, in addition, is used to uniformly quantify their
energies and the dispersions as equation (22), where the
adjusting coefficient q is [0,1]. When q = 0, the problem
is a common weighted MTSP. On the other word, the
larger q, the greater impact of the energy balance on the
convergence of the algorithm.

fitness =
Ck

∑t
i=0 Ck

+ q
S Ckð Þ

∑t
i=0 S Ckð Þ : ð22Þ

To make full use of the parallel characteristics of the
swarm algorithm, we present a hybridization of PSO and
ACO to solve this stage of problem. The hybrid scheme is
developed on GPU parallel computing platform with CUDA
parallelism and multistream processor (SM), so as to enhance
the convergence accuracy and executive efficiency of the
hybrid swarm intelligence method described as Algorithm 3.

3.2.4. Trajectory Optimization and Smoothing

(1) Constructing the Optimal Grid Path. From equations (14)
and (17), it can be seen that the energy consumed by a robot
traveling between two nodes is simplified as Cij = jx1 − x2j +
jy1 − y2j, which is actually the Manhattan distance of the two
nodes on direct path after the obstacle constraint is added.
Thus, the total energy of a robot traveling around is the total
length of a grid path with obstacle constraints. In summary,
the balanced energy in the obstructed MTSP is also the equal-
ized length of the gridded path in path planning. For the pur-
pose of multirobot route planning, after an optimal weighted
direct path is obtained, we need to convert the direct path as
shown in Figure 7 to the path on which robots travel between
nodes when bypassing the obstacles. At this stage, it is neces-
sary to use the A∗ algorithm to restore the gridded path
between the target nodes, so far, the initial planned path with
obstacle avoidance is completed as shown in Figure 8.

(2) Smoothing Path. Because the generated path based on the
gridded environment can only be turned by a multiple of 90°,
there are a large number of turning points on the path like
sawtooth as shown in Figure 9, which will increase both diffi-
culty and traveling distance of the robot movement. In addi-
tion, too many invalid turning points will also hinder the
polynomial trajectory optimization process, because turning
points are used as constraints for trajectory optimization,
and useless turning points must be deleted before trajectory
optimization. Therefore, an improved RRT∗ is used to smooth
trajectories that have fewer natural turning points to facilitate
the follow-up operation of the minimum snap algorithm, so as
to reduce useless nodes as much as possible to optimize the
subsequent polynomial trajectory. If the raster path is not
smoothed, there will be too many useless interference nodes,
making the trajectory like S shape generated by the minimum
snap algorithm [35], as shown in Figure 10. This paper also
extends the A∗ algorithm and proposes a smooth grid path
algorithm to reduce useless nodes, and finally, the smoothed
trajectory can be obtained as shown in Figure 11.

(3) Solving Trajectory Polynomial. After the smooth process-
ing, all breakpoints remaining on the path can be considered
as the minimum effective breakpoints that are the necessary
nodes to avoid obstacles, like the target nodes. The motion
parameters can be quantified as the equality constraints in
the minimum snap algorithm, and finally, used to solve the
polynomial coefficients. Assumes that it takes time for the
robot to perform the task at the target node, then, it can be
considered that the speed and acceleration of the robot are
0 at this time, and at the same time, it needs to ensure that

Figure 5: Path section with obstacle avoidance.

Cost:1:3

Cost:5:36

Cost:2:38
Cost:1:40

C13

C15

C14

Figure 6: Sketch of UE between nodes.
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the robot does not change the motion state at the inflection
node, that is, the polynomial of the speed and acceleration at
the inflection node is smooth and continuous. The process
of constructing equality constraints is given as follows.

Taking x-axis as an example, y-axis similarly, given a
grid path LAB, there are n breakpoints on it, and the coordi-
nates of two endpoints are CA and CB. The LAB can be
divided into n + 1 segments according to the Cn ðn = 1,⋯,
nÞ coordinate at the breakpoint. First, make sure that the
static acceleration of the robot at both ends is 0, described

as equations (23)–(25), then, ensure that the robot runs to
the breakpoint at Tn time, and at the breakpoints, the coor-
dinates, velocities, and accelerations of the front and back
trajectories should be consistent at t time.

