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The offloading of computing tasks in edge computing has always been a research hotspot and difficulty in recent years. As an
effective way to run various applications on mobile devices with limited resources, it has been extensively studied by scholars
from all walks of life. However, the traditional ground-based network-based edge computing network architecture cannot
meet the needs of edge users with limited geographic areas. Therefore, this paper proposes an LEO (low earth orbit)
satellite-based multiaccess edge computing network architecture and establishes a differential game model for this
architecture. To obtain the Nash equilibrium solution of the open loop and the Nash equilibrium solution of the feedback
for the task offloading amount, the relationship between the user’s income and the QOoE level under the optimal task

offloading amount is finally analyzed and discussed.

1. Introduction

Mobile communication technology and wearable device
technology have of late years grown with leaps and bounds,
more and more tasks and data are generated at the edge of
the network “far” from the cloud center, and the powerful
computing power of the cloud center cannot be effectively
displayed. In addition, mobile devices are gradually entering
the stage of history, and various mobile wearable devices are
playing an increasingly important role in people’s daily lives
[1]. This also makes cloud computing unable to meet the
needs of such large data and dense geographical distribution
and the time delay requirement of the task. Edge computing
came into being to complement the shortcomings of cloud
computing, and the computing offloading in edge comput-
ing is the main way to solve the above problems. However,
due to the geographical constraints (ocean and mountain
area) of users and the variety of tasks, the traditional edge
computing network architecture based on the ground-
based network cannot serve users well.

At present, some scholars have carried out some research
work on the integration of space and edge computing tech-

nology. But in these works, the satellite network is still
regarded as a relay network, ignoring the deployment of an
edge server directly in a satellite network, so as to offload com-
puting tasks to a space-based network or air-based network
[2]. Directly processing the request tasks of edge users on sat-
ellite can not only reduce the traffic burden of the return link
but also effectively reduce the delay of task processing, to
improve the QoE (quality of user experience). However, the
satellite resources are limited, and the on-board processing
of the edge computing model is still faced with challenges such
as computing overhead, maintenance cost, and intersatellite
transmission. In this paper, a multiaccess edge computing off-
loading architecture based on LEO satellite is proposed, which
fully considers the limited factors faced by the satellite in a
specific scenario with limited resources, aimed at solving the
problem of how to compute unloading and resource alloca-
tion when the user is limited in the field area.

2. Related Works

Since the mobile terminal is light and portable, its size and
weight are restricted. As a result, the CPU processing
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capacity of mobile terminals, the connection capacity of
wireless and mobile networks, the storage capacity of hard-
ware devices, and battery capacity and life are bound to be
limited [3]. This determines that mobile terminals are
resource-constrained. So as to solve the problem of resource
constraints of mobile terminals and the decline of QoE levels
due to resource constraints, computing offloading and
migration provide an effective and direct way to solve the
above problems [4].

In the field of computational offloading, in recent years,
scholars mainly study partial offloading [5-11] and complete
offloading [12-16] of computational offloading.

Zhang et al. [17] used the method of replication dynam-
ics to obtain the evolutionary equilibrium of the evolution-
ary game, thereby realizing the optimal allocation of
limited bandwidth resources and limited computing
resources of edge service providers. By studying the problem
of multiuser computing offloading in a multiwireless edge
computing environment, Chen et al. [18] modeled the
decision-making process of distributed multiuser computing
offloading as a multiuser computing offloading game and
designed an effective distributed computing offloading algo-
rithm to solve the model. Chen et al. [19] solved the user off-
loading decision and resource allocation optimization
problem of nonconvex quadratic-constrained quadratic pro-
gramming and proposed an effective approximate solution.
Pham et al. [20] study the problem of computing offloading
in heterogeneous networks with multiple edge computing
servers. Under the premise of minimizing the system over-
head, users can choose one of the multiple servers to per-
form the task of computing and unloading in the system
architecture they propose. Zhang et al. [5] design an efficient
and energy-saving calculation and offloading scheme con-
sidering the multiple-access performance of 5g isomerism
networks. Based on a greedy heuristic method with the lin-
ear Gini coefficient, Zhao et al. [6] constructed a joint opti-
mal offload decision model to allocate wireless resources
and computing resources on the premise of minimizing the
energy expenditure of the multiuser edge computing system.
Mao et al. [7] proposed a dynamic computing migration
algorithm based on the Lyapunov optimization (LODCO)
to optimize the execution delay of applications. The algo-
rithm uses energy-harvesting technology to minimize the
energy loss in the local execution phase and uses the power
control method to optimize the energy cost for data trans-
mission. This method can also prevent packet loss in the
process of computing migration.

