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Internet of Things will play a vital role in the public transport systems to achieve the concepts of smart cities, urban brains,
etc., by mining continuously generated data from sensors deployed in public transportation. In this sense, smart cities applied
artificial intelligence techniques to offload data for social governance. Bicycle sharing is the last mile of urban transport. The
number of the bike in the sharing stations, to be rented in future periods, is predicted to get the vehicles ready for
deployment. It is an important tool for the implementation of smart cities using artificial intelligence technologies. We
propose a DBSCAN-TCN model for predicting the number of rentals at shared bicycle stations. The proposed model first
clusters all shared bicycle stations using the DBSCAN clustering algorithm. Based on the results of the clustering, the data
on the number of shared bicycle rentals are fed into a TCN neural network. The TCN neural network structure is
optimized. The effects of convolution kernel size and Dropout rate on the model performance are discussed. Finally, the
proposed DBSCAN-TCN model is compared with the LSTM model, Kalman filtering model, and autoregressive moving
average model. Through experimental validation, the proposed DBSCAN-TCN model outperforms the traditional three
models in terms of two metrics, root mean squared logarithmic error, and error rate, in terms of prediction performance.

1. Introduction

Smart cities employ technology and data to increase efficien-
cies, economic development, sustainability, and life quality
for citizens in urban areas. Inevitably, clean technologies
promote smart city development including energy, transpor-
tation, and health [1–3]. In this sense, smart cities present
themselves as a viable solution to aggregate public resources,
human capital, social capital and information, and commu-
nication technologies, to promote sustainable development
[4]. For instance, the information gathered by the advance-
ments of the intelligent transportation systems are progres-
sively intricate and are portrayed by heterogeneous devices,
huge volume, mistakes in spatial and transient procedures,
and continuous necessities of real-time processing [5, 6].
Various countries throughout the world have started their
efforts in designing and implementing smart cities [7]. This

has led to the concept of smart cities where Information
Communication and Technology are merged with the exist-
ing traditional infrastructure of a city, which is playing a
vital role in policy design, decision, implementation, and
ultimate productive services [8, 9].

The Internet of Things (IoTs) and artificial intelligence
(AI) are two cornerstone technologies enabling the smart
city concept, which are fusing into an organic whole in
recent years. Some particular joint points where IoTs meet
AI are intelligent IoT devices, smart sensing boosted by AI,
and IoT big data mining with AI [10, 11]. The new Internet
of Things paradigm and architecture allows one to rethink
the way smart city infrastructures are designed and managed
[12]. In the densely populated IoT applications, the sensing
range of the nodes might overlap frequently [13]. The world
will be populated by billions of connected IoT devices that
will be placed in our homes, cities, vehicles, and industries
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[14]. The novel IoT devices collect cyber-physical data and
provide information on the environment [15]. The IoTs
enable a smart city to power and monitor multiple geographi-
cally distributed nodes to support a range of applications
across various domains such as energy and resource manage-
ment, intelligent transport systems, and E-health to name a
few [16]. Systems get smarter with computing capabilities,
especially in the form of IoT devices [17].

In a variety of smart cities, AI has been widely deployed,
yielding numbers of revolutionary applications and services
that are primarily driven by techniques for data offloading
for urban IoT [18, 19]. The growing urbanization coupled
with the high demands of daily commute for working pro-
fessionals has increased the popularity of public transport
systems [20, 21]. In urban public transportation systems,
IoTs are deployed in major cities of both developed and
developing countries [22]. The huge growth of IoT devices
and different characteristics in the traffic patterns have
brought attention to traffic methods to address various
raised issues in IoT applications [23].

Density-Based Spatial Clustering with Noise Applica-
tions (DBSCAN) is an unsupervised ML clustering algo-
rithm. Unsupervised means that it does not use prelabeled
targets to cluster data points. Clustering is the attempt to
group similar data points into manually determined groups
or clusters. It is an alternative to popular clustering algorithms
such as K-Means and hierarchical clustering. The core idea of
density clustering is to use the number of points in the neigh-
borhood of a data object as the density of data points, which
are then connected by density and added to the clusters adja-
cent to them, completing the construction of clustered clus-
ters. It allows clusters made up of irregularly shaped data
objects to be found and noise points to be discovered.

From the perspective of graph theory, the node and node
relationship of the graph is used to represent the informa-
tion of the dataset, each data object corresponds to a node
in the graph, and the connection between two points repre-
sents that the data objects are connected to each other. The
data objects in the same connected branch are more similar,
and the data objects in different connected branches are less
similar. For nonnumerical objects, a concept similarity mea-
sure can be used based on the concept represented by the
object. The more common or similar properties exist
between concepts, the more similar the objects are to each
other, at which point the cluster is a collection of objects
with some common properties. The DBSCAN is more com-
monly used in text clustering and WEB data mining.

2. Related Work

At this stage, there has been a great deal of research in the field
of bicycle sharing, with Bonilla-Alicea et al. [24]. O’Brienet al.
proposed a bicycle sharing system to reduce environmental
pollution [25]. Kadri et al. investigated the problem of bike-
sharing scheduling in a static mode bike-sharing system [26].
Erdoğan et al. proposed an exact algorithm, calculated accu-
rate algorithms, and tested the benchmark examples [27].

For the vehicle rebalancing problem, in addition to man-
ual bike scheduling, operators and governments encouraged

the use of two-way incentives [28]. Zhang et al. proposed a
forecasting method that considers bike inventory forecasts
and user arrivals in a unified way [29]. Faghih-Imani and
Eluru proposed destination forecasting with a polynomial
model [30]. Zhang et al. proposed two new regression-
based inference models to predict potential travel destina-
tions [31]. Froehlich et al. [32] and Kaltenbrunner et al.
[33] proposed a spatio-temporal analysis of bike-sharing sta-
tions in Barcelona using a clustering approach.

