
Research Article
Role of Human Body Posture Recognition Method Based on
Wireless Network Kinect in Line Dance Aerobics and
Gymnastics Training

Yanhong Zhou

School of Physical Education and Health, Aba Teachers University, Wenchuan, 623002 Sichuan, China

Correspondence should be addressed to Yanhong Zhou; 20009603@abtu.edu.cn

Received 6 July 2021; Accepted 3 September 2021; Published 22 September 2021

Academic Editor: Zhihan Lv

Copyright © 2021 Yanhong Zhou. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid development of the information society, human body gesture recognition has become an important technology for
human-computer interaction. This paper combines Kinect’s human bone monitoring technology with auxiliary gymnastics
training. The gymnastics and dance training can correct students’ wrong movements in time through feedback and improve the
training efficiency, so as to meet the needs of nature and harmony of human-machine interaction. In this paper, based on the
wireless network Kinect, the human body posture recognition method and tracking technology are studied, and the joint point
angle representation method based on the fixed axis is proposed, and the posture recognition method based on the joint point
angle is improved, which can accurately recognize the human body posture. Aiming at the situation that the human joint points
are occluded, the human joint point repair algorithm is improved. The algorithm is based on the proportion of human bone
nodes and the characteristics of human motion, and based on geometric principles, it repairs the occluded points. The feasibility
of the original joint point data, angle feature, and distance feature in expressing human behavior is analyzed through
experiments, a standard gymnastics movement database is established, and new gymnastics movements can be entered at any
time. A gymnastics auxiliary training system is designed, which can analyze and evaluate the exercises of the trainer from the
joint point coordinates and the angle formed by the joints and provide the trainer with intuitive error correction prompts. The
human body posture recognition method studied in this paper can accurately give the difference between the trainer’s
movement and the standard movement, and the trainer can adjust the movement posture according to the prompts, improve
the level of gymnastics, and achieve the purpose of auxiliary training. Experiments show that the algorithm model has an
accuracy rate of 95.7% for human body posture recognition, and it plays a huge role in line dance aerobics and gymnastics training.

1. Introduction

Human body gesture recognition research has various forms
and rich content, involving many fields such as computer
vision, sensor technology, image processing, and pattern
recognition. The analysis of human motion behavior can
be applied to various sports, and the posture data of athletes
during training and competition can be extracted to provide
them with valuable reference information and guidance. At
the same time, exercise analysis can also be used in fitness
activities, patient rehabilitation exercises, and other scenes.
By collecting human body movement information, it can
assist fitness coaches and medical staff to give better exercise

and rehabilitation plans. However, there are still many basic
problems that have not been solved in the recognition of
human posture through computer vision. Therefore, this
article uses the Kinect-based human posture recognition
algorithm to analyze the recognition of human posture and
action. This method can be said to be a combination of the
advantages of wearable devices and vision. Kinect can not
only accurately locate the main joint points of the human
body but also provide three-dimensional information. And
it will not cause inconvenience. Because it is based on the
infrared principle to obtain depth data, it is basically not
interfered by natural light. At the same time, Kinect can also
obtain color images, which not only open up new methods
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based on visual gesture recognition, but also take into
account the original technology.

