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Sparse unmixing is an important technique for hyperspectral data analysis. Most sparse unmixing algorithms underutilize the
spatial and spectral information of the hyperspectral image, which is unfavourable for the accuracy of endmember
identification and abundance estimation. We propose a new spectral unmixing method based on the low-rank representation
model and spatial-weighted collaborative sparsity, aiming to exploit structural information in both the spatial and spectral
domains for unmixing. The spatial weights are incorporated into the collaborative sparse regularization term to enhance the
spatial continuity of the image. Meanwhile, the global low-rank constraint is employed to maintain the spatial low-dimensional
structure of the image. The model is solved by the well-known alternating direction method of multiplier, in which the
abundance coefficients and the spatial weights are updated iteratively in the inner and outer loops, respectively. Experimental
results obtained from simulation and real data reveal the superior performance of the proposed algorithm on spectral unmixing.

1. Introduction

Hyperspectral remote sensing is considered to be a major
breakthrough in remote sensing technology due to its high
spectral resolutions and simultaneous acquisition of both
images and spectra of objects [1, 2]. Hyperspectral remote
sensing images provide rich earth observation information,
which shows great application potential in mineral resource
exploration, precision agriculture, and environmental moni-
toring [3]. However, the insufficient spatial resolution of
hyperspectral images leads to the emergence of a large num-
ber of mixed pixels, which influences the fine interpretation
of hyperspectral images [4]. Spectral unmixing is an effective
way to deal with mixed pixels. It obtains pure spectral signals
of ground objects (endmembers) in the imaging area and
their corresponding proportions (abundance) [5].

The observed spectrum of the mixed pixel is a mixture of
endmember spectra, and unmixing is essentially an optimi-
zation problem for a given spectral mixture model. The lin-
ear mixture model (LMM) assumes that each pixel is formed

by linearly combining spectral signatures of endmembers
[3]. Many hyperspectral unmixing algorithms based on
LMM have been proposed, among which sparse unmixing
methodology has received extensive attention [6, 7]. Sparse
unmixing is a semisupervised spectral unmixing method,
which takes the spectral library as a priori and assumes that
the spectra of the endmembers participating in the hyper-
spectral image can be found in the library [5]. Generally,
the number of endmembers in each mixed pixel is very small
relative to the number of spectral signatures in the library;
that is, the corresponding abundance is sparse. Therefore,
the sparse regression algorithm is adopted to select the opti-
mal endmember subset from the spectral library and simul-
taneously estimate the fractional abundances [8].

Sparse unmixing can be regarded as solving the combi-
natorial optimization problem by a constrained sparse linear
regression algorithm, in which sparsity-inducing term pro-
motes the sparsity of the abundance solutions. For example,
the sparse unmixing via variable splitting and augmented
Lagrangian (SUnSAL) uses the ℓ1 norm to characterize the
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sparsity of each abundance vector [5]. Furthermore, the col-
laborative SUnSAL (CLSUnSAL) uses the ℓ2,1 norm to
enforce the joint sparsity among all pixels [9].

The iterative reweighted ℓ1 norm minimization is con-
firmed to enhance the sparsity of solutions [10, 11]. In the work
of [12], a weighting factor is introduced in the sparse regulariza-
tion term to reduce the solution space. The double reweighted
sparse unmixing algorithm (DRSU) employs the double
weighted ℓ1 norm to simultaneously reduce the nonzero rows
in the abundance matrix corresponding to the actual endmem-
bers and the nonzero values in each abundance vector [13].

Hyperspectral data presents a three-dimensional cube
structure with 2-dimensional spatial information and 1-
dimensional spectral information of the target area [14,
15]. Taking spatial information as a priori knowledge greatly
improves the unmixing performance, so it has become one
of the research hotspots in the field of hyperspectral unmix-
ing [16–18]. For instance, the total variation (TV) regulari-
zer is proposed to integrate the spatial-context information
[19, 20], and the TV regularization term is added to the
SUnSAL algorithm to construct the SUnSAL-TV algorithm
[19]. Moreover, the local collaborative sparse unmixing algo-
rithm (LCSU) focuses on the local collaborative characteris-
tics of the image, which imposes different spatial weights on
each local region of the abundance map [21].