Ahn et al. [8] designed an energy resource-faced task
scheduling scheme that can reduce energy expenditure and
improve computational performance, which maximizes the
gain of all users. Tao et al. [9] proposed a user energy expen-
diture minimization problem and used the Lagrange multi-
plier method to get the optimal offloading strategy, which
can consider the user’s quality of service and energy expen-
diture in a balanced way. Considering the correlation
between intensive deployment of edge computing servers
and user computing tasks, Dai et al. [10] proposed a two-
tier computing offload framework. Through this framework,
they can design an effective computing offload scheme to
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solve the problem of load balancing between multiedge com-
puting servers and achieve the purpose of minimizing sys-
tem energy expenditure. Deng et al. [11] assumed that the
application running on the device is composed of several
parts with dependency and defined the computational
migration problem as a 0-1 model. Finally, a binary particle
swarm optimization (BPSO) algorithm was used to solve the
problem.

All the above researches are based on the calculation of
the ground-based network. However, in practical applica-
tion, because of the complexity of topography and the diver-
sity of special task requirements, the traditional foundation
edge computing network cannot meet this challenge, so
many scholars began to explore the obstacles caused by the
combination of satellite communication and edge comput-
ing to customer service geography.

Wang et al. [12] proposed a satellite ground fusion net-
work with dual edge computing capability to reduce the
energy consumption and delay of the network. Zhang et al.
[13] designed a collaborative computing offload method in
the satellite edge computing scenario and used Network
Functional Virtualization (NFV) technology to integrate
the computing resources within the coverage of low earth
orbit (LEO) satellites. Qiu et al. [14] constructed a satellite
ground network framework based on a Software-Defined
Network (SDN) to dynamically manage and coordinate the
network, cache, and computing resources. Alsharoa and
Alouini [15] proposed an efficient optimization framework
to provide offloading services for ground-based network
users by ground-based base stations, HAPs, and satellites.
Xu et al. [16] constructed an air-ground-sea-integrated net-
work architecture with edge and cloud computing functions,
so as to provide flexible hybrid computing capacity for mar-
itime services.

3. Motivation and Contribution

As mentioned above, thanks to the development of Internet
technology, wireless communication technology, and the
popularity of wearable intelligent devices, more and more
practical application scenarios need the service mode of edge
computing. However, the existing research shows that when
the requirements of task quantity, delay, and energy con-
sumption sensitivity are not enough for network edge pro-
cessing, it is necessary to oftload part or all of the tasks to
the edge server (or cloud server) with stronger performance,
so as to obtain better service performance. However, for
some types of tasks, they can be completed at the edge device
or on the edge server. For such tasks, how to make the
unloading decision to achieve the optimal benefits, quality
of service, and user experience? Therefore, the purpose of
this paper is to study how to make the offloading decision
between the edge device and the edge server for the contin-
uous and divisible task types to achieve the highest QoE of
user experience, as well as the internal relationship between
the offloading decision component and device performance
and network status. At the same time, the geographic area
of the target edge server that uses LEO satellites to service
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FIGURE 1: General form of computing offload in edge computing environment.

offloads is complex and rugged. The main contributions of
this paper are as follows:

(1) By using the LEO satellite to construct the LEO-
MEC multiaccess converged network architecture,
the problem of poor service performance of tradi-
tional edge server base stations and other facilities
is solved when the geographical area of edge users
is rugged and complex terrain

(2) A game model of task offloading for edge users is
established by using the differential game with the
benefit of edge users as the goal and the QoE level
as the constraint, and the optimal amount of task
offloading for users with the Nash equilibrium solu-
tion of the open loop and the Nash equilibrium solu-
tion of the feedback is obtained

The rest of this paper is organized as follows: Section 2
introduces the related work and research in the field of edge
computing and satellite fusion network. Section 4 describes
the establishment process of the system model. In Section
5, the differential game is used to solve the model, and the
open-loop and feedback Nash equilibrium solutions are
obtained. In Section 6, the optimal strategy is simulated
and verified. The experimental results show that the pro-
posed method has a certain practical significance. Finally,
the thesis summarizes the whole text and discusses the
future work.