The universal Kinect-type controller allows the user to
control any existing application by using body movements
as input. The working principle of middleware is to convert
detected actions into keyboard and/or mouse click events
and send them to the target application. Paliyawan and
Thawonmas introduced the structure and design of the core
module and combined actual cases to illustrate how to con-
figure middleware to adapt to various applications. They
demonstrated interface designs that decode all configuration
details into human interpretable languages, which signifi-
cantly enhance the user experience and eliminate the need
for programming skills. The performance of the middleware
is evaluated based on fighting game motion data, and Paliya-
wan and Thawonmas make the data public so that they can
be used for other research. For example, it can be used to
promote a healthy life through play and/or to conduct seri-
ous research on the exercise system. However, the Kinect
controller they proposed has a limited application range
for motion systems and cannot be used in more applications
[1]. Hwang et al.’s study tested the simultaneous validity and
test-retest reliability of the Kinect bone tracking algorithm to
measure the angles of the torso, shoulder, and elbow joints
during the wheelchair transfer task. Eight wheelchair users
were recruited for this study. Kinect and Vicon motion cap-
ture systems simultaneously recorded the joint positions,
while the subject was transferred from the wheelchair to
the horizontal bench. The angles of the shoulders, elbows,
and torso recorded by the Kinect system follow a trajectory
similar to the angles recorded by the Vicon system, and
the correlation coefficients on both sides (forearm and back
arm) are greater than 0.71. The root mean square error
(RMSE) of shoulder, elbow, and torso angles ranged from
5.18 to 22.46. The 95% limit of agreement (LOA) for the
difference between the two systems exceeds the clinical
significance level by 5°. For trunk, shoulder, and elbow
angles, Kinect has very good relative reliability in measuring
trunk sagittal, frontal, and horizontal angles. However, the
Kinect bone tracking algorithm they studied is too compli-
cated to calculate when measuring joint data, and the accu-
racy of the calculation is difficult to predict [2]. Zhang
et al. proposed an integrated imaging display system based
on KinectFusion, using only a mobile low-cost depth camera
as a pickup device. The multiframe depth data of the obser-
vation scene streamed from the Kinect sensor is fused into a
single global surface model represented by the volume trun-
cated symbol distance function. Therefore, the inherent
noise associated with a single frame of depth data can be
eliminated. The element image array for display is obtained
by ray casting the volume truncated symbol distance func-
tion. In order to match the pickup part and the display part,
the ray optics theory is used to derive the relationship
between the pickup voxel and the display voxel. However,
their method is only suitable for mobile low-cost depth cam-
eras and cannot reflect the effectiveness of the research [3].

This paper studies the role of human posture recognition
method based on wireless network Kinect in line dance, aer-
obics, and gymnastics training. The main structure of the

paper is arranged as follows: the first part of the paper is
the research background and significance of human posture
recognition method of wireless Kinect and introduces the
main research content of the subject. The second part of this
paper studies the current posture and motion recognition
methods of Kinect bone information, summarizes the prin-
ciples of feature extraction, and puts forward the distance
and angle features that can describe the human body based
on the analysis of joint point data and skeleton model. In
the third part of this paper, the experimental design of gym-
nastics auxiliary training system based on Kinect is carried
out, including the design of experimental method and data
acquisition method. The fourth part is the analysis of Kinect
gymnastics auxiliary training experiment combined with
human posture recognition method to verify whether the
algorithm designed in this paper is effective. The fifth part
summarizes the research content and results of this paper.
Then, it points out the work that needs to be further
improved and improved in the future.

2. Human Pose Recognition Algorithm

2.1. Action Representation Based on Pose Sequence. To recog-
nize an action, the first step is to express the action. In the
static posture, this article uses a frame of feature data to
represent it. An action can be regarded as a combination
of a series of skeletal frame data, and each frame is equiva-
lent to a static posture, which is said action can be seen as
a combination of multiple static posture sequences [4, 5].
In the traditional visual method action recognition research,
it is generally necessary to select several key frame image
sequences to represent the action, and the action is broken
down into several poses, because if multiple image sequences
are selected to represent the action, the computational cost
of the image data is high. It is impossible to meet the real-
time requirements [6]. This method of selecting key frames
breaks the continuity of the action. Since Kinect can extract
about 30 frames of bone data per second, this article hopes
to be able to express the action through continuous bone
frame data; that is to say, for continuous bone data carrying
out feature extraction to form the action feature sequence,
this way is more appropriate to the description of the action
[7, 8]. Based on the above considerations, this article will
express the human body movement through a continuous
posture sequence over a period of time. Then, for an action
S, there is the following equation:

S = R1, R2,⋯, Ri,⋯, Rnð Þ: ð1Þ

Among them, S represents an action and Si represents
the feature quantity of the human body posture correspond-
ing to the i-th frame.