X T0ð Þ = CA

X 1ð Þ T0ð Þ = 0

X 2ð Þ T0ð Þ = 0

8>><
>>: ⇒ A3×1 T0ð ÞP =

CA

0

0

2
664

3
775,

X Tn+1ð Þ = CB

X 1ð Þ Tn+1ð Þ = 0

X 2ð Þ Tn+1ð Þ = 0

8>><
>>: ⟹ A3×1 Tn+1ð ÞP =

CB

0

0

2
664

3
775, ð23Þ

X T1ð Þ = C1

⋯

X Tnð Þ = Cn

8>><
>>: ⟹

A1×1 T1ð ÞP = C1,

⋯

A1×1 Tnð ÞP = Cn,

8>><
>>: ð24Þ

Xi Tð Þ = Xi+1 Tð Þ
X 1ð Þ
i Tð Þ = X 1ð Þ

i+1 Tð Þ
X 2ð Þ
i Tð Þ = X 2ð Þ

i+1 Tð Þ

8>><
>>: ⟹ Ai Tð Þ − Ai+1 Tð Þ½ �

Pi

Pi+1

" #
= 0,

ð25Þ

Input: Data after modeling for each node in the MTSP problem
Output: The result of the MTSP problem
1 initialize swarm size of particles and ants
2 do
3 Parallel_for particle in particle swarm
4 parallel{update position and speed}
5 parallel {//reclassification
6 for cluster center in all cluster results
7 calculate the distance between the sample and the current cluster center
8 Sort sample by distance
9 cluster center selection sample
10 end

}
11 parallel {//calculate fitness
12 for cluster center in all clustering results
13 initialize the ant colony
14 do
15 Parallel_for ant in an ant colony
16 parallel{search path}
17 parallel{update pheromone}
18 end
19 while stop condition reached
20 calculate optimal path fitness
21 end

}
22 parallel{update individual optimal}
23 parallel{update group optimal}
24 end
25 while stop condition reached

Algorithm 3: GPSO-AC.

C1

C3 C4

C2Cost:0.96

Cost:1.64 Cost:2.24

Figure 7: Gridded rough path section.
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where A is the weight matrix at time t, and P is the coeffi-
cient matrix to be solved. By taking these equality con-
straints into the QP objective function of equation (11),
the P matrix can be obtained, and the polynomial analytic
equation of the path planning trajectory can be obtained.

(4) Smooth Grid Path Algorithm. On the basis of the serrated
path generated by the A∗ algorithm, aiming at the short-

coming of the path, a smooth raster path algorithm is pro-
posed in this section to solve the invalid turning point on
the serrated path. The algorithm involves two processes of
trajectory optimization and smooth described in pseudocode
as the following Algorithm 4. If there is no obstacle between
the two target nodes, the invalid turning point is deleted.

4. Simulation Experiment

4.1. Experimental Platform and Experiment Settings. In order
to verify the feasibility of the proposed method, the experi-
mental platform as shown in Figure 12 is developed using
C++ on a PC with CPU Intel® Core™ i5-8400, RAM 8GB,
GPU NVIDIA GeForce GTX 1060 under Linux Ubuntu
18.04.5 LTS. This platform provides some interactive func-
tions including algorithm testing, map grid modeling, obsta-
cle setting, MTSP path generation and optimization, motion
trajectory planning, and data saving functions. In our plat-
form development, an open-source SDL2.0 (Simple Direct-
Media Layer) is used to the graphics layer rendering library
which can make full use of GPU acceleration. For the conve-
nience of debugging, we choose the rendering UI compo-
nents (ImGUI) that support almost all C++ compilers,
which can be embedded in the algorithm for debugging at
any time. Because the core algorithm of path planning is to
solve the weighted MTSP problem, this experimental plat-
form also provides simulation support for MTSP algorithm
experiments.

4.2. Benchmark Tests and Comparisons. The multirobot
motion planning proposed in this paper is a complete solu-
tion, which involves a variety of algorithms, such as map
modeling, parallel path search, and trajectory optimization
and smoothing. We select several TSPLIB datasets to be used
to evaluate the performance of our GPSO-AC in path search
by metrics of mean running time (MeanRT) and average
acceleration ratio (aveRatio).

