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Wireless sensor network (WSN) attracts the attention of more and more researchers, and it is applied in more and more
environment. The localization information is one of the most important information in WSN. This paper proposed a novel
algorithm called the rotated black hole (RBH) algorithm, which introduces a rotated optimal path and greatly improves the
global search ability of the original black hole (BH) algorithm. Then, the novel algorithm is applied in reducing the localization
error of WSN in 3D terrain. CEC 2013 test suit is used to verify the performance of the novel algorithm, and the simulation
results show that the novel algorithm has better search performance than other famous intelligence computing algorithms. The
localization simulation experiment results reveal that the novel algorithm also has an excellent performance in solving practical
problems. WSN localization 3D terrain intelligence computing rotated the black hole algorithm.

1. Introduction

Due to the maturity of microelectronics and wireless com-
munication technology, a lot of funds and researchers are
attracted by wireless sensor networks (WSNs). These tech-
nologies have promoted the development of cheap, ultra-
small, multifunctional, and smart sensor nodes (SNs), which
have the ability to communicate with each other through
wireless media [1]. Due to size and cost limitations, SN has
limited functions and low computing power. Depending on
the application, a collection of hundreds or thousands of
nodes can be deployed in the area of interest. These nodes
can communicate with each other through wireless media
and form a network called a WSN.

More and more fields can achieve better performance with
the help of WSN, such as target tracking [2], military affairs,
disaster management, environmental monitoring, and so
forth. In order to better perceive the target in the above scene,
the location information of the sensor node is indispensable;
otherwise, the information obtained by the sensor node will
have a low correlation with the target to be monitored.

In order to obtain the accurate location of the sensor
node, a global positioning system (GPS) module needs to
be installed to provide accurate location information. How-
ever, due to the high cost and high energy consumption, it
is impossible to install a GPS module on any sensor node.
Without a GPS module, how to know the location of a node
has become a problem that plagues researchers. In recent
years, many algorithms have been proposed to calculate
the positions of all sensor nodes in WSN [3]. According to
the different of localization mechanisms, these algorithms
can be divided into two categories: range-based localization
algorithms and rang-free localization algorithms. In some
localization algorithms, such as received signal strength indi-
cation (RSSI) [4], the time of arrival (ToA) [5, 6], and the
angle of arrival (AoA) [7] of the signal, these algorithms
use specific physical data to estimate the location of
unknown nodes (not equipped with GPS modules), called
distance-based positioning algorithm. Although the range-
based positioning algorithm provides more accurate position
information than the range-free positioning algorithm, it
needs to be equipped with a specific module, which greatly
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increases the cost and energy consumption. WiFi distance
measurement is used to improve accurate of indoor localiza-
tion [8].

On the other hand, some algorithms only need the con-
nective information of WSN and can estimate the position of
unknown nodes. These algorithms are called range-free
localization algorithms, such as centroid algorithm [9], dis-
tance vector-hop (DV-Hop) algorithm [10, 11], and approx-
imate point-in-triangulation test (APIT) algorithm [12].

In [13], anchor nodes are set at the border land of mon-
itoring regions and improve the estimation of per hop dis-
tance. The enhanced PSO algorithm is proposed and used
to enhance the localization accurate of WSN in [14]. The
hop size of each anchor node is replaced by an average
hop size of all anchor nodes in [15]. Chen et al. proposed a
method which adds a reference anchor node on hop size that
calculates formulate to reduce the error of hop size of each
anchor node [16]. In [17], the weighted least square algo-
rithm is introduced to reduce the localization error of DV-
Hop. In [18], a model is introduced to analysis localization
error of mobile Lidar.

The traditional 2D WSN has gradually been unable to
meet the needs of the current society, such as smart city
[19–22]. Some algorithms applied to 2D WSN must be
extended to 3D WSN to adapt to new social needs. [23] pro-
poses a method to optimize the deployment strategy of WSN
in a 3D environment. Pan et al. proposed a new algorithm to
optimize the coverage rate of WSN in 3D terrain [24], and a
DV-Hop localization method applied in 3D terrain is pro-
posed [25]. In [26], the authors utilize the GA algorithm to
improve localization accurate of WSN in 3D terrain.