Low rankness is another inherent characteristic of the
abundance matrix, which provides a new perspective for
exploring the spatial structure of the data [22, 23]. The high
spatial correlation of pixels in the image reflects in the high
spectral similarity of these pixels. The similar pixels usually
share the same endmembers and similar abundance maps,
which means that the corresponding abundance vectors are
linearly dependent; that is, the abundance matrix is low rank
or approximately low rank. The low-rank constraint helps to
obtain a low-rank approximation of the abundance matrix,
which captures the global spatial data structure. The alter-
nating direction sparse and low-rank unmixing (ADSpLRU)
algorithm first attempts to combine sparse and low-rank
constraints, which considers the spatial correlation of the
pixels in a 3 × 3 sliding window [24]. The joint-sparse-
blocks and low-rank unmixing (JSpBLRU) algorithm divides
the abundance matrix into flexible regular blocks with one
row and multiple columns and applies joint sparsity to the
blocks, and the low-rank regularizer is merged into the block
sparse model synchronously [25].

In this paper, a low-rank and spectral-spatial sparse unmix-
ing algorithm is proposed, which provides the low-rank con-
straint and the collaborative sparse constraint incorporating
neighborhood spatial weights. The multiconstraint strategy
effectively exploits the spatial and spectral information of the
image and improves the accuracy of the abundance estimation.

The rest of this paper is structured as follows. Section 2
introduces the sparse unmixing model and its variants. Sec-
tion 3 presents the low-rank and spectral-spatial sparse
unmixing model and its optimization algorithm in detail.
In Section 4, the effectiveness of the proposed algorithm is
demonstrated by experiments on simulated and real hyper-
spectral data. Section 5 draws conclusions and suggests pos-
sible future research.

2. Related Works

Sparse unmixing replaces the endmember set used in LMM
with a large spectral library and searches the library for the
combination of spectral signatures that best represents the
hyperspectral images [5]. Let Y ∈ℝl×n be a hyperspectral
image including n pixels with l bands. The sparse unmixing
model can be expressed as

Y =AX +N, ð1Þ

where A ∈ℝl×m is a spectral library including m spectral sig-
natures, X ∈ℝm×n is the abundance matrix corresponding to
the spectral library A, and N ∈ℝl×n is the noise or model
error. The abundance matrix X reflects the proportion of
spectral signatures from the library A in each pixel. Accord-
ing to the physical meaning of abundance, two constraints
are considered: abundance nonnegativity constraint (ANC)
and abundance sum-to-one constraint (ASC), which can
be written as X ≥ 0and 1TX = 1.

In fact, there are only a few entries from the spectral
library A act on the mixed pixels, which results in many
zeros in the relevant fractional abundances. That is, the
abundance matrix X is sparse. Based on sparse and redun-
dant representation theory, the unmixing problem can be
modeled as follows:

min
X

1
2

Y −AXk k2F + λ Xk k0
s:t: X ≥ 0,

ð2Þ

where k·kF is the Frobenius norm, λ is a nonnegative regu-
larization parameter, and kXk0 indicates the number of non-
zero values in X. Note that the ASC is not strictly conducted
in the model (2), which is ascribed to the drawbacks men-
tioned in [5].

The optimization problem related to model (2) is NP-
hard. Under the condition of restricted isometric property
(RIP), ℓ0 norm can be relaxed to ℓ1 norm [26]. The model
(2) is modified as

min
X

1
2

Y −AXk k2F + λ Xk k1,1
s:t: X ≥ 0,

ð3Þ

where kXk1,1 =∑n
j=1kx jk1, x j is the jth column vector of X.

The SUnSAL algorithm efficiently solves model (3) [19].
However, the ℓ1 norm measures the sparsity of each abun-
dance vector independently instead of considering the joint
sparsity of all pixels in the scene. The mixed norm ℓ2,1 norm
is proposed to improve sparsity among the rows of X collab-
oratively. The corresponding optimization problem is
described as

min
X

1
2

Y −AXk k2F + λ Xk k2,1
s:t: X ≥ 0,

ð4Þ
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where kXk2,1 =∑m
i=1kxik2, xi is the ith row vector of X. The

optimization problem related to (4) is solved by the CLSUn-
SAL algorithm. As an improvement of the SUnSAL algo-
rithm, it is aimed at finding a structured solution with only
a few nonzero lines. In other words, it promotes the row
sparsity of the abundance matrix X.