If the angle characteristics of a group of dynamic
behavior key frames are

S = R1, R2, Ri, Ri+1,⋯, Rnð ÞM , ð2Þ
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then, the representation sequence for dynamic behav-
ior is as follows:

T = W1,W2,Wi,Wi+1,⋯,Wn−1ð Þ: ð3Þ

2.2. Feature Extraction Based on Joint Point Information.
Kinect’s joint point tracking function can collect the spatial
position of 25 joint points in the three-dimensional coordinate
system during human movement [9, 10]. However, whether
the selected behavior characteristics can adequately represent
human behavior is a key issue. If the 25 joint points of the
human body obtained by Kinect are directly used as the
feature vector for classification selection, there will be several
shortcomings. On the one hand, different human body struc-
tures are quite different, and the selected original joint point
data are not general. For example, the data of the same person
at different distances will cause errors in the data of different
people at the same distance; on the other hand, the data
dimension of 25 joint points reaches 60 dimensions. Too high
a dimension will make the calculation process very compli-
cated, and there will be redundant information [11, 12]. In
the research on the behavioral feature extraction of Kinect
three-dimensional joint points, it is basically based on the
recognition purpose and the targeted feature extraction from
the perspective of geometric relations.

2.2.1. Angle Feature Based on Joint Point Information. Kinect
establishes 25 joint point coordinates based on human
bones, built-in human bone structure, and connects depth
information in parallel to realize 3D space view [13, 14].
The skeleton joint point model diagram of the human bone
structure is shown in Figure 1:

Assuming that the left elbow joint point space coordi-
nate is DðA1, B1, C1Þ, the left wrist joint point space coordi-
nate is SðA2, B2, C2Þ, the left shoulder joint point space
coordinate is TðA3, B3, C3Þ, the joint vector between the left
elbow and the left wrist is constructed as DS = ða1, b1, c1Þ,
and the joint vector between the left elbow and the left
shoulder isDT = ða2, b2, c2Þ, among them are as follows:

a1 = A2 − A1ð Þ,
b1 = B2 − B1ð Þ,
c1 = C2 − C1ð Þ,

ð4Þ

a2 = A3 − A1ð Þ,
b2 = B3 − B1ð Þ,
c2 = C3 − C1ð Þ:

ð5Þ

Then, the calculation formula of the angle feature ϕDS DT
between the vector DS and the vector DT is as follows:

ϕDS DT = cos−1 a1 × a2 + b1 × b2 + c1 × c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 + b21 + c21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 + b22 + c22

q
0
B@

1
CA: ð6Þ

2.2.2. Distance Features Based on Joint Points. When it is
necessary to determine the relative distance between certain
joint points and the human head and torso, the angle infor-
mation cannot provide enough behavioral details. The rela-
tive distance coefficients of the joint points of the upper
limbs of the human body are selected, but the joint points
of the hips and the lower body of the legs are ignored [15,
16]. On this basis, this paper redefines the distance charac-
teristics of human behavior to improve the processing of
human joint point data. After analyzing the information of
human joint points, it is found that the right wrist, left wrist,
right ankle, and left ankle of the limbs joint points contribute
more to the behavioral expression. The knee joint, elbow
joint and other joint points are of little significance as a
behavioral assessment. Based on the above analysis, this
paper selects four sets of distance features, namely, the
distance from the right wrist to the center of the buttocks,
the distance from the left wrist to the center of the buttocks,
the distance from the right ankle to the center of the
buttocks, and the distance from the left ankle to the center
of the buttocks. Since the size of each person’s skeleton
model is different, the distance feature will be different when
performing the same action. Therefore, based on the above
distance feature, a relatively stable distance feature from
the center of the shoulder to the center of the hip is used
for the other four distance features. It needs normalization
processing [17, 18]. This part involves the structure vector
of the human joint points. The behavior representation
distance features are as follows:

G1 = DO
DS

����
����,

G2 = DA
DT

����
����,

G3 = DT
DB

����
����,

G4 = DS
DB

����
����:

ð7Þ

2.3. Posture Recognition Method Based on Markov Model.
Assuming that the system has N states A = fa1, a2,⋯, ang,
when the system state transfers to another state over time,
assuming that the state at s is Bs = fb1, b2,⋯, bsg, the prob-
ability of occurrence of Ai in the state of the system at S is
directly related to the previous state, and the relationship
can be expressed as follows:

O bs = Ai bs−1 = Aj, bs−2 = Am,⋯
��� �

: ð8Þ

The state of the system at time s is related to the state at
time s − 1; then, the Markov model is as follows:

O bs = Ai bs−1 = Ai,bs−2 = Am,⋯jð Þ =O bs = Ai bs−1 = Aj

��� �
:

ð9Þ
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If we only consider the random process of independent
time s,

O bs = Ai bi−1 = Aj

��� �
= tij, 1 ≤ i, j ≤ n: ð10Þ

Among them, the transition probability tij of the state
must satisfy tij ≥ 0.

A measure describes the similarity between the two given
point sets X = fx1, x2,⋯, xng and Y = fy1, y2,⋯, ymg. The
distance between X and Y is called Hausdorff distance,
which can be expressed as follows:

D X, Yð Þ =max d X, Yð Þ, d Y , Bð Þð Þ, ð11Þ

d X, Yð Þ =max
x∈X

min
y∈Y

x − yj j,

d X, Yð Þ =max
y∈Y

min
x∈X

y − xj j:
ð12Þ

The size of the distance is proportional to the similarity
of the two sets of X and Y ; that is, the smaller the distance
is, the closer the two sets of X and Y are.

2.4. Posture Recognition Based on Angle Measurement of
Joint Points. Suppose the spatial coordinates of two points
are Rðr1, r2, r3Þ and Kðk1, k2, k3Þ, then, the Euclidean
distance between the two points is as follows:

D R, Kð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − k1ð Þ2 + r2 − k2ð Þ2 + r3 − k3ð Þ2

q
: ð13Þ

Obtain the angle of any joint of the human body through
the three-point coordinates of the joint.

m =D N , Vð Þ,
n =D M,Vð Þ,
v =D M,Nð Þ,

8>><
>>:

ð14Þ

λ = cos−1 m
2 − n2 − v2

2mv
: ð15Þ

The above calculation method of included angle based
on joint coordinates is theoretically feasible, but in practical
applications, the joint points are unstable with each other, so
the obtained results have large errors and cannot be directly
used for posture recognition. To intercept the representative
static attitude data from the bone data flow, the possible
solution is different from other methods which are calculat-
ing the European distance of the coordinate value of the two
frames of the joint points before and after and then realizing
online recognition combined with the identification algo-
rithm of this paper. In addition, the size of the sample space
determines the cost of storage and calculation. Online iden-
tification requires high real-time performance, and the sam-
ple space size should be as simple as possible. The sample
space can be analyzed to remove samples with large similar-
ity and samples with little contribution to the classification.
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Figure 1: Human skeleton joint point model recognized by Kinect.
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3. Experimental Design of Gymnastics Training
System Based on Kinect

3.1. Introduction to Kinect Structure. The appearance of the
Kinect is shown in Figure 2. The appearance of the Kinect
shows that the Kinect is composed of an infrared transmitter,
an RGB camera, an infrared camera, and a four-element linear
microphone array.