Vogel et al. conducted a predictive analysis of bike-
sharing usage using a time-series approach [34]. Yoon
et al. proposed an improved ARMA-based predictive model
for predicting the number of shared bikes within bike-
sharing stations [35]. Noland et al. investigated how popula-
tion size and employment density can affect bike-sharing
usage [36]. Gebhart and Noland investigated the effect of
weather factors that can affect bike-sharing use and the
duration of bike-sharing rides [37]. Borgnat et al. viewed
bike-sharing systems as dynamic networks and conducted
a spatial analysis of the dynamic networks to derive the spa-
tial distribution patterns of the networks [38]. Campbell
et al. noted that temperature, precipitation, inclement
weather, and air quality all affect bike-sharing through a sur-
vey of bike-sharing projects in Beijing [39]. Kaspi et al. pro-
pose a Bayesian estimation model and use it to estimate the
number of unavailable bikes in a bike-sharing station [40].
The assumption that bicycle failure is a binary property is
a limitation of the proposed model. Since some bicycles need
to be maintained and most of the bicycles are still be rented,
the proposed model is not valid under these conditions. The
long-term transaction history of the needs of the bicycle is
considered to solve the problem.

Traditional forecasting studies on bike-sharing rentals
have generally only predicted the number of rentals at indi-
vidual stations. The impact of other nearby station rentals
on the rentals of the single station under study is not taken
into account in the process of predicting the rentals of a sin-
gle station. The disadvantage not only reduces the accuracy
of the forecast but also makes it difficult to place shared
bikes. It can lead to an excess of shared bikes remaining at
some stations. Simultaneously, there is a lack of shared bikes
at some of the stations. It is a very irrational management
method. A lot of time, material, and human resources are
wasted. It harms the development of shared bikes.

Based on the above reasons, according to the geographi-
cal location of the shared bicycle stations, we use the
DBSCAN clustering algorithm to cluster the shared bicycle
stations. The clustering results of the shared bicycle stations
are fed into a temporal convolutional network (TCN) to
achieve the demand forecasting for the rental volume of
multiple shared bicycle stations. Finally, the DBSCAN-
TCN model is evaluated using error rate (ER) and root mean
squared logarithmic error (RMLSE) as evaluation metrics.

3. Analytical Model of DBSCAN-TCN

Both LSTM and RNN are very effective methods in the field
of time series prediction. However, both of them have high
requirements on the length of the input sequence during
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the computation. Also, the sequences they deal with are both
one-dimensional. Long short-term memory (LSTM) and
recurrent neural network (RNN) are not suitable when mul-
tiple time series are correlated and are considered as a whole.
Figure 1 shows the architecture of the DBSCAN-TCN model
proposed in the paper, which clusters that the bike-sharing
stations in the geographic space are divided into different
station clusters by the DBSCAN algorithm. Then, 48 hours
of historical data from multiple bike-sharing stations
belonging to the same station cluster are fed into the TCN.
The DBSCAN-TCN model is shown in Figure 1.

3.1. DBSCAN Clustering of Public Bike-Sharing Stations.
Compared to DBSCAN, K-Means is particularly susceptible
to outliers. When the algorithm traverses the center of mass,
outliers have a significant effect on how the center of mass
moves before stability and convergence are achieved. In addi-
tion, K-Means suffers from the problem of clustering data
exactly, when cluster sizes and densities vary. K-Means can
only be applied to spherical clusters. If the data is not spherical,
its accuracy suffers. Finally, K-Means requires that the number
of clusters, which wishes to find be chosen first. On the other
hand, DBSCAN does not require the number of clusters to be
specified. It not only avoids outliers but determines that it
works very well with clusters of any shape and size. DBSCAN
has no center of mass. Clustering clusters are formed by join-
ing neighboring points together.

In this paper, the DBSCAN clustering algorithm is cho-
sen to cluster bike-sharing stations within a certain geo-
graphic space. The geographical information of the shared
bicycle stations, i.e., latitude and longitude, is used as input
to the DBSCAN clustering algorithm. According to the
DBSCAN clustering rules, the clustering results of the shared
bicycle stations within a certain geographic space are used as
the output generated by the algorithm. To make better use of
the DBSCAN algorithm, two important parameters of the
DBSCAN clustering algorithm, Eps and MmPtS, need to be
discussed. The parameters Eps and MmPtS are used to
describe the closeness of the distribution of the neighbor-
hood samples and the neighborhood distance threshold for
a given sample, respectively.

Eps is the maximum radius of the community. If the dis-
tance of the data points from each other is less than or equal
to the specified Eps, then they will be in the same class. It

means that DBSCAN uses Eps to determine whether two
points are similar and belong to the same class. Larger Eps
will produce larger clusters, and smaller Eps will build
smaller clusters. In general, the smaller value is chosen.
Because only a very small percentage of the data points are
within a distance of each other. However, if it is too small,
the clusters will be split smaller. Step 2 of the DBSCAN algo-
rithm was demonstrated to determine the best Eps.

Within the radius of a neighborhood, some MmPtS
neighbors are considered to be a cluster. The initial points
are contained in the MmPtS. A lower MmPtS helps the algo-
rithm to build more clusters with more noise or outliers. A
higher MmPtS will ensure more robust clusters. However,
if the clusters are too large, the smaller clusters will be
merged into the larger ones. In this paper, MmPtS is set to
be greater than or equal to the dimensionality of the dataset.
We multiply the number of dimensions of the features by
two to determine their MmPtS values.

Assume that the dataset is D = ðx1, x2,⋯, xmÞ. The den-
sity description of the DBSCAN clustering algorithm is
defined as follows.