4. System Model

Edge computing, as the complement of cloud computing, is
mainly to “sink” part of the cloud center applications to the
edge server, so as to solve the needs of edge user intensive
tasks and also to some extent reduce the burden of the core
network. Computing oftload is the main method to resolve
this problem. It is a general form of edge computing task off-
loading, as shown in Figure 1 [21].

As shown in Figure 2, we consider establishing LEO-MEC
multiaccess converged network architecture with edge servers
deployed on LEO satellites (this paper assumes that the orbital
altitude of the satellite is between 500 km and 1200 km). The

reason why LEO satellite is used is that most of the tasks proc-
essed by edge users are time delay-sensitive tasks (virtual real-
ity, intelligent medical treatment, intelligent transportation,
etc.), and the computing tasks are offloaded on the equipment
with limited resources and these intensive tasks are offloaded
to the edge server with stronger computing power. We con-
sider the many-to-one scenario where multiple users offload
an edge server. If the geographical area of the edge user is flat
and wide (that is, the wireless transmission is not greatly
affected by geographical factors), we will oftfload the comput-
ing task to the edge server in the nearby ground-based net-
work; if the geographical area of the edge user is a rugged
and complex mountainous area (that is, the wireless signal
transmission is greatly affected by geographical factors), we
will offload the computing task to the edge server in the corre-
sponding space-based network.

We assume that the tasks in the sequence are discon-
tinuous and divisible; that is, these tasks can be processed
either on the client or on the edge server, or they can be
unloaded to the edge server. This is what we usually call
three modes: local mode, offload mode, and part-offload
mode. In this paper, we mainly consider the mode of
computing offload. In the architecture mentioned above,
edge users can get benefits by completing a certain
amount of tasks. When their performance is not enough
to support the local execution of the task, they need to off-
load all or part of the calculation, which requires certain
resources and revenue consumption. Therefore, how to
reasonably plan the amount of offloading tasks is the pur-
pose of this paper. Considering that the task offloading is
performed, the consumption of task waiting time caused
by transmission delay is inevitable. Therefore, we need to
introduce a definition called the time penalty coefficient
before building the model.

Definition 1. Time penalty coefficient r;(t):

$,0<t<1,
¢Int, 1< t<o0, (1)

ri(t) =

Capps t—00.



4 Wireless Communications and Mobile Computing
Edge server Edge server 7
|
|
|
|
g :
|
| w
S
| [a)
| o
| [on
[
)
LA
)
3
[
| o
I
|
|
|
|
|
]
T
Computing tasks I NN I :
|
|
|
|
|
|
|
:
|
()
| [a)
B
.-t
(@) ()] () I A
g
[
o.
1 I ] 7 ]
Offloading (All) Offloading (part) Local g
o =}
|
@ :
|
User 3 !
|
<= I
:m :
|
|

FI1GURE 2: Mobile edge computing architecture based on low earth orbit satellite.

Because the benefits are timely, that is, at a certain QoE
level, the faster the task is completed, the higher the expected
earnings will be. Therefore, a penalty item is set here, which
increases slowly with time until it reaches the upper penalty
limit C,,¢, which is similar to the actual set of package cap-

ping. The main consideration here is that when the task
waiting time is too long, the system will drop the task and
proceed to the next task. And that will reduce the overall
benefits of edge users [22].