First, for the dataset eil51 selected in TSPLIB, we assume
that the number of traveling salesman is 3, the weight
between nodes is set to 1 regardless of the cost balance,
and the problem is a single node departure one. In this
experiment, the proposed GPSO-AC algorithm and the
PSO-AC algorithm [16] without GPU acceleration are run
independently for 30 times, respectively, in different swarm
sizes. The statistical results are shown in Table 1. From
Table 1, it can be seen that PSO-AC on eil51 run much lon-
ger than the former, and its mean running time increases
linearly with the swarm sizes, so it is difficult to application
with high real-time requirement; in contrast, when the
swarm size increases, the algorithm GPSO-AC on eil51 run
much faster, and its mean running time increases less and
the average acceleration ratio is greater, because the instruc-
tion alienation of clustering in GPU is greatly reduced,
which enhances the parallel running efficiency.

Then, the proposed GPSO-AC algorithm is tested on 6
datasets by comparing with others PSO-AC [16], TPHA
[18], and Kmeans-AC [33], assuming that the number of
traveling salesman is set to 3, the swarm size is 64, the max-
imum iteration is 500, and the learning factors C1 = C2 =

Figure 9: Serrated path.

Figure 10: Optimized trajectory.

Figure 11: Smoothed trajectory.

Figure 8: Gridded path section with obstacle avoidance.
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1:97, α = 1, and β = 3 according to the previous literatures.
The four algorithms run independently for 30 times for each
problem, and the statistical metrics of their mean running
time, worst solution, optimal solution, mean solution, and
standard deviation (StD) are shown in Table 2. It can be seen
from Table 2 that although the convergence result of PSO-
AC is slightly better than the latter two algorithms, the mean
running time is long; the algorithms follow the principle of
classification before calculation, which runs faster than the
first two hybrid algorithms, but the convergence accuracy
is poor; the convergence accuracy of GPSO-AC is always

Input: A continuous path on a raster map
Output: Path to remove useless kinks
1 index begin =0
2 index last =0
3 new route list record index (begin)
4 while (begin!=n) do
5 last=n
6 while(end >begin) do
7 if(no collision between connecting line and obstacles (begin, end)) then
8 new route list record index (last)
9 begin = last
10 break
11 end if
12 last = last -1
13 end while
14 end while

Algorithm 4: Smoothing grid path algorithm.

Features switch Zoom window

Interactive control Experimental layer interface

Figure 12: Multirobot path planning experimental simulation platform.

Table 1: Speedup ratio comparisons of runtimes.

Swarm
size

Mean running
time (MeanRT)

Average acceleration ratio
(AveRatio)

GPU CPU

32 52.19 s 260.96 s 5

64 52.97 s 553.96 s 10.46

128 58.06 s 1145.35 s 19.73

256 59.07 s 1634.82 s 27.68
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better than others within a reasonable time, as two algo-
rithms use clustering to effectively group nodes. TPHA only
considers grouping and does not optimize the grouping in
the later stage, resulting in poor convergence results.

4.3. Demonstration of Experimental Results. In the experi-
ment, we assume that the proposed methods are used to
planning the motion trajectory for 3 robots that visit the
nodes to finish tasks in the environment as shown in
Figure 13, and the original map is discretely gridded as a
mesh scene as shown in Figure 14. Then, the following
Figures 15–18 demonstrate the intermediate results of the
problem solving. Figure 15 shows a solution after modeling
the map information into an MTSP problem which is a
rough solution without considering obstacle constraints.
While a gridded path with obstacle constraints is generated
by the improved A∗ algorithm as shown in Figure 16, from
that, there are many useless turning points on the path at
this time.

On the basis of Figure 16, after optimizing the path using
the smooth grid path algorithm, a new optimized trajectory
is obtained as shown in Figure 17. The path does not have
any meaningless turning points on the basis of ensuring that
the path does not collide with obstacles. Finally, a path that
meets the dynamic constraints is generated by using the
minimized snap algorithm. As shown in Figure 18, it can
be seen that at the turning point between the two target
nodes, the path trajectory becomes smooth and arc-shaped,
which conforms to the actual situation of the robot.