The abovementioned unmixing models underutilize the
spatial structure features of hyperspectral images. The rich
spatial information contained in the image, which has an
important impact on the unmixing performance, is not
incorporated into these models. To this end, we propose a
new sparse unmixing algorithm to address the aforemen-
tioned limitation.

3. The Proposed Low-Rank and Spectral-Spatial
Sparse Unmixing Algorithm

3.1. The Proposed LRSSU Model. Inspired by the idea of iter-
ative weighting [27], the spatial weight based on neighborhood
is introduced into ℓ2,1 norm sparse regularization term, which
integrates the spatial and spectral information. Due to the
advantage of the low-rank representation model in maintain-
ing the low-dimensional structure of the image, a low-rank
regularization term is incorporated to explore the global spa-
tial correlation of the hyperspectral data. Combining the
sparse and low-rank constraints, a new sparse unmixing
model with low-rank constraint is proposed as follows:

min
X

1
2

Y −AXk k2F + λ Hspa ⊙X
�� ��

2,1 + τ rank Xð Þ
s:t: X ≥ 0,

ð5Þ

whereHspa ∈ℝm×n is the spatial weightmatrix, ⊙ is the Hada-
mard product, rank ðXÞ is the rank of the abundancematrixX
, and λ and τ are nonnegative regularization parameters. Hspa
is updated iteratively as follows:

H t+1ð Þ
spa,ij =

1

f N pð Þ x tð Þ
p

� �
+ ε

, ð6Þ

whereHðtÞ
spa,ij represents the element in the ith row and jth col-

umn of Hspa at the tth iteration. p represents the pixel corre-

sponding to fractional abundance xij, xp = ðx1j, x2j,⋯, xmjÞT
is the abundance vector for pixel p,N ðpÞ represents the neigh-
bor pixel set centered on p in the image, and f N ð·Þð·Þ denotes a
function that explores the spatial correlation of pixels in a
neighborhood system N ð·Þ. In this paper, the 8 neighbor
pixels of p constitute the neighborhood system N 8ðpÞ; then,
the function f ð·Þ is defined as

f N 8 pð Þ xp
� �

=
∑q∈N 8 pð Þρqxq
∑q∈N 8 pð Þρq

, ð7Þ

where q is any pixel in the 8 neighbor pixel set of p, xq is the
abundance vector corresponding to q, ρq = 1/ðdEðp, qÞÞ
denotes the neighborhood weight with regard to q, and dEðp
, qÞ denotes the Euclidean distance between pixel q and its cen-
tral pixel p.

The rank of X is closely relevant to the similarity of
abundance vectors, and the reduced rank abundance matrix
consists of fewer linearly independent vectors accordingly.
When ℓ2,1 norm is used to promote the row sparsity of X,
the low-rank regularizer helps to determine the endmembers
from the spectral library more accurately. Nevertheless, it is
difficult to calculate the rank of the matrix directly. The
nuclear norm kXk∗ is the tightest convex relaxation of the
rank of X. Therefore, we replace rank ðXÞ with kXk∗ and
rewrite model (5) as

min
X

1
2

Y −AXk k2F + λ Hspa ⊙X
�� ��

2,1 + τ Xk k∗
s:t: X ≥ 0,

ð8Þ

where kXk∗ =∑iσiðXÞ and σiðXÞ is the ith singular value of
X.

The weighted nuclear norm minimization (WNNM) can
enhance the sparsity of the singular vector by imposing dif-
ferent weights on each singular value [28]. Specifically,
smaller singular values that carry less valid information are
assigned larger weights and then are greatly reduced or even
reduced to zero. On the contrary, larger values are assigned
smaller weights, so that the main information is well pre-
served. The weighted nuclear norm kXkb,∗ is adopted to
improve the robustness and consistency of model (8), which
is expressed as

Xk kb,∗ = 〠
r

i=1
biσi Xð Þ, ð9Þ

where b = ðb1, b2,⋯Þ is the nonnegative weight vector and bi
is the weight related to the ith singular value of the matrix X.
At the kth iteration, bi is updated as follows:

b kð Þ
i =

1
σi X kð Þ� �

+ ε
, ð10Þ

where ε > 0 is a small constant added to avoid singularity
and XðkÞ represents the abundance matrix X at the kth
iteration.