We use U,(t) to indicate the task offloading amount of
user i at t time (this paper assumes that the marginal users
are individually rational, that is, to maximize their own inter-
ests without considering the income of others) and y,(y; € (0
, 1)) to represent the proportion of offloaded tasks to the total
task quantity, so we get the total task quantity U,(¢):

Uy =44, )

We use x(t) to represent the QoE level of the LEO-MEC
system. According to [23, 24], the mapping method between

QoE and QoS is shown in Figure 3. Since this paper is about
computing offload and most of the tasks of edge users are
delay-sensitive, we select the indicators related to transmission
delay in Figure 3, so we can get

dx(t) = l)tx(t) +x Zui(t)] dt, (3)

where A, A € (0, 1) is the weighted coefficient of the QoE level
and ¢, ¢ [-1, 1] is the QoE index factor based on task comple-
tion quality. Note that in this paper, we mainly consider the
increase or decrease in the QoE level due to the calculation off-
loading, so in the above formula, we use the task oftfloading
amount u;(¢) instead of the overall task amount U,(t).

We use R to represent the task revenue per unit, and y
u,(t)x(t) is used to indicate the increase or decrease in
income affected by QoE due to calculation and offloading,
so we get the revenue function G,(¢):

G;(t) =RU,(t) — xu;(t)x(t) — r(t)u;(t)8, (4)
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F1Gure 3: The mapping of QoS and QoE.

where £ is the transmission delay with the offloading amount
of u,(t).We use V' to represent the CPU efficiency of the
edge server, W to represent the transmission bandwidth, p
to represent the transmission power of the edge device,
and N to represent the Gaussian white noise in the channel,
so we can get

_u(t) u;(t)
&= v’ " W log,(1+ (p/N))’ (%)

As we consider that users are individually rational, in our
many-to-one LEO-MEC framework scenario, when multiple
users offload at the same time, they will compete with each
other, resulting in the decline of their revenue and QoE level,
as shown in Figure 4.

At this point, & becomes

=TGN (1)
! k=i '
Vi (/TS (1) ) W xlog, (1 + (pIN))
©)

So we get the income function G;(¢):

Gi(t) = R™WY o e)x(1) =ty

i) | (1) |
Vi (w/ZEu(n) ) W x logy(1+ (pIN))

(7)

Given the time interval [0, T], the edge node hopes to
obtain the optimal amount of task offloading u;,(t), so as to

maximize the benefits obtained by completing the task, as
follows:

R px=AGN 20) e
(0S5 (1)) W xlogy (1 + (p/N)

s.t.dx(t) = [Ax(t) +<p><Zu,-(t):| dtk<Qp (8)

where Qp is the maximum capacity of the edge server to pro-
cess user tasks. We will use the idea of the differential game
to obtain the Nash equilibrium solution of the open loop and
the Nash equilibrium solution of the feedback for the above
model in the next section.

5. Game Analysis

5.1. Open-Loop Nash Solution of the Game. To maximize the
revenue obtained in the process of completing tasks, the
edge device should control the number of offloaded tasks
u,(t) to get the Nash equilibrium solution of the open
loop. To obtain the Nash equilibrium solution of the
open loop, u}(t) is optimal if the inequality in formula
(9) holds for all control strategies u;(¢) # u} (t) in the fea-
sible region.

Gi(u;(t), x(t), t) < G; (uf (), x"(t), t). 9)
The Stackelberg equilibrium solution of the open loop

for the problem consists of a group of control u(t), in
which x*(¢) is the corresponding state trajectory. If the
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FiGUrg 4: Competition in multiuser oftloading.

common-state function A(t) exists and satisfies the fol-
lowing relation [25]:

u; (t) = arg minH(t), (10)
Al == (1)

where A(f) is a common-state function associated with
QoE index trajectory x(t). Using the common-state func-
tion A(t), we can combine the benefits of edge users with
the QoE level state to construct a Hamiltonian operator
H,(t). Based on the principle of the Bellman dynamic
programming, the constructed Hamiltonian operator can
be described as follows [26, 27]:

dx(t)

Hi(t) = G(t) + A1) =2 (12)

According to the above, we need to find the optimal task
quantity u; (). And in order to get an open-loop Nash solu-
tion, we need to solve for the Hamiltonian given in (12). We
will use the following lemma to solve it.