(1) Eps Neighborhood. For xj ∈D, the Eps neighborhood
contains the subset of samples in the sample set D
whose distance from is less than or equal to Eps,
i.e., NϵðxjÞ = fxi ∈D ∣ distanceðxi, xjÞ ≤ Epsg. The
number of this subsample set is denoted as ∣NϵðxjÞ∣

(2) Core Objects. For any sample xj ∈D, xj is a core
object, if its Eps neighborhood corresponds to Nϵ

ðxjÞ containing at least MinPts samples, i.e., ∣Nϵ

ðxjÞ∣ ≥MinPts

(3) Density Direct. If xi lies in the xj neighborhood of Eps
and is a core object, then it is said to be density direct
from xi to xj. Note that the converse is not necessarily
true. The density direct from xj to xi can not be con-
firmed unless and until xi is also a core object

(4) Density Reachable. If p1, p2,⋯, pT satisfies p1 = xi,
pT = xj, and pt+1 directly reached pt , it is said to be
density reachable from xi to xj. Therefore, density
reachability satisfies transmissibility. In this case,
the transfer samples in the sequence p1, p2,⋯, pT are
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Figure 1: The architecture of the proposed DBSCAN-TCN model.
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all core objects, as only the core objects can make the
other samples’ density reachable. It should be noted
that density reachability also does not satisfy symme-
try. It can be derived from the asymmetry of the den-
sity reach

(5) Density Connected. For xi and xj, if a sample of core
objects xk exists such that both xi and xj are accessi-
ble by density reachable from xk, then xi and xj are
said to be density connected. Density connectivity
satisfies symmetry

The DBSCAN algorithm is calculated as shown below:
Input: sample set is D=(x1, x2, …, xm), neighbourhood

parameters (E, MinPts).
Output: Cluster division C.
Computational steps are as follows:

Step 1. The core set of objects Ω =∅, the cluster division C
=∅, the set of unvisited samples Γ =D, and the number
of clusters k = 0 are initialized.

Step 2. For j = 1, 2,⋯,m, all core objects are found according
to the following steps. The subsample set NϵðxjÞ of the E
neighborhood of the sample is found by measuring the dis-
tance. If the number of samples in the subsample set satisfies
∣NϵðxjÞ ∣ ≥MinPts, sample xj is added to the sample set Ω
=Ω ∪ fxjg of the core objects.

Step 3. If the core set of objects is empty Ω =∅, the cluster-
ing algorithm ends. Otherwise, the algorithm proceeds to
Step 4.

Step 4. A core object o is randomly selected in the core object
set Ω. The current cluster core object queue Ωcur = fog, the
category ordinal number k = k + 1, and the current cluster
sample set Ck = fog are initialized. The set of unvisited sam-
ples Γ = Γ − fog is updated.

Step 5. If the current cluster core object queue is empty and
Ωcur =∅, the current cluster Ck is generated. The cluster
partition C = fC1, C2,⋯, Ckg and the set of core objects Ω
=Ω − Ck are updated. Otherwise, only the set of core objects
Ω =Ω − Ck is updated.

Step 6. A core object o′ is removed from the current cluster
core object queue Ωcur. The set of all E neighborhood sub-
samples Nϵðo′Þ is found according to the neighborhood dis-
tance threshold E. Let Δ =Nϵðo′Þ ∩ Γ. The current set of
cluster samples Ck = Ck ∪ Δ, the set of unvisited samples Γ
= Γ − Δ, and Ωcur =Ωcur ∪ ðΔ ∩ΩÞ − o′ are updated. The
algorithm moves to Step 5.

Output: The set of cluster divisions C= {C1, C2, ..., Ck}.
The data for Divvy Bike Share Chicago was processed

according to the DBSCAN algorithm above [41]. The names
of bike-share stations in the city of Chicago are typically
long. To facilitate the recording of information about these

stations, stations were described by the ID of each station.
After DBSCAN clustering, seven cluster representatives of
the clusters are given in Table 1. These seven clusters contain
two bicycle stations, thirteen bicycle stations, four bicycle
stations, twenty bicycle stations, eight bicycle stations, ten
bicycle stations, and seven bicycle stations, respectively.
The first cluster has only two cycle stations because of its
remote location and low footfall. It is the cluster with the
fewest bicycle stations of the site clusters. Cluster 4 has
twenty bicycle stations, which is the cluster with the most
bicycle stations. It is in the heart of the city of Chicago and
has a high volume of foot traffic.

Figure 2 gives the clustering diagram of some bicycle sta-
tions produced after clustering. In Figure 2, the horizontal
coordinates represent the latitude of the bicycle stations,
and the vertical coordinates represent the longitude of the
bicycle stations. The different colors in Figure 2 represent
clusters of different bicycle stations. Stations of the same
color belong to one category. The middle part has more
points of the same color. It indicates that the geospatial data-
set used has a higher density of intermediate stations. The
surrounding areas have fewer points of the same color. It
indicates that the locations are more geographically isolated.
There are fewer bicycle stations to cluster, so the nearby sta-
tions are clustered together to form a class. After getting the
clustering information of the bike-sharing stations in the
dataset based on the geographical location, the amount of
bike-sharing rentals in the clustering information is used as
input to TCN.

3.2. TCN-Based Prediction of Bike-Sharing Rentals. We pre-
dict the amount of bike-sharing rentals at each station. His-
torical data is used to predict future rental volumes. Classical
algorithms, such as LSTM and RNN, are weak in capturing
the past information of the data, resulting in inaccurate pre-
diction results. A difficulty with traffic prediction models is
that if the input sequence is too long, then the neural net-
work loses previous traffic information. We use the dilation
convolution method to solve this difficulty. By expanding
the convolutional session, the perceptual field of view is
increased to a larger size, for retaining more semantic infor-
mation. In addition, we use causal convolution to solve the
difficulty that the lengths of the input and output sequences
are inconsistent.