The specific components of Kinect are shown in
Figure 3. Kinect consists of these components. Kinect’s four
sound microphones are responsible for collecting audio data,
and the infrared transmitter and infrared camera are used to
obtain depth data. The collimated infrared beam emitted by
the transmitter is in contact with the rough surface. The dis-
tortion of the spectrum will bring about highly random
reflection spots (speckle) when the object is different; the
speckles at different distances form different patterns and
are received by the infrared receiver [19, 20]. The depth
image obtained by the infrared receiver is pixel-matched by
the system processor and the color image obtained by the
RGB camera to obtain a color image with depth information;
the color camera obtains the color image, and the core
component is the central processing unit chip, which is
responsible for controlling other sensors [21, 22]; for exam-

ple, control the infrared transmitter to project the structure
of the external light and at the same time receive the spot
formed by the infrared light on the object through the
CMOS image sensor and transmit it to the processor for
processing to obtain the depth data and transmit it to the
computer via USB [23, 24]. Kinect somatosensory sensor is
a device that combines a variety of data. From Table 1, the
basic specifications and parameters provided by Kinect can
be understood.

3.2. Research Status of Human Gesture Recognition Based on
Kinect. Traditional human gesture recognition can be divided
into wearable device recognition and visual recognition
according to the different ways of acquiring the original data
of behavior as shown in Table 2. Although the wearable device
collects behavioral data more accurately, it will make users feel
inconvenient in the actual use process, and at the same time, it
is more difficult to operate, and the cost of the device is also
relatively high. Vision-based data collectionmethods are easily
affected by external factors such as light and texture.

3.3. Depth Image Acquisition Technology. The key to Kinect’s
success is to obtain depth images in a cheap way. This tech-
nology is supported by PrimeSense. One of the biggest

Kinect
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Infrared camera
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Infrared transmitter
Indicator light

A�er dismantling

Figure 2: Kinect appearance diagram.
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advantages of Kinect is to obtain depth information [25].
The depth information is collected by the infrared transmit-
ter and the infrared receiver together, and the light coding
technology (light coding) [26] is used to effectively capture
the point information in the field of view, so as to obtain
the depth image of the environment where the Kinect is
located. The techniques of using infrared to obtain depth
images include TOF (time of flight) and structured light test-
ing technology. TOF technology uses the transmission delay
between light pulses to obtain depth data [27, 28], and struc-
tured light testing is based on optical coding. The technology
uses an infrared transmitter to project the infrared spectrum
in the visible range of Kinect, and the infrared camera senses
the changes in the infrared spectrum [29, 30] to obtain depth
data. In the traditional image, the three-dimensional scene is
projected into a two-dimensional image, and the depth
image (depth image), also called the pixel point of the
distance image, expresses the distance between the objects
in the visible range and the camera [31, 32]; currently, the
detection environment depth information mainly relies on
the following technologies, which are binocular stereo
vision, radar detection, TOF (time of flight) technology,
and structured light-based depth detection technology [4,

33]. Among the above methods, the structured light method
has become a research hotspot in recent years due to its low
cost and high accuracy. The depth image system diagram is
shown in Figure 4.

The imaging distance of Kinect in real space is directly
reflected in the depth value of each pixel on the acquired
depth image. Each pixel value of the depth image is repre-
sented by a 16-bit binary number.

As shown in Table 3, the lower 3 bits of the binary table
are used to distinguish different measured objects, which will
eventually be converted into an integer value according to
the number of measured objects in the visible range. When
the integer value is 0, it means that the object is not found
in the visible range. If the value is 1 or 2, it means that “mea-
sured object 1” or “measured object 2” has been recognized.
In the field of vision, Kinect can read the lower three bits of

Table 1: Basic parameters of Kinect.

Sensor characteristics Specification range

Viewing angle 43° in vertical direction, 57° in horizontal direction

Tilt angle control motor Vertical direction up and down adjustment 28°

Depth data
80 × 60, 320 × 240, 640 × 480, 30 frames per second, depth data range: 800mm-4000mm (far view),

400mm-3500mm (close view)

Color data
RGB format, resolution 640 × 480, 30 frames per second
RGB format, resolution 1280 × 960, 12 frames per second

Audio format 16Hz, 16-bit mono (PCM)

Table 2: Comparison of two methods of obtaining raw data.