4.4. Experimental Result Analysis. In the experiment, we
assume that the proposed methods with parameters the
same as the above subsections are tested to planning the
motion trajectory for 4 robots that visit 75 nodes to finish
tasks in the environment with 28 obstacles as shown in

Table 2: Experimental results comparisons of four algorithms.

Problems Performances TPHA
Kmeans-

AC
PSO-AC

GPSO-
AC

bayg29

MeanRT 0.23 s 0.42 s 461.28 s 47.11 s

Worest 13184.9 13135.1 10706.1 10706.1

Optimum 11791.1 11733 10403.2 10403.2

Mean 12181 12494.5 10413.3 10413.3

StD 538.296 375.314 55.31 55.31

berlin52

MeanRT 0.73 s 1.4 s 896.03 s 64.52 s

Worest 9077.08 9042.33 8525.2 8591.67

Optimum 8774.05 8809.45 8423.24 8470.35

Mean 8974.17 8906.13 8493.73 8505.86

StD 72.99 52.98 25.43 36.31

st70

MeanRT 1.38 s 2.72 s 1245.94 s 77.47 s

Worest 1013.24 992.144 855.231 867.028

Optimum 977.15 964.325 830.09 826.925

Mean 989.44 979.85 841.94 77.47

StD 8.71 7.24 9.52 9.41

eil101

MeanRT 3.23 s 6.19 s 2117.81 s 158.65 s

Worest 847.11 826.824 706.65 712.31

Optimum 780.26 776.452 695.27 681.1

Mean 802.6 796.72 702.55 690.9

StD 17.27 14.41 3.05 7.95

ch150

MeanRT 8.47 s 16 s 3669.83 s 237.8 s

Worest 9072.97 8873.1 7607.78 7022.99

Optimum 8488.81 8504.53 7347.33 6673.28

Mean 8810.75 8719.8 7432.4 6833.43

StD 125.1 93.6 68.43 101.06

kroA200

MeanRT 18.11 s 33.63 s 4603.84 s 292.34 s

Worest 38417.8 37485.6 33820.9 33603.5

Optimum 36926.4 36563.1 31940.7 31271.1

Mean 37609.7 37076.2 32740.3 32723.6

StD 377.98 279.49 442.56 547.5

Figure 13: Original map.

Figure 14: Gridded map.
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Figure 2. The two algorithms run independently for 20 times
under different adjustment coefficient q, and the statistical
metrics of the total distance and standard deviation for each
robot are recorded in Table 3 to investigate the adjustment
coefficient of influence on generation path before and after
optimization, while the relationship between the adjustment
coefficient and the total length of the path and the relation-
ship between the adjustment coefficient and the standard
deviation of its total length for each robot are plotted in
Figures 19 and 20, respectively.

From Table 3 and Figures 19 and 20, we can see that the
total length of the path after smoothing is much shorter than
that before, which shows that the proposed smooth grid path
algorithm is effective and greatly reduces the energy con-
sumption of the robot. Meanwhile, without considering the

balance of energy consumption, i.e., setting the adjustment
coefficient q = 0, the path length deviation of each robot is
the largest, at this time, the total path length is the shortest.
Then, gradually increasing the value of q, it is found that the
standard deviation of the grid path will decrease rapidly
whether it is smoothed or not, and then as the value of q
continues to increase, the standard deviation tends to a
smaller value. According to the proposed algorithm, we find
that the energy of path smoothing increases rapidly with the
increase of the standard deviation of path length, which
demonstrates that the equalization algorithm is effective,
and balancing the path length of each robot is the guarantee
of balancing energy consumption. In addition, as the adjust-
ment coefficient q increases, the path length shows an
upward trend, because at this stage, the algorithm focuses

Figure 15: Results of solving MTSP problem algorithm.

Figure 16: Building the grid path using A∗ algorithm.

Figure 17: New path after smoothing grid path.

Figure 18: Optimized path with the minimum-snap algorithm.
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Table 3: Influence of different adjustment coefficients on generation path.