In order to find the optimal solution of engineering
problems quickly and accurately, many optimization algo-
rithms have been established, some of them are inspired by
natural phenomena, and [27] has briefly introduced the
swarm intelligence algorithm. For example, the most popu-
lar evolution-inspired technique is genetic algorithms (GA)
[28, 29] that simulates the Darwinian evolution. Differential
evolution (DE) is an enhanced GA algorithm with better
performance than GA [30–32]. Other popular algorithms
are evolution strategy (ES) [33], probability-based incremen-
tal learning (PBIL) [34], genetic programming (GP) [35],
Phasmatodea population evolution (PPE) algorithm [36],
and biogeography-based optimizer (BBO) [37]. The particle
swarm optimization (PSO) algorithm was developed based
on the swarm behavior, such as fish and bird schooling in
nature [38, 39]. Whale optimization algorithm (WOA) [40,
41] is a metaheuristic optimization algorithm by mimicking
the hunting behavior of humpback whales. Grey wolf opti-
mization (GWO) algorithm can be regarded as an enhanced
PSO and achieve better performance [42, 43]. The ant col-
ony optimization (ACO) is inspired by social behavior of
ants in an ant colony [44]. Bat algorithm (BA) was inspired
by the echolocation behavior of bats [45]. Black hole (BH)
algorithms are inspired by the black hole phenomenon
[46]. The gravitational search algorithm (GSA) was con-
structed based on the law of gravity and the notion of mass
interactions [47]. The novel algorithm called moth search
algorithm (MSA) is proposed which combine Levy fly and

moth search [48]. In addition, some methods are proposed
to improve the search ability of algorithms, [49–51] intro-
duce the concept of compact, and significantly reduce the
memory usage. The surrogate method utilizes the Kriging
model to enhance the algorithm run speed [52–56].

There are three contributions in this paper: Firstly, this
study improves the search path of the black hole algorithm
to improve the speed of obtaining the optimal solution. Sec-
ondly, the novel algorithm proposed in this article gets a bet-
ter balance between local search ability and global search
ability. Thirdly, this paper further enhances the localization
accurate of WSN in 3D terrain.

The rest of the paper is organized as follows: in Section 2,
the knowledge related to DV-Hop and BH algorithm are
briefly introduced. The novel algorithm is shown in Section
3, and Section 4 utilizes the novel algorithm to reduce the
localization error of WSN in 3D terrain. CEC 2013 test suit
and simulation experiment of sensor nodes deploring are
used to test the performance of novel algorithm in Section
5. Conclusion is the content of Section 6.

2. Related Work

2.1. DV-Hop Localization Algorithm in 3D Terrain

2.1.1. Original DV-Hop. This section briefly introduces the
original DV-Hop localization algorithm. In this localization
algorithm, every node is stored in a table with three attri-
butes which are X, Y , Hop. X and Y are the horizontal and
vertical coordinates of the node, and Hop is the hop count
of the node connect with other sensor nodes. In the first
stage after the installation of the WSN, the hop count of all
sensor nodes is initial to zero, and each anchor node (the
node with the GPS module installed) broadcasts a message
packet containing its localization information in the net-
work. If a sensor node receives a message from another sen-
sor node, the hop count between them would increase one.
There may be multiple path links between any two nodes;
so, the number of hops between them may have different
values, but only the minimum number of hops between
any two sensor nodes is reserved in DV-Hop. Secondly,
the anchor node collects the number of hops and distance
information between itself and other connected anchor
nodes, thereby calculating the average length per hop of this
anchor node. The calculating equation is presented in the
following:

Hopsizei =
∑m

j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xj
� �2 + yi − yj

� �2r
∑m

j=1Hopi,j
, ð1Þ

where the position of ith anchor node is ðxi, yiÞ, and m is the
number of all anchor nodes. The hop count between ith
anchor node and jth anchor node is represented as Hopi,j,
and the average length of per hop of ith anchor node is
Hopsizei.

Each anchor node broadcasts its own Hopsize to the net-
work by controlling flooding. The distance between
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unknown node u and anchor node A can be calculated by Eq
(2). At the same time, the unknown node u forwards the
information to surrounding nodes, and the corresponding
hop count is increased by 1.