Lemma 2. The optimal task quantity is

_ VW log,(1+ (pIN))[(Rly,) = xx(t) + pA(t)]
r(t)[ W logy(1+ (pIN)) + V'] (k + 1)

u; (1)

(13)

Proof. The Hamiltonian system of edge devices can be
expressed as

dx(t)

dt ° (1)

Hi(t) = G(t) + A(t) -

H, () = fu,(r) — xu(Ox(t) (1)

_ [ (1) u(t)

! + k=i
Vi (/S () W xlog, (1 + (pIN))

A(t)

Ax(t) + (pZu,-(t)} :
(15)

By calculating the partial derivative of the above equa-
tion with respect to u,(t), we can get

9H,(t) R d
Sty =y, 0 () lum * Y ul "
1 1 Alt
|7 wesarEEy)

Pay attention to u,(t) ¥+ 1, (i) in formula (15). Take the
partial derivative of u,(t), and we can get

u(t) + '

1

u;(t). (17)

k
=1
For formula (16), let us make

C = yﬁ — xx(t) + pA(H), (18)

1

1 1
Vv Wieg,(1+ IN)) |

C,=-r(t)
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So we can get

9H,(1) _
w@‘gh

(1) + Zk:ui(t)] +C. (20)

=1

Set formula (20) equal to 0 and perform the following
transformation:

+kC,=0.  (21)

=kGC, [”i(t) + Zk:”i(t)

k
‘?91:;((:)) =C2 [Z ui(t)+kzui(t)‘| +kC1 =0. (22)
Then, we can get

(k + 1)C2iui(t) = —kC,. (23)

That is,

$uft) = G (24)
= C2 k+ 1)

Formulas (20) and (24) can be obtained as follows:

_Cl

u;(t) = k1) (25)

Combining formulas (18), (19), and (25), we get the
optimal task quantity as follows:

V' W log, (1 + (p/N))[(Rly;) = xx(t) + 9A(t)] '
r(t) [W log, (1 + (p/N)) + V'} (k+1)

u; (1) =

(26)
Lemma 2 is proven.[J |

We find that the expression of the optimal task quantity
contains the common-state function A(#), so we need to find
the relevant expression form of the common-state function
A(Y).

According to (11), we have

A(t)=- ) (27)
The partial derivative of H,(¢) of the constructed Hamil-
tonian system with respect to x(¢) is obtained as follows:

# __ 9;12%) = (1) + AA(D). (28)

The optimal task quantity uf(¢) obtained previously
is substituted into the above equation and is cocon-
structed with dx(t)/dt to form the differential equations
as follows:

u(f) = V'w log, (1 + (p/N))[(R/y;) — xx(t) + pA(t)] ’
l 2r(t) [W log, (1 + (p/N)) + V’} (k+1)

== = (4240,

dx*(t) = [Ax*(t) + (qul* (t)] dt

(29)

Solve the differential equations to solve the common
mode function A(t), uf(t), and x*(t) trajectory form.

5.2. Feedback Nash Solution of the Game. In the previous
section, we obtain the Nash equilibrium solution of the
open loop. The optimal strategy of each user is only
dependent on the current time and start state of the game,
which is enough for some analysis and application. But to
avoid the time consistency problem, we will find the feed-
back Nash equilibrium solution in this section.

We presume that the strategy set {u; () =u](e),i€ N}
forms the Nash equilibrium solution of the feedback for
equations (3) and (7) in the finite time domain if and only
if there exists a differential equation that is continuously
and differentiable V; (x,1): R® — R, and the following
Behrman equation satisfies [26]

~Vi(x, 1) = max{e 8= ’”{R wlt) _ xui(D)x(2) = r(£)uy (1)

u;(t) Vi

[ ZEw | 20 }}
Vi (/i () W xlog, (1 + (pIN))

+Vi(x, 1) [/\x(t) +x Zui(t)] : (30)
And when t=T
Vi(x, T) = e T gx(T). (31)

We use Lemma 3 to solve the Bellman equation (19) and
obtain the optimal strategy u} (¢).

Lemma 3. The optimal task quantity is

eIV W log,(1+ (p/N)) [(Rly;) = xx(t) + ge * ) A(t)]
r(t) [ W logy(1+ (p/N)) + V' | (k+ 1) '

i (1) =

(32)
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TaBLE 1: Parameter setting in simulation and experiment for Figure 5.