In summary, the low-rank and spectral-spatial sparse
unmixing model (LRSSU) is expressed as follows:

min
X

1
2

Y −AXk k2F + λ Hspa ⊙X
�� ��

2,1 + τ Xk kb,∗
s:t: X ≥ 0:

ð11Þ

3.2. Solution of the Optimization Problem. In this section, an
iterative optimization scheme of internal and external dual
circulation based on the alternating direction method of
multipliers (ADMM) [29] is proposed. The external
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circulation updates the spatial weight matrix following equa-
tion (6), and the internal circulation solves the abundance
matrix in the framework of ADMM. The flow of solving
model (11) is described in detail as follows.

The auxiliary matrix variables U, V1, V2, V3, and V4 are
introdued, and model (11) is equivalently converted to the
following form:

min
U,V1,V2,V3,V4

1
2

Y −V1k k2F + λ Hspa ⊙V2
�� ��

2,1 + τ V3k kb,∗ + ιR+ V4ð Þ

s:t: U =X,

V1 =AU,

V2 =U,

V3 =U,

V4 =U,
ð12Þ

where ιR+ðXÞ =∑n
i=1ιR+ðxiÞ is the indicator function; i.e., ιR+

ðxiÞ is zero if xi is nonnegative and +∞ otherwise. Equation
(12) can be expressed compactly as

min
U,V

g U,Vð Þ
s:t: GU + BV = 0,

ð13Þ

where gðU,VÞ = ð1/2ÞkY −V1k2F + λkHspa ⊙V2k2,1 + τ

kV3kb,∗ + ιR+ðV4Þ, G = ðA, I, I, IÞT, B = diag ð−IÞ, and V =
ðV1,V2,V3,V4ÞT.

The augmented Lagrangian of equation (13) is written as

L U,V,Dð Þ = g U,Vð Þ + μ

2
GU + BV −Dk k2F , ð14Þ

where μ is a nonnegative penalty parameter, D =
ðD1,D2,D3,D4ÞT is the Lagrange multipliers with regards
to GU + BV = 0.

The optimization problem (13) can be solved by mini-
mizingLðU,V,DÞ in the framework of ADMM. We update
the variables U and V sequentially by solving the following
subproblems:

U k+1ð Þ = arg min
U

L U,V kð Þ,D kð Þ
� �

,

V k+1ð Þ = arg min
V

L U k+1ð Þ,V,D kð Þ
� �

:

8><
>: ð15Þ

The U-subproblem has the closed-form solution, which
is obtained by taking the partial derivative of U. The variable
U is calculated as follows:

U k+1ð Þ = arg min
U

μ

2
AU −V kð Þ

1 −D kð Þ
1

��� ���2
F

+
μ

2
U −V kð Þ

2 −D kð Þ
2

��� ���2
F
+
μ

2
U −V kð Þ

3 −D kð Þ
3

��� ���2
F

+
μ

2
U −V kð Þ

4 −D kð Þ
4

��� ���2
F

= ATA + 3I
� �−1 AT V kð Þ

1 +D kð Þ
1

� �
+V kð Þ

2 +D kð Þ
2

�

+V kð Þ
3 +D kð Þ

3 +V kð Þ
4 +D kð Þ

4

�
:

ð16Þ

The V-subproblem is split into four independent optimi-
zation problems with regard to V1,V2,V3, and V4. The solu-
tion of V1 is calculated as follows:

V k+1ð Þ
1 = arg min

V1

1
2

Y −V1k k2F +
μ

2
AU k+1ð Þ −V1 −D kð Þ

1

��� ���2
F

=
1

1 + μ
Y + μ AU k+1ð Þ −D kð Þ

1

� �h i
:

ð17Þ

The optimization problem related to V2 is

V k+1ð Þ
2 = arg min

V2
λ Hspa ⊙V2
�� ��

2,1 +
μ

2
U k+1ð Þ −V2 −D kð Þ

2

��� ���2
F
:

ð18Þ

The rth row of V2 is written as V2,r ; then, the closed-
form solution of problem (18) is

V k+1ð Þ
2,r = vect‐soft U k+1ð Þ

r −D kð Þ
2,r ,

λ

μ
Hspa,r

� �
, ð19Þ

where vect‐softðy, τÞ = yðmax fkyk2 − τ, 0g/max fkyk2 − τ,
0g + τÞ denotes the soft threshold function for row vector.
V3 is updated according to the following optimization prob-
lem:

V k+1ð Þ
3 = arg min

V3
τ V3k kb,∗ +

μ

2
U k+1ð Þ −V3 −D kð Þ

3

��� ���2
F

= SVTb,τ/μ U k+1ð Þ −D kð Þ
3

� �
,

ð20Þ

where SVTb,ωð·Þ denotes the singular value threshold func-
tion and the weight vector b is calculated according to equa-
tion (10). The singular value decomposition (SVD) of X is
written as X = ÛDiagðσ1,⋯,σrÞV∧T, then SVTb,ωðXÞ = ÛD
iagðmax ðσ1 − ωb1, 0ÞÞ,⋯, ðmax ðσr − ωbr , 0ÞÞV∧T. In the
same vein, we get the solution of V4 as follows:

V k+1ð Þ
4 = arg min

V4
ιR+ V4ð Þ + μ

2
U k+1ð Þ −V4 −D kð Þ

4

��� ���2
F

=max U k+1ð Þ −D kð Þ
4 , 0

� �
:

ð21Þ
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Finally, the Lagrange multipliers are updated as follows:

D k+1ð Þ =D kð Þ − GU k+1ð Þ + BV k+1ð Þ
� �

: ð22Þ

To sum up, the complete scheme for the proposed
LRSSU model is presented in Algorithm 1, which consists
of internal and external dual circulations. The external circu-
lation updates the spatial weight matrix in step 4, which is
set up to 100 iterations. The internal circulation updates
the variables and Lagrange multipliers in ADMM frame-
work from step 6 to step 15 and sets 5 iterations empirically
[10, 30, 31].

The convergence of Algorithm 1 is difficult to prove.
Nevertheless, the residual of the optimization problem
decreases with the increase of iterations. Figure 1 shows
the residual kGUðtÞ + BVðtÞkF as a function of the number
of iterations for the complete algorithm. It can be observed
that the residual arrived at a certain level close to zero after
about 20 iterations of the external circulation. Therefore,
the stopping criterion of the algorithm is set as the residual
error reaches the error tolerance or the number of iterations
reaches the upper limit, which guarantees the convergence of
the algorithm.

4. Experimental Analysis

In this section, the performance of the proposed LRSSU
algorithm will be discussed in simulated and real hyperspec-
tral data experiments. In the simulated data experiment, the
signal-to-reconstruction error (SRE) is used to quantitatively

evaluate the unmixing accuracy. The SRE (dB) is defined as
follows:

SRE dBð Þ = 10 · log10 E xk k22
� �

/E x − x̂k k22
� �� �

, ð23Þ

where Eð·Þ is the expectation function, x̂ is the estimated
abundance vector, x is the true abundance vector. In addi-
tion, the probability of success ps is another quantitative

1: Initialization:

2: k, t = 0, choose μ, λ, τ, ε > 0, Uð0Þ, Vð0Þ
1 , Vð0Þ

2 , Vð0Þ
3 , Vð0Þ

4 , Dð0Þ
1 , Dð0Þ

2 , Dð0Þ
3 , Dð0Þ

4
3: Repeat:

4: Hðt+1Þ
spa,ij = 1/ð f N ðpÞðxðtÞp Þ + εÞ, xp = ðx1j, x2j,⋯, xmjÞT is the jth column of ðUðtÞ −VðtÞ

2 Þ
5: Repeat:

6: Uðk+1Þ ⟵ ðATA + 3IÞ−1ðATðVðkÞ
1 +DðkÞ

1 Þ +VðkÞ
2 +DðkÞ

2 +VðkÞ
3 +DðkÞ

3 +VðkÞ
4 +DðkÞ

4 Þ
7: Vðk+1Þ

1 ⟵ 1/ð1 + μÞ½Y + μðAUðk+1Þ −DðkÞ
1 Þ�

8: Vðk+1Þ
2,r ⟵ vect‐softðUðk+1Þ

r −DðkÞ
2,r , ðλ/μÞHspa,rÞ

9: Vðk+1Þ
3 ⟵ SVTb,τ/μðUðk+1Þ −DðkÞ

3 Þ
10: Vðk+1Þ

4 ⟵max ðUðk+1Þ −DðkÞ
4 , 0Þ

11: Update Lagrange multipliers:

12: Dðk+1Þ
1 ⟵DðkÞ

1 −AUðk+1Þ +Vðk+1Þ
1

13: Dðk+1Þ
2 ⟵DðkÞ

2 −Uðk+1Þ +Vðk+1Þ
2

14: Dðk+1Þ
3 ⟵DðkÞ

3 −Uðk+1Þ +Vðk+1Þ
3

15: Dðk+1Þ
4 ⟵DðkÞ

4 −Uðk+1Þ +Vðk+1Þ
4

16: Update iteration:k⟵ k + 1
17: Uðt+1Þ ⟵UðkÞ

18: Dðt+1Þ
2 ⟵DðkÞ

2
19: Update iteration:t⟵ t + 1
20: Until some stopping criterion is satisfied.

