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Traditional approaches generally focus on the privacy of user’s identity in a smart IoT environment. Privacy of user’s behavior
pattern is an important research issue to address smart technology towards improving user’s life. User’s behavior pattern
consists of daily living activities in smart IoT environment. Sensor nodes directly interact with activities of user and forward
sensing data to service provider server (SPS). While availing the services provided by a server, users may lose privacy since the
untrusted devices have information about user’s behavior pattern and it may share data with adversary. In order to resolve this
problem, we propose a multilevel privacy controlling scheme (MPCS) which is different from traditional approaches. MPCS is
divided into two parts: (i) behavior pattern privacy degree (BehaviorPrivacyDeg), which works as follows: firstly, frequent
pattern mining-based time-duration algorithm (FPMTA) finds the normal pattern of activity by adopting unsupervised learning.
Secondly, patterns compact algorithm (PCA) is proposed to store and compact the mined pattern in each sensor device. Then,
abnormal activity detection time-duration algorithm (AADTA) is used by current triggered sensors, in order to compare the
current activity with normal activity by computing similarity among them; (ii) multilevel privacy design model: we have divided
privacy of users into four levels in smart IoT environment, and by using these levels, the server can configure privacy level for
users according to their concern. Multilevel privacy design model consists of privacy-level configuration protocol (PLCP) and
activity design model. PLCP provides fine privacy controls to users while enabling users to set privacy level. In PLCP, we
introduce level concern privacy algorithm (LCPA) and location privacy algorithm (LPA), so that adversary could not damage
the data of user’s behavior pattern. Experiments are performed to evaluate the accuracy and feasibility of MPCS in both
simulation and real-case studies. Results show that our proposed scheme can significantly protect the user’s behavior pattern by
detecting abnormality in real time.

1. Introduction

With the rapid advancement of sensor technology and
mobile social networks, privacy of user’s behavior pattern is
becoming an essential part of smart IoT environment. Smart
IoT environment typically consists of low power, resource
restraint devices, and sensor nodes which are installed over

the target region [1]. Sensor technology is associated to user’s
behavior pattern and human cognitive capture, which have
been promoted in almost every smart IoT environment.
Smart IoT environment typically consists of variety of
embedded sensor nodes, actuators nodes, smart home local
gateway, service provider sever (SPS), and users as shown
in Figure 1. Personal smart home, business (sales track),
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healthcare (cognitive behavior), and safety (military security
and traffic management) are few fields with diverse applica-
tions. Furthermore, location-aware services, environmental
monitoring, and architectural control are other appliances
of smart IoT environment technology. During daily living
activities, users interact with smart phones or tablets and
can easily download many kinds of location-based server
(LBS) applications and data from Google play store or Apple
store by submitting their real location and related informa-
tion to various LBS servers [2, 3]. Basically, if users want to
avail the services of smart IoT environment, then they have
to share some of their personal data to the service provider
server (SPS) through local gateway sensor nodes and actuator
devices. Although this kind of services makes daily life of
users more comfortable, however, users enjoy these facilities
in the smart IoT environment at the cost of their behavior
pattern privacy [3]. For instance, users can easily search the
location of any room or office by sending message with their
location and query data to server through resource-
restrained local home gateway [4]. Therefore, the server
and low capacity smart IoT environment nodes (SHNs) can
continuously access sensitive and personal data from users’
requests and observe their personal information, such as
their daily behavior pattern including what they do at certain
time of a day [5]. More seriously, it can send private informa-
tion to adversary which could then exploit privacy [6], such
as user identity, user office’s timing, occupation, home
address, and user daily behavior activities. In smart IoT envi-
ronment, once sensitive data are transmitted over the net-
work, then it will be out of the user’s control. All these
appalling possibilities conflict with the privacy concerns of
users’ daily behavior pattern; therefore, we have to focus on
users’ behavior pattern privacy in a smart IoT environment.

There are two kinds of approaches, for collection of data,
to detect abnormal activity: (i) video based and (ii) sensor
based. Video-based approaches generally use technology of
image processing; however, there are limitations in these
approaches:

(i) Identifying the type of user’s activity with small
scope and small short time duration

(ii) Covering very small area and high cost

(iii) Violating user’s privacy

Sensor-based approach is an emerging research area
which has been adopted in smart IoT environment in order
to tackle abovementioned pitfalls [7]. To some extent, it has
been successfully used in smart IoT environment; however,
they only process simple trajectory data and occasionally
implement centralized data processing [8, 9]. Therefore,
many of them have the following disadvantages.

(i) Lack of Behavior Pattern Privacy. They only focus on
sequence information of activity and ignore impor-
tant problem of preserving protection of user’s
behavior pattern privacy.

(ii) Ignoring Time Duration in Location Privacy. They
ignore the use of time duration in order to detect
duration abnormality. Furthermore, it did not con-
sider combining location privacy and user’s activity
privacy in single approach.

(iii) Computational Cost. It consumes large bandwidth
and uses centralized approach with long response
time.