Table 1: The 7 typical station clusters and the contained stations
after processing by the DBSCAN clustering.

Cluster
number

The ID of the shared bike station

1 427, 413

2 47, 52, 35, 26, 81, 180, 197, 110, 211, 111, 43, 31, 177

3 260, 502, 290, 123

4
77, 288, 365, 60, 300, 138, 195, 47, 112, 225,
346, 93, 58, 127, 131, 61, 55, 107, 50, 394

5 13, 343, 451, 327, 308, 199, 296, 307

6 15, 19, 129, 254, 256, 312, 275, 19, 210, 26

7 130, 86, 113, 217, 259, 163, 308
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In summary, the TCN used in the paper has 3 features.
(1) The input sequence and the output sequence are kept

consistent. In implementing full convolution, the input layer
and the hidden layer are identical. In addition, 0 is used for
padding to ensure that the subsequent layers are kept at the
same length as the previous layers. (2) When predicting, the
perceptual field of view is increased even more. To obtain a
piece of longer history information, dilation convolution is
introduced to construct a very deep neural network or a very
large convolution kernel. (3) To prevent overfitting, the
ReLu activation function and Dropout are employed. There-
fore, the proposed structure consists of an input layer, causal
convolution layer, dilation convolution layer, normalization
layer, Dropout layer, ReLu layer, and output layer, as shown
in Figure 3.

3.2.1. Input Layer of TCN. Based on the cluster information
obtained by the DBSCAN algorithm clustering, the number
of shared bicycle rentals belonging to all stations passing
through a cluster is fed into the input layer of the TCN.
The input layer is denoted X. Cluster 3 with 4 stations are
used as an example. X is a two-dimensional matrix of size
4∗24. The number 4 represents the 4 stations. The number
24 represents a 24-hour day. The values in matrix X repre-
sent the number of rentals at each site in the dataset. The
data in the input layer is shown in Equation (1).

In Equation (1), ½x0,1 x0,2 x0,3 x0,4 ⋯ ⋯ x0,21 x0,22 x0,23
x0,24� is a row of the matrix X. The column subscripts of
the row elements represent the 24 hours of the day. The
row elements represent the number of rentals at a particular
shared bike station from 0 : 00 to 24 : 00. Using cluster 3 as an
example, the first row in Equation (1) represents the number
of rentals per hour from 0 : 00 to 24 : 00 for the bike-share
station with ID 260.

In Equation (1), x0,1 x1,1 x2,1 x3,1
� �Trepresents a

column of the input matrix X. The 4 rows of this column cor-
respond to the number of shared bicycle rentals from point
0 : 00 to 1 : 00 at each of the 4 stations. The first column in
Equation (1) represents the number of rentals from 0 : 00 to
1 : 00 for the four stations in cluster 3, whose IDs are 260,
502, 290, and 123. The result of assigning matrixX to the Chi-
cago Divvy bike-sharing dataset is shown in Equation (2).

X =

2 2 1 1 ⋯ ⋯ 15 11 8 4
3 7 2 0 ⋯ ⋯ 17 15 9 7
5 3 1 0 ⋯ ⋯ 22 18 11 9
6 5 3 2 ⋯ ⋯ 14 10 9 6

2
666664

3
777775: ð2Þ

3.2.2. Causal Convolution Layer of TCN. The first layer of
TCN is a one-dimensional full convolution. The input matrix
X is mapped through the full convolution network to the hid-
den layer. The dimensionality of the data does not change.
Also to ensure the causality of the input and output, the
TCN only performs convolutional operations on the input
matrix X at the current moment as well as at previous
moments.

Figure 4 shows the computational structure of the causal
convolution. The input content of the causal convolution is
shown in Equation (3). The computation process of the
causal convolution is shown in Equations (4), (5), and (6).

X = x1 x2 x3 x4 ⋯ ⋯ x21 x22 x23 x24½ �: ð3Þ

In Equation (3), x1 is the 1st column in the input matrix,
i.e.,x1 = x0,1 x1,1 x2,1 x3,1

� �T .
j1 ⋯ jt = F x1 ⋯ xtð Þ, ð4Þ

l1 ⋯ lt = F j1 ⋯ jtð Þ, ð5Þ
y1 ⋯ yt = F l1 ⋯ ltð Þ: ð6Þ

La
tit

ud
e

Longitude

41.75 41.80 41.85 41.90 41.95 42.00 42.05

−87.575

−87.600

−87.625

−87.650

−87.675

−87.700

−87.725

Figure 2: Clustering results of shared bike stations in the dataset
according to the DBSCAN clustering algorithm.

X =

x0,1 x0,2 x0,3 x0,4 ⋯ ⋯ x0,21 x0,22 x0,23 x0,24

x1,1 x1,2 x1,3 x1,4 ⋯ ⋯ x1,21 x1,22 x1,23 x1,24

x2,1 x2,2 x2,3 x2,4 ⋯ ⋯ x2,21 x2,22 x2,23 x2,24

x3,1 x3,2 x3,3 x3,4 x3,21 x3,22 x3,23 x3,24

2
666664

3
777775: ð1Þ

5Wireless Communications and Mobile Computing



As shown in Figure 4, jt represents the result of the
convolution when the input is xt . lt represents the result
of the convolution when the input is jt . yt represents the
result of the convolution when the input is lt . They are
all vectors. The dashed line represents the zero comple-
ment operation. The inputs and outputs are guaranteed
to be the same size.