Parameters k X R v/ w p N Vi ¢ A
1 0.05 100 50 5 0.05 50 0.5 0.75 0.8
2 0.05 100 50 5 0.05 50 0.5 0.75 0.8

Values 3 0.05 100 50 5 0.05 50 0.5 0.75 0.8
5 0.05 100 50 5 0.05 50 0.5 0.75 0.8
7 0.05 100 50 5 0.05 50 0.5 0.75 0.8

Proof. If formula (19) derives u;(¢) and makes it equal to 0,
we can get

i (6) = eV W log, (1 + (p/N)) [(Rly;) — xx(t) + pVi(x, 1)]
i r(t) [W log2(1+(p/N))+Vl] (k+1) .

(33)

According to formula (21), we need to find the specific
expression of Vi (x, t) or the relationship with u} (t).

Considering the characteristics of differential equation
(19) and the form of solution, we use the form of V'(x,t)
= Ax + B to solve, and that is

Vi(x, t) = e 2UT[A(f)x + B(t)], (34)

where § is the discount rate.
We can obtain the partial derivatives of t and x for for-
mula (22):

Vi(x, t) = e 000 [—8A(1) + A(t)} x+e 0 [—63(0 + B(’t)} ,

Vi(x, £) = e P A1),
(35)

Combining formulas (19), (23), and (24) and according
to the equation on the left and right sides of the correspond-
ing term coeflicients which are equal, we can get

A(t) = (A= 8)A(1) + yu; (1),

B(t)=06B(t) - Rm +r(t)u; (1)

1

Vi
Tiau(t) ; (1)
L (W /ZEu(n) W xlogy(1+ (p/N))
-AeYH ()

(36)
According to formulas (22) and (25), we can get

eV W log, (1 + (p/N)) [(Rly;) — xx(t) + pe - A(1)]
r(t)[ W logy(1+ (p/N)) + V' | (k+ 1) '

u; (1) =
(37)

Lemma 3 is proven.[J |

TaBLE 2: Parameter setting in simulation and experiment for
Figure 6.

Parameters k x R V' W p N y ¢ A
7 005 100 50 5 0.05 50 0.15 0.75 0.8
7 005 100 50 5 0.05 50 025 0.75 0.8

Values 7 0.05 100 50 5 0.05 50 03 0.75 0.8
7 0.05 100 50 5 0.05 50 0.5 0.75 0.8
7 0.05 100 50 5 0.05 50 0.7 0.75 0.8

According to Lemma 3, we can get the following differ-
ential equations:

ety W log, (1 + (p/N)) [(R/y,-) - xx(t) + (pe‘a(“t“)A(t)}

i (1) = ,
r(6)[ W logy(1+ (p/N)) + V'] (k + 1)

A(t) = (A=8)A(1) + xu; (1),
dx*(t) = {Ax*(t) + (pZu;‘(t):| dt.

(38)

We will use MATLAB in the next section to numerically
simulate and solve the above equations.

6. Results

We will numerically simulate the Nash equilibrium solution
of the open loop and the Nash equilibrium solution of the
feedback, obtained in the previous section under the optimal
task offloading amount u(t), QoE level x(t), and user
income G;(t) in this section. Through the comparison of
the changes of the two parameters of the number of users
k and the uninstall percentage y; of the total task volume,
the analysis and discussion are carried out with the above
quantities. According to [28], the simulation setting of this
paper is MATLAB 2018b in Windows 10, and the simula-
tion settings are shown in Tables 1 and 2.

As shown in the table, the value of V' refers to [29].
According to the peak value and base value given by [29],
calculate the mean value.

As shown in Figure 5, it shows the changing trend of u
(t), x(¢), and G(t) during the game time; at the same time,
we use different numbers of users k to compare and analyze
the impact of offloading when multiple users are offloaded.

In Figures 5(a) and 5(b), we can find that with the
growth of the number of edge users k, the optimal amount
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FIGURE 5: Variation of u(t), x(t), and G(t) with time ¢ when y, =0.5.

of offloading tasks for edge users is decreasing, because in
the many-to-one environment, the processing capacity of
the edge server has an upper limit. In order to ensure better
service performance, edge servers usually reserve a part of
the CPU cache to ensure uninterrupted task supply when
they perform offloading tasks.