We focus to cover the abovementioned pitfalls and on
protecting the user’s behavior pattern privacy in smart IoT
environment. The current study does not cover privacy edifi-
cation of the whole system, and this research is an extension
of privacy model. Our work is aimed at solving two main
challenges in smart IoT environment, (i) ensuring privacy
of user’s behavior pattern, e.g., if a user is in a particular
building from 9 : 00 to 14 : 00 and adversary can access this
information, however, adversary cannot know where he/she
was at 10 : 00 a.m. within the building and in which room
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Figure 1: Layout of single and multigateway smart environment.
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he/she is/was at particular time; (ii) the long response time
and using large bandwidth during computational process
are inappropriate for real-time detection. We proposed mul-
tilevel privacy controlling scheme (MPCS) to deal with them.
(1) BehaviorPrivacyDeg is proposed, in order to (i) keep
record of user’s activity variation and storing these compact
patterns into each sensor with the patterns compact algo-
rithm (PCA) and (ii) detecting whether the present activity
is abnormal or normal based on the abnormal activity detec-
tion time-duration algorithm (AADTA). (2) Protecting
user’s behavior pattern privacy by using multilevel privacy
model, server utilizes PLCP to set privacy level according to
concern of user. LPA is used to hide the features of user’s real
location from adversary or untrusted nodes by generating a
number of fake locations. The main research contributions
of this paper are as follows:

(i) BehaviorPrivacyDeg, a novel technique detecting
abnormal activity and compact pattern algorithms,
is proposed to cache learned parameters using min-
ing training into every sensor node and to sense
abnormal activity at real time based on limited
resource restrained of sensors

(ii) The multilevel privacy model has been designed to
protect users’ behavior pattern privacy. Our model
not only utilizes PLCP for optimal configuration of
privacy levels but also secures user’s data from
untrusted nodes caused by unpredictable interfer-
ence in smart IoT environment

(iii) Activity design model, which consists of activity
variation, trajectory variation, and duration varia-
tion, to define a small difference between two the
same activities because the same pattern of activi-
ties cannot be repeated exactly in the same way

(iv) Real data-based simulation and experiments have
been conducted which showed that our new
approach can efficiently protect users’ activity and
sensitive data in smart IoT environment

The rest of the paper is organized into the following four
sections. We thoroughly overview related previous literature
in Section 2. We present our new scheme in Section 3. Simu-
lation and experiments are presented in Section 4. Conclu-
sions are discussed in Section 5.

2. Related Work

A number of research studies have been conducted on
protecting privacy of users in smart IoT environment. We
hereby briefly discuss and compare their findings. Many pri-
vacy protection schemes are introduced as means to protect
query privacy and users’ location privacy for various situa-
tions (e.g., snapshot scenario and continuous scenario in
navigation apps.). In [8, 10, 11], authors proposed location
perturbation, obfuscation techniques, and temporal cloaking
techniques, respectively. Generally, all these techniques are
deployed to achieve the privacy goal. These proposed tech-
niques can be gained based on trusted third party such as
location anonymizes in [12]. In [10, 13, 14], authors have
proposed mobile device-based solutions. In some early
works, Chow et al. introduced a solution based on location
anonymizer to collect the queries of users and forwarding
anonymous data set to location-based server (LBS) to protect
users’ privacy. However, later it is noticed that location anon-
ymizer resulted in the blockage of entire system. In [15],
authors proposed two algorithms, named GridDummy and
GirDummy that generate dummy location to achieve k
-anonymity for user, considering the location’s privacy.
These two algorithms generated virtual circle and virtual grid

Functional sensor

Regular sensor

A1
A2
A3

Host hygiene19

21
(S10, 20) (S21, 10)

(S18, 10) (S19, 15)

(S18, 30) (S19, 15)

Laster bedroom16

10

18

(S
19

, 1
5)

 (S
10

, 2
0)

Figure 2: Basic layout of sensor deployment in smart environment. Sensors are classified into REGULAR sensors and FUNCTIONAL
sensors. Time duration between sensors and sensors’ ID is represented by tuples in lines. These lines also represent activity of trajectories.
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which were carefully constructed for privacy area of users.
However, Lu et al. ignored the background information and
query privacy of the users. Although in some recent research
studies [16], authors have paid attention to solve the above-
mentioned issues thoroughly; however, they introduced
heavy system to achieve k-anonymity. In [17], authors pro-
posed a device free localize (DFL) technique which identifies
user’s location and their activities simultaneously. The wire-
less signals have the ability to become a sensor itself that
can perceive the context information. In near future, this
technique may turn the traditional wireless network into
intelligent networks. However, the mechanism of this
approach is not efficiently working on limited resource-
restrained devices. In [18], Liu proposed a scheme for activity
recognition using 2D and 3D cameras. However, video-based
techniques and approaches can compromise on privacy
issues. Moreover, high cost is required for video equipment.
In [19], authors have discussed that users’ activity in home
such as bathing, cooking, and reading can be accessed by

Input:sl , dl , ci, cl , si, di
Output: r-activity-patterns, frequent pattern tree (FP-tree) assigned as f t
(1) While ðdi, siÞ do
(2) if cl = REGULAR then treeinsertððsl , dlÞ, ðdi, siÞÞ ;
(3) else if ci = REGULAR then treeinsertðsl , dlÞ ;
(4) Tree_insertððsl , dlÞ, ððsl , dlÞÞ ; else
(5) Tree_insertðsl , dlÞ ;
(6) Tree_insertððsl , dlÞ, ðdi, siÞÞ ; end
(7) if ðsl , dlÞ = ðdi, siÞ; nest item will be assigned in server to ðdi, siÞ
(8) end while
(9) if ðdi, siÞ last item at end of dataset then
(10) For every activity Al in FP-tree do
(11) if f t ≥ λ then
(12) add Al into r-activity-patterns;
(13) end if
(14) end for
(15) end if
(16) return r-activity-patterns and f t ðFP − treeÞ

Algorithm 1: FPMTA.