Classification method Advantages Disadvantages

Based on the wearable method The acquisition accuracy is high contact type The operation is inconvenient, and the cost is high

Based on the visual way Noncontact, easy to operate Low precision, easy to be affected by light

X

Z

Y

Lighting deviceInhomogene
ous medium

Laser

Image sensor

Object A Object B

XB X3 X4X2XAX1

Lighting area

Beam splitterLans
Image

acquisition

Figure 4: Depth imaging system diagram.

Table 3: Depth image pixel value binary table.

Player ID Depth bits

0 1 2 3 4 5 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0
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information to distinguish individuals. This information
only has the counting function, not the identification func-
tion. For the 16-bit binary number of each pixel, if its value
is 0, it indicates that the depth information of that position
cannot be obtained.

3.4. Gymnastics Auxiliary Training System Based on Kinect.
This paper develops a Kinect-based gymnastics auxiliary
training system, which combines gymnastics training with
Kinect human skeleton recognition and tracking technology
to recognize postures. In this paper, the standard gymnastics
posture data is collected to the computer through Kinect in
advance, and a standard gymnastics posture database is
established, which is used as a template to compare and ana-
lyze the collected trainer’s gymnastics posture data with the
template posture and intuitively compare the trainer’s gym-
nastics posture. The evaluation has opened a new stage in the
digitalization of gymnastics training. Rhythmic gymnastics is
scientific and standardized. It pays attention to the precision
of movements and expresses the emotions and thoughts of
dancers with high-standard movements. Basic gymnastics
training is a compulsory and major course for gymnastics
training. Its characteristic is to clarify the standard, systematic,
and scientific nature of the movements. Therefore, this article
regards rhythmic gymnastics basic training movements as
experimental movements for gymnastics auxiliary training.
The system framework is shown in Figure 5.

3.5. Data Collection. In order to correct the gymnastics move-
ments of the trainer, there must be standard gymnastics move-
ments as a comparison template. In this part, by obtaining the

gymnastics movements of the gymnastics coach, the informa-
tion of the occlusion points is restored to form standardized
exercise data. This article invites professional gymnastics
coaches to demonstrate standard gymnastics movements and
use Kinect to collect gymnastics movement data. Mark the
corresponding action name for each group of data and save
it as exercise information as a comparison template for
trainers. A total of 50 groups of basic gymnastics training
movements are entered in the database, and each training
movement can be divided into 4 decomposition movements,
which means that a total of 200 movements can meet the edu-
cational needs of beginners, and the system can also be based
on the trainer in the later stage. Enter new standard actions for
different needs.

4. Role of Human Body Posture Recognition
Method Based on Wireless Network
Kinect in Line Dance Aerobics and
Gymnastics Training

4.1. Feature Extraction Experiment Evaluation and Analysis.
Through the analysis of the joint point information, the
angle feature and distance feature expressing human behav-
ior are determined, but whether these two features can meet
the feature invariance described above remains to be veri-
fied. Therefore, this section uses experiments to evaluate
and analyze feature invariance. Verify whether the measured
object is at different distances from Kinect to the feature.
Select the action of sitting and standing, fix the Kinect to
1.0m high, collect 1000 frames of joint point data of the

Data
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Sports data
analysis

Comparison of node
locations

Joint angle
comparison

Occlusion point
repair

Motion data
processing

HDF5

Motion data
collection

Establish a database of standard
gymnastics movements

Training posture
data collection

Kinect

PC side

RDD RDD RDD

Behavior
classifier

Classification
result

Characteristic
data

Key node data

Figure 5: Block diagram of gymnastics auxiliary training system based on Kinect.
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same measured object at a distance of 2.0m, 2.5m, and 3.0m
from the Kinect, and take the average of the 1000 frames of
joint point data converted into angle feature and distance
feature, and also added the original joint point data for
experimental comparison. The experimental results are
shown in Figures 6 and 7.