DistanceA,u = hopA,u · HopsizeA ð2Þ

Then, the location of the unknown node can be esti-
mated by the trilateration localization method, and the
localization error can be reduced by the least-squares
method [10].

2.1.2. DV-Hop in 3D Terrain. The wireless signal is transmit-
ted from the transmitter to the receiver through electromag-
netic radiation. Different from deploying WSN in a 2D
environment, in a 3D environment, electromagnetic signals
will be absorbed or blocked by surrounding obstacles. The
number of obstacles determines the fading and shadowing
of the signal between receiver and transmitter [57]. To detect
whether the communication of nodes is blocker by sur-
rounding terrain, a line-of-sight (LOS) algorithm is intro-
duced. In this article, we use the Bresenham LOS
algorithm, because it has a faster calculation speed, requires
fewer calculation points, and does not require interpolation
calculations [58]. The sensor model in WSN is a mathemat-
ical formula that characterizes the connectivity of sensors as
a function of distance and terrain obstacles. This paper
adopts the straightforward binary sensing model to deter-
mine whether a node is connected to the WSN. If a sensor
node is within the communication radius of another sensor
node, no obstacles obstruct the communication signal
between them. These two sensor nodes can communicate
with each other and vice versa. In order to illustrate the sig-
nal propagation in 3D terrain more vividly, Figure 1 shows
the details of the LOS algorithm.

In Figure 1, there are 7 nodes on uneven terrain, named
a, b, c, d, e, f , and g, which are represented by blue dots. As
can be seen from the figure, nodes a and node b are con-
nected by a green dashed line, indicating that they can com-
municate with each other, and this is because there is no
obstacle between node a and node b that hinders signal
propagation. Conversely, node b and node c are connected
by a red dashed line, and they cannot communicate with
each other. As there is a mountain peak between them, the
signal propagation is hindered.

2.2. Black Hole Algorithm. The black hole (BH) algorithm is
one of the population-based methods which is inspired by
the black hole phenomenon. In this method, a population
of candidate solutions to a given problem is generated and
distributed randomly in the search space.

In the proposed BH algorithm, the evolution of the pop-
ulation is done by moving all the candidates towards the best
candidate solution in each iteration as shown in Eq. (2), and
the best candidate solution is named black hole. If the pop-
ulation finds a better candidate solution than black hole, this
solution would replace the black hole.

Xt+1
i = Xt

i + rand · Xt
BH − Xt

i

� �
i = 1, 2,⋯,N , ð3Þ

where Xt
i and Xt+1

i are the locations of the ith star at itera-
tions t and t + 1, respectively. Xt

BH is the location of the black
hole in the search space at tth iteration. The rand is a ran-
dom number between 0 and 1, and N is the number of stars
(candidate solutions).

Otherwise, the black hole would engulfs the candidate
solution which within the radius of its event horizon. This
mechanism guarantees that the population will not be
trapped in local optimal value. In order to keep the popula-
tion size, a new individual will be generated randomly in
search space of a problem. It is worth noting that a small
number of individuals will pass through the event horizon
of the black hole, which can improve the exploitation perfor-
mance of the algorithm. The radius of the event horizon in
the BH algorithm is calculated by the following equation:

R = f BH
∑N

i=1 f i
: ð4Þ

In the above formula, f BH represents the fitness value
calculated according to the position of the black hole. The
fitness value calculated from the position of the ith individ-
ual is denoted by f i. When the distance between an individ-
ual and the black hole is less than R, the individual will be
swallowed, and the algorithm will randomly generate a
new individual to maintain the population size.

3. Rotated Black Hole

In the original BH algorithm, the individual directly moves
forward into the black hole. If the individual finds a better
solution in the process, the black hole will be updated.
However, in the multimodal problem, it is difficult for
the intelligence computing algorithm to find a better solu-
tion on the straight path. [40] has introduced a formula
which mimic the feeding behavior of whales and gotten
great performance.