3.2.3. Dilation Convolution Layer of TCN. To keep the data
input and output consistent, very deep network structures
or very large convolutional kernels are required, when the
amount of data is large. It places a significant burden on
the computation of the model. Therefore, we introduce dila-
tion convolution on top of causal convolution. The most
important feature of the dilation convolution is that the per-
ceptual field is expanded by controlling the dilation factor.
In 1-dimensional dilation convolution, the dilation factor is
equivalent to making the convolution kernel larger. The
dilation factor is usually set to an exponential form of 2,
e.g., 1, 2, 4, 8,…,2i. When the dilation factor is equal to 1,
the dilation convolution becomes a normal convolution
operation. When the dilation factor becomes larger, the
range of the field of perception also becomes larger. The out-
put of the convolution will be linked to a long history of
inputs.

When dealing with traffic data, the structure of the
dilation convolution layer is shown in Figure 5. The first
layer is the causal convolution layer. The output of the
causal convolution layer is used as the input to the dila-
tion convolution layer. As the number of layers of the
dilation convolution increases, the length of the state and
historical input data of the hidden layer increases expo-
nentially. At the same time, the hidden layers will rapidly
become smaller. The input data is represented as more
high-dimensional.

Equation (7) is the formula for dilation convolution. Equa-
tion (8) represents the relationship between the number of
layers of the network and the size of the convolution kernel.
The convolution kernel size, the dilation factor, and the num-
ber of layers of the network are denoted as k, d, and i, respec-
tively. An element of the input and the output of the causal
convolution is denoted as s and y, respectively. N is positive
integers.

z1 ⋯ zt = 〠
k−1

i=0
W ið Þ ∗ ys−d⋅i, ð7Þ

d = 2i−1 i = 1, 2,⋯Nð Þ: ð8Þ

As shown in Figure 5, z1 ⋯ zt is the output of the
expanded convolution when the input is y1 ⋯ yt , which are
vectors.

3.2.4. Normalization Layer of TCN. In the TCN model, as
the training continues to iterate and the network deepens,
the distribution of the activation input values before the
nonlinear transformation is done will gradually shift or
update. The overall distribution will gradually move
towards the upper and lower limits of the range of values
of the activation function. If the model uses a Sigmoid acti-
vation function, after the model has been trained, the acti-
vation value will be updated to around 1. Because a feature
is overweighted. Subsequently, no matter how much the
value is increased and iterated over, the activation value will
remain around 1. Too large a change will not occur. The
above phenomenon can lead to an activation function that
is insensitive to the features, affecting the effectiveness of
the TCN.

In this paper, normalization is applied after each dilation
of the causal convolution. The distribution of the input data
is pulled back to the standard normal distribution. The
inputs of each layer of the neural network are kept in the
same distribution. It improves the training speed and con-
vergence rate and avoids the gradient converging to 0. The
normalization formula is shown in Equations (9), (10),
(11), (12), and (13).

The input is denoted as P = fp1, p2,⋯, png. The linear
activation value spi for a given sample pi is calculated as
shown in Equation (9), and the weight matrix and bias
parameters are set as Wp and b, respectively.

spi =Wlpi + b: ð9Þ

Causal 
convolution

Dilation 
convolutionNormalizationDropoutReLu

Residual connections

Figure 3: The basic structural unit of the proposed TCN.

···

···

···

···

Intput

Hidden

Hidden

Output

j1 j2 jt-1 jt

x1 x2 xtxt-1

l1 l2 l t-1 l t

y1 y2 ytyt-1

Figure 4: The structure of causal convolution layer of TCN.
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According to Equations (10) and (11), the mean μp and

variance σp
2 of the input data are calculated.

μp =
1
u
〠
u

i=1
spi , ð10Þ

σp
2 = 1

u
〠
u

i=1
spi − μp

� �
: ð11Þ

The activation value spi of each neuron within the hidden
layer is transformed by a normal distribution. A new activa-
tion value ŝpi is obtained. In Equation (12), ε is a constant
and is used to ensure the stability of the variance.

ŝpi =
spi − μpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σp2 + ε

p : ð12Þ

With Equations (9)–(12), the training speed of the model
is boosted. The stability of the model is enhanced. The tun-
ing process is optimized. However, this normal distribution
transformation is equivalent to a linear function, which leads
to a decrease in the expressiveness of the network. Therefore,
to ensure that nonlinearity is obtained, two conditioning
parameters γ and β are set in this paper, as shown in Equa-
tion (13). According to these two parameters, the activation
values after the normal distribution transformation are then
inverse transformed, for counteracting the side effects of the
normal distribution transformation.

p̂i = γŝpi + β: ð13Þ

3.2.5. Dropout Layer of TCN. Because the TCN uses causal
convolution and dilation convolution, the number of net-
work layers and intermediate layer results is increased. It
not only results in an overall larger network structure and
increased computational effort but also increases the mem-
ory used for training the network. To solve the above prob-
lem, the Dropout technique is used in this paper. As

Equations (14) and (15) show, half of z1 ⋯ zt is assigned
to 0. Dropout is randomly assigned to 0.

z1 ⋯ zt = F x1 ⋯ xtð Þ, ð14Þ

z2, z4 ⋯ zt−2, zt = 0: ð15Þ
3.2.6. ReLu Layer of TCN. ReLu is a commonly used activation
function in neural networks. ReLu is adopted for the following
reasons. (1) Traditional functions such as Sigmoid are used,
which are complex to derive and computationally intensive
when back-propagating the parameters to find the error gradi-
ent. When the ReLu activation function is used, the computa-
tional effort and computational time are saved. (2) In deeper
network structures, gradient disappearance and gradient
explosion can easily occur when back-propagating the param-
eters of the Sigmoid function, resulting in deeper network
structures that are difficult to train. (3) The ReLu function
being employed leads to some neurons having an output of
0. The network structure becomes sparse. Interdependencies
between parameters are reduced. The problem of overfitting
is alleviated. (4) The ReLu function is more easily optimized.
Because the ReLu function is segmented linearly, it is easier
to derive. Traditional Sigmoid functions tend to discard infor-
mation in the propagation process.