Algorithm 1: Pseudocode of the LRSSU algorithm.
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Figure 1: The residual kGUðtÞ + BVðtÞkF as a function of the
number of iterations for the complete algorithm.
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evaluation indicator, which appraises the stability of the
results [5] . ps is defined as follows: ps ≡ Pðkx∧ − xk2/kxk2
≤ thresholdÞ. The results will be considered successful, if
the relative error power of results is less than an appropriate
threshold, usually 3.16 (5 dB). The larger the SRE (dB) or ps,
the better the performance of the algorithm. For fair com-
parison, the parameters of all algorithms in the experiment
are tuned to the optimal in advance, and the maximum
number of iterations is set to 500. The proposed LRSSU
algorithm is compared with the classic SUnSAL, CLSUn-
SAL, and SUnSAL-TV algorithms, as well as the advanced
DRSU algorithm and the JSPBLRU algorithm considering
the low-rank constraint.

4.1. Experiment on Simulated Data. The spectral library A
∈ℝ221×222 used in the simulated experiment is composed
of 222 spectral curves randomly selected from the splib06
spectral library provided by the United States Geological
Survey (USGS) (http://speclab.cr.usgs.gov/spectral.lib06.),

with 221 spectral bands. The reflectance values are evenly
distributed in the range of 0.4-2.5μm. The abundance map
containing 100 × 100 pixels is generated form the HyperMix
standard dataset, where ANC and ASC are implemented.
The data imitates the distribution features of surface objects
in nature, such as surface water, coastline, vegetation, and
mountains, so it is widely used to test the unmixing perfor-
mance of different algorithms. The simulated data cube is
synthesized by nine endmembers selected from the library
A, and then, white Gaussian noise with different signal-to-
noise ratios (SNR) is added. The true fractional abundances
of the nine endmembers are displayed in Figure 2.

Table 1 lists the value of SRE (dB) and ps obtained by dif-
ferent algorithms on the simulated data at SNR = 30dB,
40 dB, and 50 dB. From Table 1, we observe that the pro-
posed LRSSU algorithm achieves higher SRE (dB) and ps
than other comparison algorithms at all noise levels. Com-
pared with SUnSAL, CLSUnSAL, and SUnSAL-TV, the
LRSSU algorithm shows great advantages in stability and
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Figure 2: True fractional abundances of the endmembers in the simulated data.

Table 1: SRE (B) and ps results after applying different unmixing algorithms to the simulated data (the optimal parameter settings for which
the reported values were achieved are shown in the parentheses).

Algorithm
SNR = 30 dB SNR = 40 dB SNR = 50 dB

SRE (dB) ps SRE (dB) ps SRE (dB) ps

SUnSAL
6.3967 0.6303 11.5562 0.8871 18.9222 0.9991

(λ = 8e-3) (λ = 2e-3) (λ = 3e-4)

CLSUnSAL
6.6157 0.7269 14.7819 0.9999 26.6827 1

(λ = 3e-1) (λ = 2e-2) (λ = 7e-3)

SUnSAL-TV
9.0378 0.7822 15.4433 0.9861 25.3656 1

(λ = 4e-3; λTV = 2e-3) (λ = 6e-5; λTV = 9e-4) (λ = 5e-5; λTV = 9e-5)

DRSU
14.3296 0.9465 26.0656 1 34.4967 1

(λ = 2e-3) (λ = 6e-4) (λ = 1e-4)

JSpBLRU
15.0546 0.9928 24.8702 1 34.0073 1

(λ = 2:3; τ = 1:4) (λ = 4e-1; τ = 2e-1) (λ = 2e-1; τ = 4e-2)

LRSSU
19.8380 0.9989 27.9738 1 36.4791 1

(λ = 4e-2; τ = 8e-2) (λ = 2e-2; τ = 1e-2) (λ = 4e-3; τ = 2e-3)
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accuracy, which proves its superior unmixing performance.
In the case of high noise, the LRSSU and JSPBLRU algo-
rithms maintain high ps, which indicates that minimizing
the rank of the abundance matrix can effectively improve
the robustness of the unmixing algorithm. The SRE (dB)
obtained by the LRSSU algorithm is higher than that of the
DRSU and JSpBLRU algorithms, which demonstrates that
the local spatial weighting strategy plays an important role
in improving the accuracy of unmixing.