In order to improve the search ability of the BH algorithm
in multimodal problems, the rotated model is introduced in
this paper. The position update equation of population in
the rotated model is presented in the following:

Xt+1
i =D · ebl · cos 2πlð Þ + Xt

BH : ð5Þ

Xt+1
i is the position of ith individual at t + 1 iteration, and

the D indicates the distance between it and black hole. The
position of the black hole at t iteration is represented by Xt

BH
. The b is a constant, it is set to 1 in this article, and l is a rand
number between -1 and 1. In the novel algorithm, the original

a b c d e f g

Figure 1: The signal propagation in 3D terrain.
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position update way and the rotated model are combined to
find the optimal solution. In each iteration, the algorithm gen-
erates a rand number, if the rand number is bigger than a
special constant a, the algorithm utilizes a rotated model and
vice versa. The detail of the novel algorithm is presented in
Algorithm 1 and Figure 2.

4. Rotated Black Hole Algorithm Applied on
DV-Hop in 3D Terrain

In this section, the novel algorithm is applied to reduce
locate error of unknown nodes in 3D terrain. [59] has

proved that the intelligence computing algorithm has a dis-
tinct effect on WSN in 2D plane. In this paper, the 2D plane
is extended to a 3D terrain as shown in Figure 3. This terrain
is generated by the “peak” function of Matlab 2018a, and the
connective state between any two nodes can be estimated by
the LOS algorithm. The locate error of DV-Hop can be
calculated by Eq. (6).

e = 〠
m

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − xið Þ2 + y − yið Þ2 + z − zið Þ2

q
− disti

� � !2

: ð6Þ

Initialization: i = 1, t = 1, D = 50, n = 30, a = 0:7, T = 1000;
randomly initial the position of population and calculate the function value: Pos, f un;

f un BH = inf;
while t ≤ T do

Pos = ðPos1, Pos2,⋯, PosnÞ, f un = ð f un1, f un2,⋯, f unnÞ;
R BH = f un BH/sumð f unÞ;
while i ≤ n do

if rand < a then
Update Posi according to Eq (3) and f uni;

end
else

Update Posi according to Eq (5) and f uni;
end
if f uni < f un BH then

Pos BH = Posi;
f un BH = f uni;

end
if The distance between Posi and Pos BH smaller than R BH then

Initial Posi and compute f uni
end
i = i + 1 ;

end
t = t + 1 ;

end

Algorithm 1: The rotated black hole algorithm.
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Figure 2: The flow chart of the novel algorithm.
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i = 1, t = 1, D = 50, n = 30, a = 0.7, T = 1000,
min = –100, max =100, funBH = inf

Pos = min + 2 × rand (n, D) × max
fun = function (Pos)

Posi = min + 2 × rand (1, D) × max
funi = function (Posi)

While i < T

If rand < a

Update Posi according to
Eq (3) and calculate funi

Update Posi according to
Eq (5) and calculate funi

If funi < funBH

PosBH = posi
FunBH = funi

Calculate the RBH according to Eq (4)

If distance (PosBH, Posi) < RBH

t = t + 1

Figure 3: Terrain for deploying sensor nodes.
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The position of the ith anchor node is represented by
ðxi, yi, ziÞ, and ðx, y, zÞ is the estimation position of unknown
node. The disti means the real distance between ith anchor
node and unknown node; so, e is the error between the real
position and estimation position of unknown node in WSN.
This section applies the novel algorithm to reduce the error,
and the fitness function is shown as follows:

f x, yð Þ =min 〠
m

i=1

1
hopui

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − xið Þ2 + y − yið Þ2 + z − zið Þ2

q
− disti

� �2
 !

,

ð7Þ

where the hop count between unknown node and ith anchor
node is represented by hopui. The purpose of this article is to
use the new algorithm to weigh trade-off all anchor nodes
and find a suitable unknown node location.

5. Results and Discussion

5.1. CEC 2013 Simulation Results. To test the performance of
the RBH algorithm, CREST was carried out using the CEC
2013 benchmark function, which is a convincing function
for the testing optimization algorithm. There are 28 test
functions in the CEC 2013 benchmark function. The f1 to
f5 are unimodal functions, mainly check out the conver-
gence rate of the optimization algorithm. The f6 to f20 are
multimodal functions, which are used to verify the perfor-
mance of avoiding local optimal values of algorithms. The
f21 to f28 are composition functions, and their simulation
results reveal the comprehensive performance of optimiza-
tion algorithms. CREST was compared with some frequently
used optimization algorithms, such as WOA, GA, BH, PSO,
ABC, and MSA algorithms. CREST in this study is imple-
mented on the same notebook computer which equips with
an i5-7300HQ CPU @2.5GHz. CREST results were

Table 1: Simulation results of CEC 2013 benchmark functions.