Input: r-activity-patterns, g-activity-patterns, γ
Output: c-activity-patterns: to compact the real normal activity pattern

(1) Sorting g-activity-patterns in order of descending jdAu
j ; //jdAu

j it represents the quantity of activity in data set dA;
(2) While g-activity-patterns’ size = 0 do
(3) Attain first activity pattern Au in g-activity-patterns
(4) for activity pattern Al ∈ dAu

do
(5) Delete Al in r-activity-patterns and g-activity-patterns;
(6) for every activity pattern Anin g-activity-patterns do
(7) Delete Al in dAn

;
(8) end for
(9) end for
(10) delete Auin g-activity-patterns;
(11) sorting g-activity-patterns in descending order jdAu

j ;
(12) end while; c − activity − patterns = r − activity − patterns
(13) return c-activity-patterns

Algorithm 2: Patterns Compact Algorithm (PCA).

Input: table-activity-dect, dc, tc, DAl
, TAl

, γ
(1) minu = 1
(2) add dc into TAl

;
(3) add tc into DAl

;
(4) reorganize Al with DAl

andTAl
;

(5) for i⟵ 1 to table-activity-dect do
(6) if dissimilar ðAu, AlÞ <minu then
(7) minu = dissmilarðAc, AlÞ ;
(8) end if
(9) end for
(10) if minu > γ then
(11) label Alabnormal;
(12) return c-activity-patterns;

Algorithm 3: AADTA.
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unauthorized entities on the wireless network, even all com-
munications are encrypted. In this approach, authors used
fingerprints and time-based snooping (FATS) attacks.
However, chances of privacy leakage of users’ activity are
very high due to limitation of this approach in [20–22]; tem-
poral cloaking and spatial assessed time-location are directed
to the main server instead of the accurate value. The main

focus of these approaches is to prevent exact identification
of user’s location and thus improving privacy. These tech-
niques harm the timeliness and accuracy of the responses
from server, and more seriously, there are some upfront
attacks that could still break user privacy. In [23], authors
have proposed k-pattern clustering algorithm that classifies
complex and varied user activities. This approach also used
Allen’s temporal relation to predict and recognize users’
activities inside home. However, this method did not focus
on privacy of users’ activities as well as location-based
privacy of users. If we observe carefully, most of the recent
techniques have some pitfalls such as usage or trust on the
third party or server and time-consuming huge processing
overhead. In [24], authors provide new system for security
institutes to monitor abnormal events. With the help of deep

Table 1: Variable detail used in Algorithms 1, 2, and 3.

Variables Detail

λ It represents time duration threshold.

γ It represents variation threshold.

r-activity-patterns This variable used to store real mined patterns.

g-activity-patterns
It represent the set A1, rAu

� �
,⋯, Ai, rAu

� �
,⋯, AN , rAN

� �� �
and where Ai ∈ r − act − patterns:

And դ is number of activities that stored in r-activity-patterns.

rAu This variable stores the activities that are the same toAu.

di, ti, ci
di is for current triggered sensor device/node, and ti represents the time duration probability.
ci is category of sensor device di (REGULAR sensor device or FUNCTIONAL sensor device).

dl , tl , cl
dl represents last triggered sensor, and tl represents corresponding time duration probability.

cl is for corresponding type/category.

c-activity-patterns This variable is used to store the compacted patterns from the real.

Ac, dc, tc
Ac represents current user’ activity, dc represents current sensor device, tc is current time

duration probability of sensor device.

DAl
, TAl These represent their mining from latest change of state-message.
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node
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Figure 3: Basic difference between two kinds of frequent pattern tree (FP-tree). (a) The trajectory FP-tree and (b) the time duration-
based FP-tree.

Table 2: Detects abnormal activity table of sensor device S16.

Previous
device (dl)

Previous time-duration
probability (tl)

Particular time-duration
probability toð Þ

S20 (1,0,0) (0.8, 0.2, 0)

S15, S11, S12 (1,0,0), (0,1,0), (0,1,0) (1,0,0)
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learning, authors attained high performance of human
behavior recognition by using model tests and training but
his scheme does not enable user to define privacy level
according to user wish. In [25], authors proposed novel idea
based on genetic algorithm to resolve classification problems
based on sensor data but they also ignore privacy of user
based on sensor data.

Our proposed scheme is different from traditional
approaches because our research emphasizes on the user’s
behavior pattern privacy, including behavior pattern privacy
degree, multilevel privacy model, location protection mecha-
nism, and detection algorithm.

3. Multilevel Privacy Controlling
Scheme (MPCS)

In this section, we present behavior pattern privacy degree
(BehaviorPrivacyDeg) and multilevel privacy model of pro-
posed multilevel privacy controlling scheme in detail.