To illustrate the effect of the proposed LRSSU algorithm
on endmember identification, Figure 3 exhibits estimated
abundances obtained by each algorithm on the simulated data
with SNR = 30dB. For visual clarity, Figure 3 displays only
1000 pixels selected from the image. Each colored line in the
figure represents a nonzero row vector in the abundance
matrix, corresponding to an actual endmember. It can be seen
from the figure that the abundance map obtained by the
LRSSU algorithm is consistent with the ground-truth abun-
dance. More specifically, the endmembers identified by the
LRSSU algorithm from the spectral library are the same as
the true ones, with the least outliers. The abundance maps esti-
mated by the SUnSAL, CLSUnSAL, and SUnSAL-TV algo-
rithms emerge a mass of false endmember lines and
interference noises, which do not match the actual endmem-
bers well. The DRSU algorithm confuses some actual end-
members with other highly similar entries in the spectral
library, resulting in endmember mismatches, and it is suscep-
tible to noise. The results obtained by the JSpBLRU algorithm
are disturbed by abundance vectors with small values corre-
sponding to false endmembers. It can be concluded that the
proposed LRSSU algorithm further enhances the row sparsity
of the abundance matrix and improves the accuracy of identi-
fying endmembers from the spectral library.

Figure 4 exhibits the abundance maps of the ninth end-
member estimated by different algorithms from the simu-
lated data at SNR = 30dB. The other endmembers exhibit
similar behavior, so they are not shown. For a more intuitive
comparison, Figure 4 also shows the difference maps
between the estimated abundance obtained by each algo-
rithm and the true abundance. The abundance map
obtained by the proposed LRSSU algorithm is close to the
true distribution, which reveals a significant advantage than
other algorithms. The SUnSAL, CLSUnSAL, and SUnSAL-
TV algorithms estimate the abundances inaccurately, and
the unmixing results are obviously different from the true
abundance map. Compared with the DRSU and JSpBLRU
algorithms, the LRSSU algorithm retains more spatial detail
information of the abundance map, showing better spatial
smoothness and less noise. It is proved that the combination
of spectral-spatial collaborative sparse and low-rank con-
straints enhances the sparsity of the solution, preserves the
finer structure and texture information of the image, pro-
motes the spatial consistency between pixels, and improves
the accuracy of unmixing.

The setting of regularization parameters has an impor-
tant impact on the unmixing performance of the algorithm.
To analyze the sensitivity of parameters in the proposed
LRSSU algorithm, Figure 5 shows the SRE (dB) as functions
of parameters λ and τ. We observe that when the noise level
decreases, the value of the optimal parameter decreases
accordingly. Moreover, the parameter λ affects the accuracy
of solutions more than the parameter τ. Overall, when the
regularization parameters λ and τ vary in a large range,
SRE (dB) is still optimal or suboptimal. This is helpful to
achieve the best performance of the algorithm and improve
its practical application.
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Figure 3: The ground-truth abundance and the estimated abundance maps obtained from the simulated data under noise ratio of SNR = 30
dB.
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Figure 4: Continued.
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Figure 4: Continued.
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Figure 4: Abundance maps obtained for the ninth endmember from the simulated data under noise ratio of SNR = 30 dB. Difference maps
between the ground-truth abundance and the results obtained by (a) SUnSAL, (b) CLSUnSAL, (c) SUnSAL-TV, (d) DRSU, (e) JSpBLRU,
and (f) LRSSU.
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4.2. Experiment on Real Data. The Cuprite mining dataset
collected by the Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS) (http://aviris.jpl.nasa.gov/html/aviris
.freedata.html.) is used in the real data experiment to evalu-
ate the unmixing performance of the proposed LRSSU algo-
rithm. The part utilized in the experiment is a subset of the
scene, with 100 × 100 pixels, including 224 bands in the
range of 0.4-2.5μm, with a spectral resolution of 10 nm.
The experiment excludes the low SNR and low water
absorption bands; that is, the 1-2, 105-115, 150-170, and
223-224 bands are removed, leaving 188 spectral bands.
The spectral library utilized in the experiment is selected
from the USGS library, which contains 240 spectral signa-
tures representing different minerals. Low SNR and low
water absorption bands are removed from the library in