Algorithms GA WOA PSO ABC MSA BH RBH

f1 1.70E+05 3.25E+03 -1.02E+03 2.76E+04 1.81E+05 2.97E+04 6.74E+03

f2 6.52E+09 2.04E+08 4.73E+07 8.19E+08 6.93E+09 3.58E+08 3.06E+08

f3 2.73E+20 1.75E+11 5.80E+10 2.19E+15 4.10E+21 3.20E+12 1.15E+11

f4 1.11E+06 1.01E+05 7.12E+04 1.01E+05 1.48E+07 9.48E+04 1.48E+05

f5 1.04E+05 6.15E+02 -8.03E+02 1.05E+04 1.16E+05 2.09E+03 1.24E+03

f6 3.56E+04 -2.14E+02 -7.04E+02 3.22E+03 3.59E+04 1.25E+03 -1.26E+02

f7 7.89E+06 1.84E+03 -4.00E+02 1.94E+04 2.35E+07 1.70E+02 -5.60E+02

f8 -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 -6.78E+02 -6.79E+02 -6.79E+02

f9 -5.18E+02 -5.27E+02 -5.27E+02 -5.28E+02 -5.12E+02 -5.28E+02 -5.33E+02

f10 2.63E+04 8.64E+02 -2.58E+02 4.39E+03 2.98E+04 3.48E+03 1.46E+03

f11 2.35E+03 4.65E+02 3.35E+02 3.76E+02 2.58E+03 4.41E+02 2.72E+02

f12 2.26E+03 7.72E+02 4.96E+02 5.31E+02 2.35E+03 6.05E+02 4.77E+02

f13 2.31E+03 9.01E+02 8.34E+02 6.37E+02 2.50E+03 7.35E+02 6.07E+02

f14 1.73E+04 1.14E+04 1.08E+04 1.01E+04 1.77E+04 1.36E+04 9.91E+03

f15 1.65E+04 1.30E+04 1.28E+04 1.48E+04 1.83E+04 1.39E+04 1.45E+04

f16 2.05E+02 2.03E+02 2.03E+02 2.04E+02 2.09E+02 2.03E+02 2.04E+02

f17 5.72E+03 1.51E+03 1.48E+03 1.31E+03 6.07E+03 1.36E+03 1.31E+03

f18 5.82E+03 1.62E+03 1.55E+03 1.51E+03 6.03E+03 1.46E+03 1.44E+03

f19 2.83E+07 2.15E+03 1.10E+03 5.49E+05 3.44E+07 4.74E+04 3.44E+03

f20 6.25E+02 6.25E+02 6.25E+02 6.25E+02 6.25E+02 6.25E+02 6.24E+02

f21 1.34E+04 3.84E+03 1.73E+03 5.26E+03 1.37E+04 4.53E+03 3.72E+03

f22 1.93E+04 1.43E+04 1.43E+04 1.20E+04 1.94E+04 1.61E+04 1.30E+04

f23 1.84E+04 1.52E+04 1.52E+04 1.67E+04 1.98E+04 1.65E+04 1.56E+04

f24 2.15E+03 1.42E+03 1.53E+03 1.40E+03 2.36E+03 1.58E+03 1.40E+03

f25 1.80E+03 1.55E+03 1.67E+03 1.52E+03 1.82E+03 1.68E+03 1.52E+03

f26 1.84E+03 1.67E+03 1.67E+03 1.67E+03 1.90E+03 1.67E+03 1.67E+03

f27 5.16E+03 3.67E+03 4.03E+03 3.55E+03 5.30E+03 3.93E+03 3.46E+03

f28 1.73E+04 1.04E+04 1.01E+04 9.09E+03 1.95E+04 9.85E+03 4.13E+03
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Figure 4: Continued.
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presented in Table 1, every data is the average of 48 test
results, and the best results are marked by underline and bolt
font for each function.

The optimal results of intelligence computing algorithms
under the CEC 2013 were showed in Table 1, and the best
result of each test problem is marked in bold. The search
ability of RBH algorithm on 14 benchmark functions is bet-
ter or equal than other algorithms.