After Dropout, as the ReLu function is used, any values
less than 0 in z1, z3 ⋯ zt−3, zt−1 become 0, and any values
greater than 0 are the values themselves. Next, z1′⋯ zt′ is
used as input to obtain k1 ⋯ kt , and k1 ⋯ kt is treated in
the same way as z1 ⋯ zt to obtain m1 ⋯mt . The above cal-
culation process is shown in Equations (16), (17), (18), (19),
and (20), where x1 ⋯ xt is the input, z1′⋯ zt′ and k1′⋯ kt′ are
z1 ⋯ zt and k1 ⋯ kt after the ReLu activation function, and
m1 ⋯mt is the output.

z1′⋯ zt′= Relu z1 ⋯ ztð Þ, ð16Þ

k1 ⋯ kt = F z1′⋯ zt′
� �

, ð17Þ

k2, k4 ⋯ kt−2, kt = 0, ð18Þ
k1′⋯ kt′= Relu k1 ⋯ ktð Þ, ð19Þ
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Convolution Kernel Size=7 

Output Layer···

···

···

···
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Convolution Kernel Size=3 

z1 z2 z3 z4 zt-2 zt-1 zt

y1 y2 y3 y4 yt-2 yt-1 yt

Figure 5: The structure of the dilation convolution layer of TCN.
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m1 ⋯mt = F k1′⋯ kt′
� �

: ð20Þ

3.2.7. Output Layer of TCN. After the ReLu activation func-
tion, the result of the ReLu function, mt , is output by the
output layer. The operation of the ReLu activation function
layer and the final output layer is shown in Equation (21).
The model finally obtains the prediction result st

m1 ⋯mt = s1 ⋯ st , ð21Þ

where m1 ⋯mt is the result of the ReLu calculation and s1
⋯ st is the result of the output layer.

4. Numerical Evaluation and Discussion

4.1. Experimental Data and Preprocessing. The Chicago
Divvy bike-sharing dataset is used in this paper. Divvy is
part of the official bike-sharing system of the Chicago
Department of Transportation (CDOT) and operated by
Motivate, a leading bike-sharing manufacturer. There are
currently more than 6,000 bikes available at over 580 sta-
tions. The bikes are available at fixed stations, i.e., docked
bikes. The process of using the bicycle consists of obtaining
a permit, unlocking at a station, riding, and returning at
any station. The data for each year includes both station
and trip data. Each station contains five fields, which are
name, station name; latitude, station latitude; longitude, sta-
tion longitude; dpcapacity, number of total docks at each
station; and online date, date the station went live in the sys-
tem. Each trip contains twelve fields, which are trip_id, ID
attached to each trip taken; starttime, day and time trip
started, in CST; stoptime, day and time trip ended, in CST;
bikeid, ID attached to each bike; tripduration, time of trip
in seconds; from_station_name, name of station where trip
originated; to_station_name, name of station where trip ter-
minated; from_station_id, ID of station where trip origi-
nated; to_station_id, ID of station where trip terminated;
usertype, “Customer” is a rider who purchased a 24-Hour
Pass, “Subscriber” is a rider who purchased an Annual
Membership; gender, gender of rider; and birthyear, birth
year of rider.

First, the geographic location information in this dataset
was clustered, and then, bike-share rentals were predicted
for different stations in the same clustered cluster. The data
in the dataset between 1 January 2016 and 31 December
2016 were selected. The 24 clusters in the clustering result
each contained sites ranging from 2 to 20. Clusters with 7-
17 sites generally predominated. Cluster 7, which contains
7 sites, was selected as an example. Cluster 7 contains sites
with IDs of 130, 86, 113, 217, 259, 163, and 308 as shown
in Table 2. The number of bicycles rented from the seven
stations with IDs 130, 86, 113, 217, 259, 163, and 308 during
10 : 00-11 : 00 on December 1, 2016, was 8, 1, 15, 1, 6, 17, and
8, respectively. The time interval was set to 1 hour, and the
number of bicycles rented from cluster 7 at each period
was calculated in this way.

Bicycle rental volume data, from January 1 to December
20, 2016, was selected for training the DBSCAN-TCN

model. When the model was trained, information on the
number of shared bicycle rentals at each station was fed into
the DBSCAN-TCN model for prediction. The predicted
results are compared with the true values. The error rate
and root mean squared logarithmic error of the predicted
and true values are calculated to evaluate the performance
of the proposed prediction model.

4.2. Implementation of DBSCAN-TCN Prediction Model with
Pytorch. Pytorch has undergone rapid development in recent
years and is used in a wide range of applications [42]
Pytorch has many advantages. The Pytorch library is rela-
tively easy to understand and works seamlessly with
NumPy and SciPy. The tensor-based GPU acceleration is
very powerful. During the calculation of network gradients,
the network structure can be designed dynamically, without
the need to build static graphs from scratch. Based on the
simple and flexible design, the GPU can be used to acceler-
ate the training of the network. Therefore, the proposed
DBSCAN-TCN model is implemented using the Pytorch
deep learning framework.

We use Pytorch to build the DBSCAN-TCN model and
use the model to predict the amount of bike-sharing rentals.
The implementation process involves setting up a set of

Table 2: Number of bikes rented out in cluster 7 on 1 Dec. 2016.