3.1. Behavior Pattern Privacy Degree. Behavior pattern
privacy degree (BehaviorPrivacyDeg) is aimed at protecting
privacy of user’s activity variation in smart IoT environment
which is as follows: (i) first, it extracts normal behavior
pattern from the genuine data and then presents an activity
pattern algorithm based on time duration that compresses
and reduces the quantity of mined behavior pattern of user’s
activity; (ii) secondly, it records mined pattern in each device
according to record keeping mechanism, and it also detects
abnormal activity to protect user’s behavior and pattern pri-
vacy. BehaviorPrivacyDeg uses three algorithms to protect
the privacy of user’s behavior pattern which are (i) frequent
pattern mining-based time-duration algorithm (FPMTA),
(ii) patterns compact algorithm (PCA), and (iii) abnormal
activity detection time-duration algorithm (AADTA). Sen-
sors: we divided sensors into REGULAR sensors and FUNC-
TIONAL sensors as per requirement of deployment to sense
the data of user’s locations and activities as shown in
Figure 2. Firstly, set of all the deployed motion sensor devices
across the smart IoT environment is represented
asD = fs1, s2, s3, sl,⋯, sng. User’s position is represented by
sing location of sensor device sl which detects the movement
of user’s position/location P. Sensor devices are defined by N .
As we know, all users probably have different velocity of
doing activities. Therefore, the time between these sensors
during user’s activity is different and longer as compared to

specific time segment. Activity is produced that is composed
of atomic users’ activities. Atomic activities aila = ðsla , tilaÞ
define the trigger of sensor device sl where sla ∈D, and tila is
trigger time of sla in ith sampling period. Number of sam-
pling periods is defined by Ns which represents the condi-
tions when a person passes by sla . Basic activity is defined as

βla
= fα1la , α2la , α3la ,⋯, αNs

la
g = fðsla , t1laÞ,⋯, ðsia , t

Ns
la
Þg which

shows basic activity, where time duration is dla = tNs
la
, t1la .

3.2. Frequent Pattern Storage, Compression, and Mining. To
store, compress, and detect the abnormal activity, top prior-
ity of BehaviorPrivacyDeg is mining the user’s normal activ-
ity pattern to protect behavior pattern.

Definition 1. Normal activity is defined as if frequency of an
activity Au which we assigned as f u exceeds a particular
threshold during appearing in the storage data; then, activity
Au is called a normal activity.

Definition 2. Abnormal activity can be defined as activity that
deviates from normal activities in the collected data. In activ-
ity recognition, the temporal relationship is foundation of
sequence determination [26], and it leads to error of activity
recognition. We determine abnormal activity as follows, if
there is any kind of activity pattern Au which apparently
seems normal but actually has deviation from normal activ-
ity, i:e:, Avary ≤ γ, Au, is determined as abnormal activity.
Mostly, supervised learning algorithms for sensor data
require several labeled data; therefore, learning algorithms

Table 3: Several levels for protecting privacy of users.

Privacy level Type Description

PL1 Zone/region
In this level, user just shares that he is in university but does not allow to share where

exactly he is (e.g., in which building and apartment).

PL2 Building/office/room
In this level, user shares his room/office/building but does not share the exact time

(e.g., in which office at what time he is/was).

PL3 Time duration
In this level, either he shares approximate time (09.00 to 14.00) about his

activity/location or accurate time, day, week, and month etc.

PL4 Activity/action This level includes the activity/action of the user (e.g., exercise, work, taking class, and watching TV).

Position/Location: P

Database/server

P 1

P 2
P 9

P 3

P 5

P 4

P 7

P 6

P 8

P 10

P 11

P 13
P 12

P 14

PL1 = 0.1

PL2 = 0.2
PL3 =0.3

PL4 = 0.4

Spoofing position/locations: P

Figure 4: All privacy level that queries to the server. Work flow of
PLCP.
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unsupervised that saved labor and accelerate the learning
speed [27].

3.3. Frequent Pattern Mining. Keeping in mind the Definition
1, we prefer to use frequent pattern mining approach [7] for
user’ behavior pattern privacy by mining normal activity
patterns. Based on frequent pattern mining approach [7], if
frequency of an element set exceeds minimum threshold λ
within specific time duration, then it is considered as a nor-
mal activity. Each path from leaf node to root node and root
node to leaf node is defined as pattern Ap, and the frequency
is calculated as f p which represents minimum support count
in a path. We use frequent pattern tree (FP-tree) to store
quantitative and crucial information about FP-tree and time
duration. FP-tree is proposed to achieve the privacy level of
data in smart IoT environment. In FPMTA, line 3 and line
5 represent the insert-tree function. The function of insert-
tree set ððsi, diÞ, ðsl, dlÞÞ is inserted in two steps; in first step,
node ðsi, diÞ is inserted into FP-tree as a child node ð sl, dlÞ,
and in second step, ðsi, diÞ insert-tree is to insert a node ðsi,
diÞ into FP-tree as a child node of root node. If there ð sl, dlÞ
is a child node ð sp, dpÞ or root node which jsp − dij ≤ λ and
sp = si, then counting of sp, dp is incremental by value 1.
Suppose it is not the same, then node ðsi, diÞ is inserted into
FP-tree as fresh child node’s root node ðsl, dlÞ. Variables of
Algorithms 1, 2, and 3 are used in Table 1.