In the unimodal problems, as the excellent local search
ability of PSO, other algorithms are far from the PSO algo-
rithm. In the multimodal problems, the new algorithm pro-
posed in this paper has obtained 8 best results. The results
show that the new algorithm has a strong global search abil-
ity than other comparison algorithms. Out of a total of eight
composition problems, the new algorithm performed best in
five, and this further verifies the novel algorithm with great
global search ability. Through CREST, one conclusion was

achieved that the RBH algorithm has good global search
capabilities and is good at solving complex optimization
problems.

In Figure 4, the details of intelligence computing algo-
rithms to solve some optimal problems are given. Although
the new algorithm cannot find a better solution than other
algorithms in the early stage, it has a strong global search
ability and is easy to avoid the local optimal value and finally
find the optimal solution. Contrast other algorithms, the
PSO has the fastest convergence rate but it has difficult
jumping local optimal value; so, it is surpassed by other algo-
rithms in the last stage. It can be seen that for complex prob-
lems, the new algorithm has an advantage due to its excellent
global search ability.

5.2. Localization of WSN in 3D Terrain. In this section, the
sensor nodes are randomly arranged in a 100m × 100m
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Figure 4: Simulation results of CEC 2013.

Table 2: Localization error of WSN with different numbers of nodes in 3D terrain.

Algorithm
Node number

200 250 300 350 400 450 500

DV-Hop 27.12m 53.94m 44.20m 27.12m 29.22m 24.63m 28.53m

GA 7.29m 6.94m 8.00m 7.27m 7.01m 7.33m 7.99m

WOA 6.14m 5.35m 6.33m 5.19m 5.43m 5.68m 6.15m

BH 6.17m 5.45m 6.26m 5.01m 5.45m 5.85m 5.90m

RBH 5.94m 5.23m 6.22m 5.00m 5.30m 5.59m 5.90m

PSO 7.88m 8.34m 7.74m 7.01m 6.99m 7.01m 7.62m

ABC 16.47m 17.86m 16.15m 23.14m 26.67m 24.73m 24.83m

MSA 10.88m 10.63m 10.15m 9.69m 10.02m 10.23m 9.88m
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3D terrain as shown in Figure 3. In order to comprehen-
sively check the performance of all positioning algorithms,
we design three simulation experiments with different num-
ber of nodes, different number of anchor nodes, and com-
munication radius of sensor nodes. The best experimental
results for each experiment are underlined.

5.2.1. Localization Error of WSN with Different Numbers of
Nodes in 3D Terrain. In this simulation experiment, we have
configured 200, 250, 300, 350, 400, 450, and 500 nodes in the
3D terrain, respectively, the communication radius of all
nodes is set to 20m, and there are 30 anchor nodes. The sim-
ulation results are shown in Table 2 and Figure 5.

The localization error is the average value of localization
error of all unknown nodes which is calculated by Eq. (6).
From this table, we can see that the intelligence computing
algorithm effectively improves the accuracy of the DV-Hop

localization algorithm, and the novel algorithm has the
strongest performance in all participated compared algo-
rithms. The biggest localization error of the original DV-
Hop algorithm appears 250 nodes. Generally speaking, the
positioning error is positively related to the number of
nodes. The reason for this phenomenon is that each node
deployment is independent and random. In the experiment
of deploying 250 nodes, the signals of many nodes are
blocked by the terrain; so, the experimental results of the
original DV-Hop are not ideal. However, in this experimen-
tal environment, intelligent computing shows strong optimi-
zation capabilities, which greatly reduces the positioning
error.

5.2.2. Localization Error of WSN with Different Numbers of
Anchor Nodes in 3D Terrain. In this simulation experiment,
there are 15, 20, 25, 30, 35, 40, and 45 anchor nodes,
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0

10

20

30

40

50

60

Th
e a

ve
ra

ge
 o

f l
oc

al
iz

at
io

n 
er

ro
r

DV-Hop
Ga
WOA
BH

RBH
PSO
ABC
MSA

Figure 5: Localization error of WSN with different numbers of nodes in 3D terrain.

Table 3: Localization error of WSN with different numbers of anchor nodes in 3D terrain.