Time
Station ID

130 86 113 217 259 163 308

6 : 00-7 : 00 1 4 0 0 1 0 1

7 : 00-8 : 00 5 9 0 3 1 1 2

8 : 00-9 : 00 3 13 3 3 1 2 3

9 : 00-10 : 00 12 28 4 3 2 2 1

10: 00-11: 00 8 1 15 1 6 17 8

11: 00-12: 00 13 6 5 1 11 7 19

12: 00-13: 00 6 8 10 13 16 7 2

13 : 00-14 : 00 9 11 13 7 2 4 3

14 : 00-15 : 00 10 7 12 13 16 6 8

Table 3: Parameter setting for the DBSCAN-TCN model.

Parameter Setting

Activation functions ReLu

Number of time steps time step = 24
Number of hidden cells per layer 24

Input layer dimension input size = 2
Output layer latitude output size = 1
Number of cycles max epoch = 100
Number of layers of the temporal
convolutional network

4 layers

Convolutional kernel size 3

Dropout 0.5

Number of samples per batch bitch size = 24
Learning rate learning rate = 1
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TCN network structural units. The size of the convolutional
kernel is set to 3. The number of layers of the causal and
dilation convolutional networks is set to 4. The number of
nodes in the hidden unit is set to 24. The input and output
tensor dimensions of each TCN unit are set to 2 and 1,
respectively. The activation function is set to ReLu. The
number of cycles was set to 100. The number of time steps
and the number of training samples per batch were both
set to 24. As shown in Table 3, the learning rate was set to
1, and the Dropout was chosen to be 0.5.

Table 4 gives the six steps for training and using the
DBSCAN-TCN model for predicting the amount of bike-
sharing rentals.

4.3. Experimental Evaluation Criteria. The evaluation met-
rics used in this paper are RMLSE (root mean squared log-
arithmic error) and ER (error rate), which are shown in
Equations (22) and (23), XCi, t are the true values of the
number of bike-share rentals in a cluster Ci over time t,
and X∧

Ci,t
are the predicted values generated by the model.

The predicted length of time is denoted as m, m = 240, and
the time horizon of a day is denoted as T , T = 24. The
number of clusters is denoted as i, e.g., C1 denotes the first
cluster.

RMLSE = 1
T
〠
T

t=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m
〠
m

i=1
log XCi,t

∧
+ 1

� �
− log XCi,t

+ 1
� �� �s 2

,

ð22Þ

ER = 1
T
〠
T

1

∑m
i=1 XCi,t

∧
− XCi,t

				
				

∑m
i=1XCi,t

:
ð23Þ

4.4. Effect of Hyperparameters on Experimental Results. The
function of Dropout is to prevent all the feature extractors
from acting together and causing some features to be scaled
up or down all the time. Dropout not only prevents these
problems from occurring during training but also increases
the ability of the model to generalize. For the selection of
Dropout rate, cluster 4 was chosen in this paper to validate
as a representative. The reason is that cluster 4 contains the
most number of bicycle stations, with 20 stations. During
the training of the model, cluster 4 would be very compu-
tationally intensive. Dropout is therefore most evident for
cluster 4. Table 5 shows that with a Dropout rate equal to
0.5, the trained model works best for cluster 4 and has
the lowest error.

4.5. Experimental Results and Analysis. When people travel,
they do not always use a shared bike to reach their destina-
tion directly. Usually, people change to other means of
transport to reach their destination. For work and school,
it is more common. Therefore, the use of shared bikes is
inseparable from the period. During work and school hours,
the number of shared bicycle rentals increases substantially.
However, at other times of the day, bicycle-sharing rentals
gradually return to normal levels. It is just the pattern of
bicycle rental during normal working hours. When it is a
day off, people are usually at home and resting. Most people
are off work, although overtime can occur on weekends.
Figure 6 shows the average number of bike-sharing rentals
across the city at different times of the day in December
2016.

As can be seen in Figure 6, the curve changes are broadly
the same throughout the weekdays in terms of bike-share
rentals. Each inflection point is also roughly the same. On
weekends, the number of shared bicycle rentals is much
lower than on weekdays. It means that people are resting
and not going out. The shared bikes are not being used.
The curves for Saturday and Sunday are also broadly similar
and have roughly the same inflection points.

Figure 6 shows that the number of shared bicycle rentals
is lower in the early hours of a day. After 7AM, the number
of shared bicycle rentals gradually increases. By the end of
the day, the magnitude of the change in rentals becomes
even greater. After work hours, the number of bicycle-
sharing rentals steadily drops back to normal levels. At the
end of the work, the number of shared bicycle rentals rises
again. By the end of the day, there will be very little use of
shared bikes, because people are resting.

As can be seen in Figure 7, the difference between the
predicted and true value curves for the station with ID 47

Table 4: Specific implementation steps of the DBSCAN-TCN
model.

Step Content

Step 1
The bike-sharing data is collated into a suitable input
format. The data is fed into the model according to

chronological order.

Step 2

The structure and parameters of the model are
determined. For example, the dilation factor, the number
of network layers, the size of the convolutional kernel, the
number of layers in the hidden layers, and the number of

neurons per layer.

Step 3
The learning rate, the appropriate optimization technique
(Dropout), and the appropriate activation function (ReLu)

are all selected.

Step 4
The training dataset is used to train the optimization
model. The parameters of the prediction model are

trained.

Step 5
The validation dataset is used to verify the model

predictions. If the prediction is good, the model goes to
Step 6; otherwise, it returns to Step 2.

Step 6
The model with the best prediction and the test dataset are
used to predict the number of shared bicycle rentals.

Table 5: Performance of the proposed model on cluster 4 when
choosing different Dropout rates.