The above experimental results show that the measured
object is at different distances from Kinect; when the original
joint points of the same measured object are collected to rep-
resent the sitting and standing behavior, large errors will be
caused due to the difference in depth and distance, and the
distance and angle characteristics are both acceptable. The

0 5 10 15 20 25

Angle feature

One meter away
Two meter away
�ree meter away

0

20

40

60

80

100

120

140

160

180

A
ng

le
 ei

ge
nv

al
ue

 

Figure 6: 25 angle features for sitting and standing at different distances.
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fluctuation within the allowable deviation is basically not
affected by different distance factors.

Through analysis, it can be known that the angle fea-
ture and distance feature used to represent human behav-
ior have better translation invariance and zoom invariance
than the original joint point data. However, the number of
distance features is small, the expression effect is single,
and it lacks in the expression of human behavior in multi-
action recognition. Therefore, this article chooses the angle
feature to represent the static behavior. Figure 8 shows a
comparison chart of the sequence curve comparison of
the left knee joint angle characteristics of a jumper’s two
groups of jumping movements.

4.2. Gymnastics-Assisted Training Based on Kinect’s Human
Posture Recognition Method. The movement data of the
trainer is collected and the movement information of the
standard movement is compared, and training guidance is
given according to the comparison result, so as to quickly
improve the level of the trainer. The angle calculation
method based on joint coordinates is theoretically feasible,
but in practical applications, the joint points are unstable
with each other, so the obtained results have a large error
and cannot be directly used for posture recognition. There-
fore, this article proposes a method of angle representation
based on a fixed axis; that is, the positive direction of the X
-axis is used as the reference line, and the connection
between the two joint points is used as the line to be mea-
sured, and the line to be measured takes the central axis of
the human body outward as the positive direction. Take
the horizontal axis of the shoulder as the center and outward
as the positive direction, calculate the angle between the line
to be measured and the reference line in a counterclockwise
order, and define the angle as the angle of the two joint

points. In this way, it can ensure that the line to be measured
and the reference line are relatively stable, and the accuracy
of the angle measurement can be ensured. This article uses
joint position, speed, and angle to express the difference
between the trainer’s gymnastics movements and standard
movements. In order to judge whether there are differences
between the two groups of movements, we compare and
analyze the average value, standard deviation, and P value.
The results are shown in Table 4 (P < 0:01), so these three
characteristics are different in gymnastics training.

In order to analyze the role of the human body posture
recognition method in gymnastics and gymnastics training,
this article compares the traditional gymnastics training
method and the Kinect human body posture recognition
method to the gymnastics training. The five students in the
control group were trained by traditional gymnastics train-
ing methods, and the students in the experimental group
were trained using Kinect human posture recognition gym-
nastics training methods. The two groups of students had
not undergone any gymnastics and related training. The
basic information of the students is shown in Table 5.

Next, the students will be scored on the basis of the exer-
cises of the students before gymnastics training, and they
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Figure 8: Dynamic comparison chart of the change sequence of left knee joint angle characteristics during the two groups of jumping actions.

Table 4: The right t-test results of the three features.

Action joint features Average value Standard deviation P value

Position
17.24 4.58 <0.01
13.16 2.97

Velocity
1.43 0.56 <0.01
1.03 0.44

Angle
18.91 8.57 <0.01
16.84 7.02

9Wireless Communications and Mobile Computing



will be scored in turn two weeks and one month after the
gymnastics exercise training, and then compared with the
scores before and after the gymnastics exercise training.
The detailed results are shown in Table 6.

It can be seen from Table 6 that after two weeks of train-
ing (P > 0:01), the results show that the difference before and
after training is not obvious. The trainees generally have no
gymnastics training experience and their foundation is weak.