Algorithm
Anchor node number

15 20 25 30 35 40 45

DV-Hop 59.32m 49.05m 50.04m 67.02m 74.02m 83.01m 83.06m

GA 7.10m 8.05m 7.72m 8.88m 10.31m 11.40m 13.14m

WOA 6.15m 6.47m 6.64m 7.77m 9.16m 10.86m 12.25m

BH 6.05m 6.40m 6.64m 7.74m 9.31m 10.72m 12.21m

RBH 6.04m 6.24m 6.42m 7.68m 9.20m 10.65m 12.04m

PSO 7.85m 8.48m 8.05m 8.68m 10.44m 11.48m 12.97m

ABC 16.23m 16.55m 19.91m 23.07m 23.80m 25.78m 27.99m

MSA 10.40m 10.88m 10.58m 11.50m 13.29m 13.13m 15.13m
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respectively, the number of nodes is 300, and the communi-
cation radius of sensor node is set to 20m. Table 3 and
Figure 6 show the simulation results.

Generally, the positioning error decreases as the num-
ber of anchor nodes increases, but when the number of
anchor nodes is greater than 35, a special situation occurs
in the traditional DV-Hop. Excessive location information
causes trouble to the traditional DV-Hop and reduces the
accuracy of positioning. DV-Hop combined with intelligent
computing algorithm, especially combined with RBH
algorithm, can adapt to any conditions, and no matter the
number of anchor nodes, the simulation results are equally
excellent.

5.2.3. Localization Error of WSN with Different
Communication Radii in 3D Terrain. The communication

radius of the sensor node can determine the anchor node that
provides location information to how many sensor nodes. So,
the value of communication radius of sensor nodes is a impor-
tant factor for simulation results. We install the communica-
tion radius as 14, 18, 22, 26, 30, 34, and 38 to test the
performance of different localization algorithms. There are
300 sensor nodes and 30 anchor nodes in this experiment,
and the simulation results are presented in Table 4 and
Figure 7.

From this table, we can see the influence of the commu-
nication radius on the experimental results. Different from
what we originally envisioned, the increase of communica-
tion radius would increase the localization error of WSN.
And without exception, all localization algorithms show this
feature. The novel algorithm gets the best result at each
experiment except communication radius is 30.
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Figure 6: Localization error of WSN with different numbers of anchor nodes in 3D terrain.

Table 4: Localization error of WSN with different communication radii in 3D terrain.

Algorithm
Communication radius

14m 18m 22m 26m 30m 34m 38m

DV-hop 59.32m 49.05m 50.04m 67.02m 74.02m 83.01m 83.06m

GA 7.10m 8.05m 7.72m 8.88m 10.31m 11.40m 13.14m

WOA 6.15m 6.47m 6.64m 7.77m 9.16m 10.86m 12.25m

BH 6.05m 6.40m 6.64m 7.74m 9.31m 10.72m 12.21m

RBH 6.04m 6.24m 6.42m 7.68m 9.20m 10.65m 12.04m

PSO 7.85m 8.48m 8.05m 8.68m 10.44m 11.48m 12.97m

ABC 16.23m 16.55m 19.91m 23.07m 23.80m 25.78m 27.99m

MSA 10.40m 10.88m 10.58m 11.50m 13.29m 13.13m 15.13m
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6. Conclusion

In this paper, a novel algorithm is proposed, which utilizes
a rotated optimal path to greatly improve the optimal
ability of the original BH algorithm, especially in multi-
modal problems and composition problems. The CEC
2013 test suits show that the novel algorithm has out-
standing global search ability; so, the novel algorithm
can easily avoid local optimal value. In addition, this
paper uses a new algorithm to optimize the position of
the unknown node based on the DV-Hop positioning
method, thereby reducing the error of the position estima-
tion of the unknown node. The experiments in this paper
have performed simulation experiments on the number of
nodes, the number of anchor nodes, and the communica-
tion radius, respectively, and all prove that the new algo-
rithm has a good effect on the localization problem of
WSN in 3D terrain.

Data Availability

The related source code is uploaded in the following
URL:https://mp.csdn.net/mp_download/manage/download/
UpDetailed ~~~~~~~~~^~^~^~^~~~~~~~~~~~
amp, which is available upon request.
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