Dropout RMLSE ER

0.4 0.268 0.253

0.5 0.241 0.231

0.6 0.312 0.301

9Wireless Communications and Mobile Computing



in cluster 2 is very small. The trends of the predicted and
true values are also very similar. The range of variation
between the predicted and true values is also very similar.
It indicates that the proposed DBSCAN-TCN model has a
good prediction effect. The horizontal and vertical coordi-
nates in Figure 7 represent time and rental volume, respec-

tively. The dashed line represents the predicted value, and
the solid line represents the true value.

As shown in Figure 8, the prediction results for the site
with ID 130 in cluster 7 are worse compared to the predic-
tion for the site with ID 47 in cluster 2. In Figure 8, the dif-
ference between the predicted curve and the curve of the true
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Figure 6: The rent amount of shared bikes varies over time, during different days of a week.
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Figure 7: Predicted and true values of shared bicycle rentals at the site with ID 47 in cluster 2.
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Figure 8: Predicted and true values of shared bicycle rentals at the site with ID 130 in cluster 7.
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value is large. The reason for this occurrence is due to the
small number of sites within cluster 7. It results in an inad-
equate capture of the information in the data.

Figures 9 and 10 show the predicted and true values for
the number of shared bike stations rented for ID 13 in clus-

ter 5 and ID 15 in cluster 6. The horizontal coordinates rep-
resent time, and the vertical coordinates represent the
number of shared bicycle rentals at the stations in the cluster
with the corresponding IDs.

The size of the convolution kernel has an impact on the
performance of the model. The average performance evalua-
tion of the model for each cluster is given in Table 6, for con-
volutional kernel sizes of 3, 4, and 5, respectively. It can be
seen from Table 6 that as the convolutional kernel size
increases, both the RMLSE and the ER increase. The average
RMLSE and ER are both the largest for the clusters contain-
ing a small number of stations as they increase. It indicates
that the effect of a small number of stations on the predic-
tion of shared bicycle rentals is significant. The average
RMLSE and ER of shared bicycle rentals for clusters with a
convolution kernel size of 3 are the lowest. The small
RMLSE and ER indicate that the model is predicting well.

In summary, taking the seven clusters in the dataset as
an example, we use a Kalman filter model [43], an ARMA
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Figure 9: Predicted and true values of shared bicycle rentals at the site with ID 13 in cluster 5.
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Figure 10: Predicted and true values of shared bicycle rentals at the site with ID 15 in cluster 6.

Table 6: Effect of different convolution kernel sizes on
performance.

Convolutional
kernel size

3 4 5
RMLSE ER RMLSE ER RMLSE ER

Cluster 1 0.278 0.268 0.268 0.253 0.288 0.278

Cluster 2 0.242 0.255 0.232 0.215 0.252 0.265

Cluster 3 0.232 0.241 0.212 0.211 0.248 0.256

Cluster 4 0.249 0.238 0.241 0.231 0.254 0.265

Cluster 5 0.266 0.267 0.256 0.241 0.272 0.271

Cluster 6 0.247 0.268 0.234 0.256 0.251 0.273

Cluster 7 0.226 0.235 0.206 0.229 0.235 0.248
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model [44], and an LSTM model [45] to predict the average
number of shared bicycle rentals for all stations within each
cluster. Both ER and RMLSE were accounted for. The com-
parison results compared with the proposed DBSCAN-TCN
model are shown in Figures 11 and 12.

Between Figures 11 and 12, it can be seen that the
RMLSE and ER values of the DBSCAN-TCN model are
lower than the Kalman filter model, the ARMA model, and
the LSTM model. It indicates that the DBSCAN-TCN model
is better than the Kalman filter model, the ARMA model,
and the LSTM model in predicting the number of shared
bicycle rentals, and the RMLSE and ER of the LSTM model
are lower than the Kalman filter model and the ARMA
model. The ARMA model has the worst prediction results.
Therefore, it can be found that the proposed DBSCAN-
TCN model in this paper has the best prediction effect.

5. Conclusions

In this paper, a DBSCAN-TCN model is proposed to fore-
cast the amount of bike-sharing rentals. The proposed
model uses the DBSCAN clustering algorithm to cluster

the geographical data of bike-sharing stations. Based on the
DBSCAN clustering results of the shared bicycle sites, the
shared bicycle rentals of different sites belonging to the same
cluster are transformed into the input data of the TCN.
Using the trained DBSCAN-TCN model, the bike-sharing
rentals are predicted for each station within each cluster.
The effect of convolution kernel size on the model was also
verified through the experiments. The experimental results
show that the model predicts best when the convolution
kernel size is 3. The performance of the model is evaluated
by calculating and comparing the average RMLSE and ER
of the sites in seven different clusters. The proposed
DBSCAN-TCN model is compared with the Kalman filter
model, the ARMA model, and the LSTM prediction model.
The proposed model outperforms the classical three forecast-
ing models in terms of both RMLSE and ER.

The main research of the paper is the prediction of the
rental volume of the bike-sharing system. By analyzing the
Chicago Divvy bike-sharing dataset, the DBSCAN-TCN
model is proposed for the prediction of rental volumes. Cer-
tain research results were achieved. However, since a bicycle
sharing system is a complex system, various factors need to
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Figure 11: Comparison of the RMLSE of four forecasting models.
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be considered. The study of bicycle-sharing rental volume
still needs further improvement. In subsequent studies, other
factors such as weather, temperature, and social holidays will
be considered. A hybrid model based on the urban public
bicycle prediction model is a good alternative. In the future,
the model will have three main components to be considered
in the research process. The first part will be a two-factor
clustering of stations based on their geographical location
and a historical transition model. The second part will
predict the overall city bicycle hire by taking into account
the time of day, weather, temperature, and wind speed fac-
tors. The third part seeks to find an inference model based
on a coefficient of variation function. The model will be
used to find the proportion of overall rental volume in
each cluster and thus to predict the amount of bicycle
rental in each cluster.
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