Adjustment coefficient q Before and after optimization Robot 1 Robot 2 Robot 3 Robot 4 Total distance Standard deviation

q = 0 A∗ grid path 1650 2220 2380 1500 7750 428.05

Smoothed grid path 1403.52 1893.3 1938.27 1273.68 6508.77 337.92

q = 0:025 A∗ grid path 2030 1540 2470 1800 7840 394.55

Smoothed grid path 1709.26 1322.25 2142.84 1521.13 6695.48 350.31

q = 0:05 A∗ grid path 1690 2260 2250 1680 7880 329.14

Smoothed grid path 1404.08 1887.27 1781.56 1442.54 6515.45 241.75

q = 0:075 A∗ grid path 1910 2200 1930 1960 8000 134.9

Smoothed grid path 1608.63 1825.32 1697.47 1619.06 6750.48 99.99

q = 0:1 A∗ grid path 1980 2080 2000 1990 8050 45.73

Smoothed grid path 1672.18 1742.48 1659.95 1667.45 6742.05 38.31

q = 0:15 A∗ grid path 2060 2050 2120 2080 8310 30.96

Smoothed grid path 1728.8 1697.91 1754.52 1825.25 7006.48 54.27

q = 0:2 A∗ grid path 2140 2110 2140 2170 8560 24.49

Smoothed grid path 1854.17 1741.49 1761.51 1909.58 7266.75 79.02

q = 0:25 A∗ grid path 2160 2170 2140 2130 8600 18.26

Smoothed grid path 1855.9 1772.03 1694.56 1851.21 7173.71 76.32

q = 0:3 A∗ grid path 2200 2190 2190 2180 8760 8.16

Smoothed grid path 1899.91 1804.66 1878.38 1895.44 7478.39 44.27

q = 0:4 A∗ grid path 2240 2230 2230 2240 8940 5.77

Smoothed grid path 1887.13 1845.57 1867 1973.62 7573.31 56.16

q = 0:5 A∗ grid path 2280 2270 2270 2270 9090 5

Smoothed grid path 1877.95 1929.97 1998.08 1865.28 7671.27 60.38

q = 0:6 A∗ grid path 2230 2230 2230 2240 8930 5

Smoothed grid path 1876.77 1852.4 1947.23 1856.31 7532.72 44.02

q = 0:7 A∗ grid path 2190 2200 2200 2200 8790 5

Smoothed grid path 1786.8 1847.49 1891.22 1840.25 7365.78 42.82

q = 0:8 A∗ grid path 2220 2230 2230 2230 8910 5

Smoothed grid path 1840.44 1847.1 1788.94 1926.37 7402.85 56.74
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on the energy balance when calculating the fitness score and
ignores the impact of the global optimal energy on the fit-
ness. Therefore, it can be concluded that in the path stan-
dard, it is meaningless to continue to increase the value of
q after the difference tends to a stable small value. Instead,
it will increase the path length and increase the energy con-
sumption of the robot.

5. Conclusion

Multirobot motion path planning is one of the hottest topics
in robot technology. It is particularly difficult for multiple
mobile robots in a complex obstacle environment where all
robots need to execute their tasks, respectively. To speed
up the running speed and guarantee the power supply of
robots in a limited time, an energy-balanced parallel swarm
intelligent optimizer (GPSO-AC) based on GPUs is pre-
sented for multirobot to find the shortest path in an obstacle
environment where the energy consumption balance in the
process of robot movement is modeled as a weighted MTSP
problem. The presented method combines with grid con-
structing and improved the A∗ searching, smooth gridding,
and minimum shaping algorithms to find a feasible oscilla-
tion-free, sharp turn-free, and collision-free path. To test
the effectiveness of the proposed method, we develop an
experimental platform based on GPUs where several scenes
with multiple irregularly-shaped obstacles are generated to
verify the performance of the presented method. In our
experiments, the proposed GPSO algorithm is test on several
datasets to evaluate the performances by comparing other
similar approaches, and our method on different scenes
has found the shortest path in which the multirobot can fas-
ter, smoother, and energy-balanced complete the tasks in a
reasonable time. In practical applications, the trade-off
between the shortest path and the minimum path length
should be made. According to the experimental conclusion,
the q value should be increased after the path length devia-
tion is taken to a small value within a reasonably acceptable
range. However, if each robot is regarded as a dynamic
obstacle, it should be further studied in the future.
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