To compress and compact the mined frequent activity
pattern of user’s behavior, we introduced a PCA. Further-
more, BehaviorPrivacyDeg of MPCS introduced abnormal
activity detection-based time-duration algorithm (AADTA)
to protect the privacy of user’s behavior pattern by detecting
abnormal activity. AADTA contains sensor device ID di and
sensor category and table of activity detection that is named
as table-activity-dect. Activity table of sensor device S16 as
shown in Figure 3 is described in Table 2. Mined patterns
are stored in relevant room sensor devices separately as per
proposed storage method. Previous sensors stored the ID in
normal pattern field before triggering sensor S16. Time-
duration probability is stored by previous time-duration
probability corresponding with previous sensors S16.

3.4. Multilevel Privacy Design Model. The term privacy con-
veys various concepts such as privacy of activities, location,
time duration, and decisional privacy. The form of privacy
discussed in this section is user’s behavior pattern privacy
based on activities. We divided user’s behavior pattern pri-
vacy into four levels termed as privacy level-1 ðPL1Þ, privacy
level-2 ðPL2Þ, and so on as discussed in Table 3 and Figure 4.
Let PM = f PL1, PL2, PL3, PL4 g be the set of privacy model,
including four privacy levels. The ability of multilevel privacy
model is to deal privacy of user’s behavior pattern in smart
IoT environment. Multilevel privacy model is comprised of
(i) privacy level configuration protocol (PLCP) and (ii) activ-
ity design model.

3.5. Privacy-Level Configuration Protocol (PLCP). PLCP is
designed to manage privacy of users by controlling privacy
levels and transmit data among sensors. In order to avail
any service from server, users have to share some informa-
tion of their privacy level with the server through limited
resource sensors as shown in Figure 2. Privacy of user will
be changed with the selection of privacy level. Term ui is
for user, and term ρi is used for privacy-level concern. At
the level PLi, the average number of hidden data for all user
is defined as PLρi =∑k

j=1∂j Pr ðρi, ∂j, δjÞ where term δj is
used as how sensitive the data is perceived by user and ∂j is
used as weight for the data. The Pr = ðρi, ∂j, δjÞ bt the value
of user’s privacy concern. We defined this measure for
privacy rating at privacy configuration levelPLρi . For the user
ui, the actual weighted number of hidden data ∑k

j=1∂jsij is
privacy rating at level of PLρi : PLCP uses level concern algo-
rithm and privacy level index mechanism.

〠
k

j=1
∂jsij = 〠

k

j=1
∂j Pr ρi, ∂j, δj

� �
: ð1Þ

(1) Level Concern Privacy Algorithm (LCPA). LCPA pro-
vides a way for finding the optimal privacy

1. Input. ρ : the desired level of privacy, fρig: the level of privacy for user in the data, fð∂j, δjÞg: the value for the data model, sij: learned
data
2. PLρi ⟵∑k

j=1∂j Pr ðρi, ∂j, δjÞ
3. T ⟵ search the set of ρi, so that jρ − ρij < ∈;
4. Copt ⟵∑k

j=1∂j;
5. Optconf ⟵∅ ;
6. for every user ui having ρi ∈ T do

7. PL1⟵∑k
j=1∂jsij ;

8. if Copt > jρi − PL1j < ∈then
9. Copt > jρi − PL1j;
10. Optconf ⟵ ui ′s privacy configuration;
11. end if
12. Return Optconf

Algorithm 4: Level concern privacy algorithm (LCPA).
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configuration for a desired level of privacy concern. A
new user can stipulate his/her level of privacy con-
cern ρi based on the relative value in the range (1 to
4). LCPA assumes the data item models Pr = ðρi, ∂j,
δjÞ, j = 1⋯ ::k: Also, privacy configuration for each
user has been calculated as ρi, i = 1,2,3,4. LCPA first
calculates the privacy level PLρi for user level of pri-
vacy concern ρi with the data item model and then
searches whether the user has the similar level of pri-
vacy concern jρ − ρij < ∈, where ∈>0 is very small
value according to LCPA.

(2) Privacy Level Index Mechanism. We introduced a
new privacy level index mechanism which is used to
assign index for each level. Let us assume that privacy
level has been PL1-assigned index 0.1, PL2 has been
assigned 0.2, PL3 has been assigned 0.3, and PL4
has been assigned index 0.4. User can use these indi-
ces to set their privacy level according to their con-
cern in our smart IoT environment. At the same
time, different user has different privacy levels and
these levels are used by our proposed MPCS to pro-
tect the user’s behavior pattern privacy.

Each privacy level has data set as discussed above. Some-
times the user is more conscious about information of his loca-
tion and sometimes about information of his time duration etc.

Figure 4 illustrates how PLCP works. Assuming that one user
follows the PL1 in Figure 4 when sensor is triggered, it first
executes the LCPA to control and manage privacy of user’s
behavior pattern. The target of adversary is to access sensitive
information of a user. We focused on two types of adversaries:
(i) active adversary, any entity is an active adversary if he can
access the untrusted sensor nodes. (ii) A passive adversary,
which can eavesdrop on a communication channel between
compromised nodes to track other user’s sensitive data. We
consider gateway and sensor nodes as active adversaries.