In Figures 5(c) and 5(d), we can find that as k
increases, the QoE level x(t) of the entire edge system
increases. This is because although the increase in the
number of users will intensify the competition among
users and lead to a decrease in task offloading, the QoE
level of the system as a whole will increase. It is worth
noting that the value of the QoE index ¢ here is greater
than 0, indicating that the increase in the number of users
has not reached or exceeded the processing upper limit of
the edge server. If the number of users exceeds a certain
threshold (e.g., a DDOS attack occurs), the task requests
of edge users will become invalid, which will lead to a
sharp drop in the QoE level.

In Figures 5(e) and 5(f), we can find that as k increases,
the profit G(t) of edge users decreases. This is due to the
growth of the number of users caused the decrease in the
amount of offloading tasks, and the decrease in the amount
of offloading tasks leads to the increase in tasks in local pro-
cessing. Local processing will increase the loss of the equip-
ment itself, so the income will be reduced.

In Figure 5, we find that the optimal decision quantity of
the two solutions may be slightly different, but the trajecto-
ries of the two groups of results are roughly the same. This
is because in the open-loop solution, the participants only
care about the current moment and the future moment of
income, while in the feedback solution, the participants also
care about the overall income at the end of the game. This

also leads to the difference in the final benefits between the
two solutions.

In addition, we also find that when the user income is
high, the QoE level is low, so in practical application, it
should be balanced dynamically to carry out.

As shown in Figure 6, it shows the changing trend of u
(), x(t), and G(¢) during the game time; at the same time,
we use different offloading proportions y; for comparison
to analyze the relationship between the optimal task offload-
ing decision volume and the revenue of different edge users
according to the offloading proportions.

We can find from Figures 6(a) and 6(b) that the optimal
amount of oftloaded tasks decreases with the increase in y;.
This is because when the total amount of tasks U,(t) is
determined, the amount of offloaded tasks is determined
according to the size of y,. However, in order to maintain
its own revenue, the smaller the y, is, the greater the amount
of task offloading will be required and vice versa. According
to Figures 6(c) and 6(d), we can find that the QoE level x(t)
decreases with the increase in offloading component y;,
which is due to a large amount of offloading and the large
time delay. Therefore, the QoE obtained by most tasks com-
pleted by offloading is smaller than that obtained by local
completion. However, according to Figures 6(e) and 6(f),
although the QoE obtained when the task is completed
locally is higher, the benefit G(t) is smaller.

This is not difficult to explain because the delay of pro-
cessing tasks locally is much less than that of offloading tasks
to edge servers (especially those deployed on LEO satellites),
so user satisfaction decreases as the offloading ratio y,
increases; at the same time, there is a decrease in satisfaction
but an increase in revenue, because too much local process-
ing leads to an increase in self-consumption and thus a
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FIGURE 6: Variation of u(t), x(t), and G(t) with time t when k=7.

decrease in revenue. However, the decrease in satisfaction
indirectly affects the revenue of the edge server. Therefore,
how to dynamically balance the relationship between the
two needs to start from the specific scene requirements to
achieve the optimal system state of each other.

7. Conclusion

In this paper, LEO-MEC multiaccess converged network
architecture is established to solve the problem of task off-
loading for edge users with a limited geographical environ-
ment, and a differential game model is established for the
decision of task oftloading in the architecture. The problem
of mutual competition when multiple users offload tasks is
discussed. By solving the Nash equilibrium solution of the
open loop and the Nash equilibrium solution of the feed-
back, we get the optimal amount of task offloading u} (¢).
Finally, the relationship between u(t)x(¢)G(t) and the num-
ber of edge users k and the offloading component y; is dis-
cussed by numerical simulation, which plays a certain role
in balancing the user income and QoE level in practical
work.

In the future work, we will continue to explore the space
network architecture of LEO satellite and edge computing
fusion. Due to the low orbit altitude of LEO satellites, the
satellites move fast, which brings a series of challenges, such
as Doppler frequency shift and short radiation time of satel-
lites. We will also discuss the allocation of computational
offloading resources in the “bent-tube” mode scenario where
the LEO satellite is transmitted as a relay node.

Data Availability

The data are available at http://www.spec.org/cpu2006/
results/cpu2006.html.
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