Therefore, after two weeks of training, there is little differ-
ence before and after training.. After gymnastics training
one month later (P < 0:01), the results show that there are
significant differences before and after training. The next
step is to analyze the progress of the experimental group
and the control group through another t-test. The improve-
ment is calculated by subtracting the base score from the
posttraining score. The results are shown in Table 7.

Table 5: Basic student information.

Group Experience group Control group

Number 1 2 3 4 5 6 7 8 9 10

Age 20 22 21 23 21 21 23 22 21 22

Gender Man Man Man Woman Woman Man Man Man Woman Woman

Trained No No No No Yes No No No No Yes

Table 6: Differences before and after training.

Training time Average value Standard deviation P value T value Degree of freedom

Before training (baseline)
Two weeks

35.12 6.34 >0.01 0.378 13
After training (baseline) 35.69 5.83

Before training (baseline)
One month

29.52 7.03 <0.01 0.211 13
After training (baseline) 27.81 5.46

Table 7: The improvement of dance movements in the experimental group and the control group.

Average value Standard deviation P value T value Degree of freedom

Experience group 9.76 6.17 <0.01 4.026 13
Control group 1.22 7.42
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Figure 9: Questionnaire survey results of trainees after gymnastics training.
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It can be seen from Table 7 (P < 0:01) that there is a sig-
nificant difference between the two groups after gymnastics
training. The progress of the experimental group was higher
than that of the control group, indicating that the students
made significant progress after using Kinect to assist in
training. Instruct students to improve the effectiveness of
the learning process and conduct a questionnaire survey
after gymnastics training in the experimental group and
the control group. The result is shown in Figure 9.

It can be seen from Figure 9 that the survey results of the
experimental group after gymnastics training are compared
with those of the control group. In the process of gymnastics
movement learning, the standard degree of gymnastics
movements and the training results of the control group
are weaker than those of the experimental group, and the
experimental group I thinks this method is more interesting.
In the survey of improving gymnastics ability, the experi-
mental group thinks that the improvement of gymnastics
ability is higher. The wrong movements can be corrected
through feedback, and the learning efficiency is improved
by 42.6% compared with the control group. The research
results show that the Kinect-based human body posture rec-
ognition method-assisted training can help students better
perform gymnastics training, can effectively improve the
dance level of the trainer, and can achieve the purpose of
assisted training.

5. Conclusions

The human body is a highly complex combination, and the
postures it can express are ever-changing, and it is impossi-
ble to recognize each posture. In this article, a gymnastics
auxiliary training system is designed, which collects samples
of gymnastics gestures and recognizes the characteristics of
the characteristic data. The better recognition effect provides
ideas for gesture recognition. The human posture recogni-
tion method based on Kinect can give training suggestions
according to the movement posture comparison results,
and the trainer can reasonably adjust the movement accord-
ing to the software prompt to achieve the purpose of auxil-
iary training. Experiments show that the accuracy of
human posture recognition is as high as 95.7%, and the
auxiliary training efficiency is improved by 42.6%, which
can effectively improve the dance level of trainers. There
are still many shortcomings in the research of this paper,
such as (1) this paper uses a single Kinect to evaluate the
trainer and can only collect data from a single perspective
and cannot cover all perspectives. The next step can be to
consider using two or more Kinects to collect the trainer’s
movement data at the same time, realize the collaborative
work of multiple Kinects through software programming,
and use two or more sets of data to restore high-precision
human motion models and improve the accuracy of gym-
nastics training. (2) Establish a more comprehensive and
detailed library of expert gymnastics movements. This
system only collects more than 30 groups of basic gymnas-
tics training movement information from a professional
gymnastics coach, and it cannot meet the needs of a large
number of gymnastics movement training. In the future,

more professional coaches’ gymnastics movements can be
collected to enrich the database. At the same time, this
article only takes rhythmic gymnastics basic training exer-
cises as experimental exercises, but there are many types of
gymnastics, and we can continue to collect standard infor-
mation of different types of gymnastics exercises in the
future to provide more auxiliary training support for differ-
ent gymnastics trainers.
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