3.6. Location-Based Privacy Algorithm (LPA). Privacy levels 1
and 2 include user’s location, and in order to protect user’s
location, we used concept of entropy. Entropy is used to mea-
sure the degree of k-anonymity. To calculate entropy, each
location has probability of being queried qi and probability
donated by bi is 1. To identify the individual’s entropy E in
users, set is defined as

E = −〠
k

i=1
bi · log 2bi: ð2Þ

Our goal is to attain the maximum entropy, which can be
achieved when all possible positions/locations P have the
same probability 1/P where the maximum entropy will
be Emax = log2P. Server can assume real location with high
probability as 1/P − Pd , where Pd represents the number of

1

2

4

3

Real user’s location

Fake user’s location 

(a) Real and fake users’ location

1

2

Real user’s location

Fake user’s location 

(b) Fake location with bigger and smaller cloaking region (CR)

Figure 5: Layout of our basic approach in smart environment.
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Figure 6: The scenario of user’s locations inside smart environment.
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fake locations and server will calculate it based on probabili-
ties of their low query. The query probability is higher than
others in locations 1 to 3 and on the basis of information.

It means that P − Pd = 3,and entropy will drop consider-
ably from log2P to log2ðP − PdÞ. We enhance privacy of users
in two phases: (i) first, we try to select fake locations of users
with the same query probabilities; (ii) second, if there are
more than one user, the fake location spread is as far as pos-
sible. Suppose the user’s location map is segregated into equal
size cells n × n as shown in Figure 5. Each cell of the map has
its own enquiry probability that is based on previous query
history as follows:

qi =
number of enqueries in each cell i
number of enqueries in full map

, i = 1, 2, 3,⋯⋯ ⋯ :n2,

ð3Þ

where

〠
n2

i=1
qi = 1: ð4Þ

To provide a degree of k-anonymity, in addition to real
locations, we need to conclude the other k − 1 cells to assign
the fake locations. The user selects the P cells right before and
P cells right after real location from sorted list as 2P users.
Therefore, user make N set of cells, and in every set, one cell
belongs to real user’s location and the others are randomly
selected from 2P users. The mthðm ∈ ½1, nÞ set is represented
as Rj = ½r j1, r j2,⋯, rji,⋯, rjk�. The normalized query proba-

bility of the involved cells which is based on real query prob-
abilities of the selected cells can be presented as sj1,
sj2,⋯, sji,⋯, sjk and calculated by summing it to 1.

sj1 =
qbi

∑k
l=1qbl

, i = 1, 2,⋯⋯ , k: ð5Þ

To effectively achieve k-anonymity of P location, we need
to create an optimal set. The level of privacy is guaranteed by
using the entropy metric that is extensively used to measure
privacy of users. We compute entropy for specifically selected
set Rj as follows:

Ej = −〠
k

i=1
r ji:: log 2 rji: ð6Þ

Finally, the LPA achieved the set with effective and high-
est degree of entropy.

R = argmax Ej: ð7Þ

Tomeasure the cloak region (CR), distances between pair
of fake locations are calculated and the sum of distances can
be utilized to measure the CR which is ∑i=jd ðri, r jÞ where d
ðri, rjÞ represents the distance between rows/cells ri and
r j. In Figure 6, l1 represents real location of user and d1
is selected as a fake location of the user, since it is consid-
ered farthest location from l1. Furthermore, suppose there
are two choices for assigning third fake locations d2 and
d3. We select it based on the sum of distance between

Figure 7: Motion sensor-based smart environment setup for simulation experiment.
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pairs of fake user’s locations. We have to select either of them
because d2l1 + d2d1 = d3l1 + d3d1. In this scenario, d2l1: d2d1
= d3l1: d3d1; hence, we select d2 as a fake location. Let R =
½r1, r2,⋯, rk� represents the set of fake and real user’s location.
Multiobjective optimization problem (MOP) is described as

max −〠
k

i=1
bi · log2bi,

Y
i≠j

d ri, r j
� �( )

, ð8Þ

where ri, r j ∈ R, ki, and kj represent the query probabilities of
the ri and r j, respectively. Our first priority is to confuse the
adversary so that adversary cannot target the specific location
of user. This objective can be represented as follows:

R = argmax −〠
k

i=1
bi · log2bi

 !
, ð9Þ

That is basic condition to achieve the higher entropy by
using a set of fake locations. Optimal combination of P loca-
tions is as follows:

R = argmax
Y
i≠j

d ri, rj
� �

: ð10Þ

Time Duration. The time duration Td is divided into three
parts: small, medium, and big; thus, fuzzy logic [28] is used to
calculate the time duration, and fuzzy inference system (FIS)
[29] is adopted to measure the probability of Td being small
ðPᶊ−Td

Þ, medium ðPᶬ−Td
Þ, and big ðPƅ−Td

Þ. Basic activity is
defined as βla

, and sensor device is defined as sdi so as a result
β = ðTda

, siaÞ is redefined as β = ðsia , ðPᶊ−Td
, Pᶬ−Td

, Pƅ−Td
Þ. In

this paper, small time duration range is 0 to ~dt3, and medium
time duration range is from ~dt1 to ~dt4, and big time duration
range is from ~dt2, where 0 < ~dt1 < ~dt2 < ~dt3 < ~dt4. Each sia

stores t rulei = fdit1, ~d
i
t2, ~d

i
t3, ~d

i
t4g, and t rulei is fixed accord-

ing to location and monitoring zone of sensor device sid. The
mean of maximum scheme is appropriate for our method.
Assumed activity A1 as an example and we set ~dt1 = 5, ~dt2 =
20, ~dt3 = 35, and ~dt4 = 50. After using fuzzy logic, term ðs8,
15Þ can be defined as ðs8, ð0, 1, 0ÞÞ:

Activity Design Model. In this section, we described the
concept of activity variation. Activity variation can be defined
as small difference between two the same activities because
the same pattern of activities cannot be repeated exactly in
the same way. Activity variation consists of trajectory varia-
tion and duration variation which is used to measure this
small difference.