the same way, and 188 bands are left. Since the true abun-
dance maps of the Cuprite dataset are not available, we will
refer to the mineral classification map (as shown in Figure 6)
generated by Tricorder software (http://speclab.cr.usgs.gov/
PAPER/tetracorder.) to qualitatively analyze the perfor-
mance of different unmixing algorithms [32]. The experi-
ment meets the maximum number of iterations to ensure
the convergence of each unmixing algorithm.

The regularization parameters involved in SUnSAL,
CLSUnSAL, and DRSU algorithms are empirically set to λ
= 0:001, λ = 0:01, and λ = 0:0001, and the parameters
related to SUnSAL-TV, JSpBLRU, and LRSSU algorithms
are empirically set to ðλ = 0:001, λTV = 0:001Þ and ðλ = 0:05
, τ = 0:02Þ, and ðλ = 0:08, τ = 0:02Þ, respectively. Figure 7
takes three typical minerals: alunite, buddingtonite, and

Cuprite, Nevada
AVIRIS 1995 data

USGS
Clark & Swayze

Tricorder 3.3 product
K‑alunite 150C
K‑alunite 250C
K‑alunite 450C
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2 km
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Med–Al muscovite
High–Al muscovite
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Figure 6: USGS mineral map of Cuprite mining district in Nevada [5].
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Figure 7: Fractional abundance maps estimated by different unmixing algorithms for the Cuprite subscene.
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chalcedony, as examples to show the abundance maps
obtained by unmixing the Cuprite dataset with the above
algorithms. From Figure 7, we can observe that the abun-
dance maps obtained by the SUnSAL and CLSUnSAL algo-
rithms are noisy, especially in buddingtonite. The
abundance maps obtained by the SUnSAL-TV algorithm
are obviously oversmooth, such as alunite and buddingto-
nite. The abundance maps obtained by the DRSU algorithm
have poor spatial consistency, such as chalcedony. In addi-
tion, the abundance maps estimated by the LRSSU algorithm
are less disturbed by noise than the JSPBLRU algorithm that
also adopts the low-rank constraint, such as buddingtonite,
and exhibit better spatial consistency, such as chalcedony.
The abundance maps of the proposed LRSSU algorithm
are closest to the Tricorder reference maps among all com-
parison algorithms. The qualitative analysis for the real data
experiment confirms that the LRSSU algorithm is effective in
unmixing real hyperspectral data and gets better unmixing
results.

5. Conclusions and Future Work

In this paper, we propose a new sparse reduced-rank regres-
sion model for hyperspectral unmixing, which merges spa-
tial and spectral information into the regularizer to
enhance the interpretation of hyperspectral data. A local
spatial weighting factor is introduced in the collaborative
sparse unmixing model, which promotes the spatial smooth-
ness of the image. Moreover, a low-rank constraint is
imposed on the abundance estimation to enhance the row
sparsity of the abundance matrix, which to some extent
overcomes the influence of the high correlation of spectral
signatures in the library. The proposed LRSSU model is
solved by an ADMM-based the inner and outer loop
scheme, the inner loop updates fractional abundances, and
the outer loop calculates the spatial weights. The scheme
accelerates the convergence of the algorithm. Simulated
and real hyperspectral data experiments reveal that the pro-
posed LRSSU algorithm enhances the identification of actual
endmembers in the spectral library. Compared with SUn-
SAL, CLSUnSAL, SUnSAL-TV, DRSU, and JSPBLRU algo-
rithms, the proposed LRSSU algorithm improves the
accuracy of abundance estimation and shows the advantages
of the spectral-spatial multiple constraint strategy. In the
future, we will extend the constraint strategy to blind unmix-
ing and further explore the spectral-spatial structure infor-
mation of the hyperspectral data cube represented by a
third-order tensor.

Data Availability

The United States Geological Survey (USGS) library used in
simulated and real data experiments is available online at
http://speclab.cr.usgs.gov/spectral.lib06. The Airborne Visi-
ble Infrared Imaging Spectrometer (AVIRIS) Cuprite dataset
used in the real data experiment is available online at http://
aviris.jpl.nasa.gov/html/aviris.freedata.html.
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