Figure 8: Example of the smart IoT environment and deployment of motion sensor devices are shown.

Table 4: Experiment result of performance test.

Number of pattern Average time of execution

6 77.5m/s

12 80.4m/s

18 86.3m/s

24 93.9m/s

Table 5: Detecting abnormalities.

Parameters
Algorithm

detecting_ activity
trajectory

Size of model 95 95

Trajectory_abnormality 73 73

Disc_abnormal_trajectory 75 91

Size of model 54 54

Time_duration_abnormality 38 38

Disc_time_duration_abnormality 35 Fail
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(a) Trajectory Variation. The term trajectory variation is
defined as Tv. Activities A0 and A1 as shown in
Figure 5 take as an example Tva1 = s18 ⟶ s20 ⟶
s20 ⟶ s21 but Tva2 = s18 ⟶ s10 ⟶ s20 ⟶ s21, and
this represents the same activity but with a small dif-
ference in trajectory. This trajectory variation is mea-
sured by ϻ_variation, and the difference between two
trajectories Tvn and Tvm is calculated as

Tvariation Tvn, Tvmð Þ =Minu Tvn − Tvmj j,ð jTvm − TvnjÞ
+ Tvn −j jTvmk k + order Tvn, Tvmð Þ = ϻvariation:

ð11Þ

jTvn − Tvmj represents the total number of sdi which
sdi ∈ Tvn and sdi ∉ Tvm: kTvn∣−∣Tvmk explain the
length between Tvn and Tvm. Order ðTvn, TvmÞ com-
putes the difference in sequence between Tvn and
Tvm [26].
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Figure 9: Deployment layout of motion sensor devices network in smart IoT environment. The position of sensor and its ID are shown.
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Figure 10: Experiment results during simulation test.

Table 6: Detail of stored patterns in sensors.

Sensor
device ID

Total
patterns

Sensor
device ID

Total
patterns

Sensor
device ID

Total
patterns

d1 2 d13 17 d25 17

d2 4 d14 14 d26 19

d3 7 d15 13 d27 14

d4 9 d16 9 d28 13

d5 12 d17 12 d29 13

d6 15 d18 7 d30 11

d7 17 d19 8 d31 9

d8 13 d20 10 d32 7

d9 15 d21 13 d33 5

d10 16 d22 11 d34 3

d11 11 d23 12 d35 2

d12 15 d24 15 d36 7
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(b) Time Duration Variation. As discussed above, activi-
ties A0 and A1 as shown in Figure 5 are not the same
activities due to the difference of time duration in s19.
However, another activity Ay = fðs10, 11Þ, ðs18, 25Þ,
ðs19, 13Þ, ðs18, 15Þg is not same with A1, and differ-
ence of time duration is small. Term Tdv is used
for time duration variation. Therefore, the varia-
tion between the duration of two activities can be
calculated as

Dissimilarity Ax, Ay

� �
=
Tdv − deviation Tvx, Tvy ,DAx

,DAy

� �
∣Tvn, Tvm ∣ð Þ/2

+
Tv − deviation Ax, Ay

� �
∣Tvn, Tvm ∣ð Þ/2

= Adissmilarity:

ð12Þ

Activity variation of PL4 is calculated by equations (10)
and (12), where դ is the duration threshold. The variation
threshold is defined as Г to measure the similarity, and if
Asimlarity ≤ Г , then Ax is considered as similar toAy .

4. Experiments

4.1. Simulation-Based Experiment. As a simulation model
with ground facts, we used smart IoT environment simulator
tool to simulate the sensor device-based smart IoT environ-
ment, and information was installed manually instead of real
setup smart IoT environment. Simulation smart IoT envi-
ronment is basically divided into three main parts which
are as follows.

(1) Motions Sensor Devices. We installed more than 100
sensor devices to sense data of location-based users’
activity for simulation in smart IoT environment
which is shown in Figures 7 and 8. In Figure 7, sen-
sors, which are colored with yellow, are deployed in
hallways and elevators. Light yellow sensors are
deployed within the rooms, office, and conference

rooms. White color sensors are installed in living
room, study room, and restrooms.

(2) Smart IoT Environment’s Trajectory. We designed
more than 15 normal trajectories which have average
length of 13. These trajectories reflect typical condi-
tion about user’s activities.

(3) Time Duration. As per deployment locations of sen-
sor devices ðdi′s locationsÞ and basic features, three
types of t rule are defined to respond the concerned
sensor devices.

(i) In t rule1, firstly, {2 d, 4 d, 6 d, 8 d} is
designed for those sensor devices which are
utilized for detecting passing (such as in lobby
and hallway).

(ii) In t rule2, {1 s, 3 s, 5 s, 9 s, 11 s, 13 s} is designed
for such sensor devices which are deployed in
areas where users may stay for few minutes
(such as in washroom and kitchen).

(iii) In t rule3, {0.4 h, 1.5 h, 2 h, 5 h, 7 h, 9 h} is
designed for sensor devices which are located
in the area where users will stay for rather long
time such as office, study room, and bedroom.

Meanwhile, their time duration of staying is t di, and cor-
responding table-activity-dect are set and assigned with
appropriate value manually. The simulation detection system
has completed the operations of the LPA, FPMTA, PCA, and
the AADTA.

Input: real location Lreal, sets of N and P, probabilities of query in qi.
Output: set of fake-locations

1. All cells sort on based probabilities of their query
2. Select fake 2P of users among which P user is right before Lreal and P user right after Lrealin stored list.
3. for (m = 1; j ≤N ; m + +) do
4. develop a set Rj which consist of Lrealand P − 1, additional cells are randomly chosen from users 2P;
5. Calculates the normalized probability sji for every cell rji in the set.

6. Ej ⟵ −∑k
i=1bji · log2bji ;

7. End
8. Output max Ej;

Algorithm 5: Location-based privacy algorithm

Table 7: Triggered sensors (known versus unknown).

Task setting Known Unknown ADL

105-115 9 11 73%

115-106 12 15 77%

104-121 10 11 80.10%

112A-109B 4 6 62%

101-119 6 8 72%

Average ADL 73%
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Real-Time Location. The parameter average distance and
location are designed to calculate the real-time location’
property. ADL is measured as follows:

ADT = 〠
n

i=1

Ldis
Auj j : ð13Þ

Ldis represents the trigger sensor devices during decision-
making, and Au represents the length of Au. Experiment
results showed that ADT of detecting activity is 75.5% which
is good as compared to centralized detecting algorithm.

4.2. Lab-Time Experiments. In this section, we conducted real
experiment.

4.2.1. Detecting Activity’s Feasibility. In smart IoT environ-
ment, each sensor device will use AADTA for execution
process. In AADTA, the time complexity is oðtiÞ and it
showed that the time complexity of AADTA is oðtiÞ. We
used TelosW sensor devices for real-time experiment because
TelosW has memory size of 1MB, and it meets the comput-
ing capacity of detecting activity. If the average size of stored
patterns is 10 at TelosW sensor device, then it means total
7489 patterns ððbytes Þð1024 ∗ 1024Þ/ðbytesÞðð4 + 4 + 4 + 2Þ
∗ 10Þ = 7489 Þ can be stored on one sensor device in smart
IoT environment. It clearly showed that feasibility of sensors’
capacity for storage of patterns is enough. Average time of
execution of number of patterns is shown in Table 4.

Detecting Abnormalities. Transition probabilities of each
sensor in smart IoT environment are represented
byT proi = ft p ri, t p ui, t p li, t p dig. This transaction

probability is set to calculate the possibility of which near
sensor device will be triggered for next. Considering the
deployed sensor devices as shown in Figure 7, if a user trig-
gersm27, the user must trigger fm26,m22,m25,m24g as trans-
actionm27 ⟶m26,m27 ⟶m22,m27 ⟶m25,m27 ⟶m24.
If we set T proi = f0:2, 0:1, 0:3, 0:4g then user will like to
select the trajectorym27 ⟶m25. Moreover, it is also possible
that user may choose to do the remaining three trajectories.
Here, users are allowed to randomly choose any trajectory
from 15 designed trajectories. In other words, users can
choose any route depending on the T proi and user can also
change his route. We calculated 95 trajectories after repeating
95 times, and only 4 of them are the same as we have
designed. 75 abnormal trajectories are detected by our
algorithm-based trajectory method [7] and labeled 91 abnor-
malities, but in real, just 73 abnormalities are produced as
shown in Table 5. We use two important keys during simula-
tion experiment when time duration is taking into consider-
ation. Firstly, we use ai for average speed where i represents
the sensor device ID. Average speed represents the approach
corresponding with every interlinked device-pair but we set
up various speeds during simulation in each sensor device
to manage the average speed. Secondly, we assign various
speeds with index vi representing the variance of ai. When
user is passing through sensor device di and ai randomly
selects from 0.4m/s to 1.2m/s, vi randomly selects from
0.11m/s to 0.32m/s. Time duration t di is altered manually.
After repeating and executing 40 times, 40 trajectories are
produced with uniform time duration. 30 abnormalities are
generated, and our algorithm detected 29 abnormalities by
using trajectory-based approach [7].
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4.2.2. Results. The experimental setup to validate our algo-
rithms is based at Chongqing University Campus A, China.
During these experiments, we choose two groups of students
who have volunteered to participate. Students in group 1
were aware with the environment layout, and students of
group 2 were not familiar with environment. Sensor devices
were deployed in the building as shown in Figure 9. Red
colored sensors in Figure 9 represent the motion sensors.
TelosW sensor devices were deployed, and position of sensor
in building is shown in Figure 8. Five tasks were performed in
two experiments. In each task, participant needs to start from
specific position and reaches destination through designed
workplace. To achieve the fair result, the specified rooms
and position were randomly chosen. The results are shown
in Figure 10(b). After extracting 662 activates, we stored
related information in each node by LCPA, LPA, PCA, and
AADTA, and Table 6 shows the complete details.

Knowing and Unknowing. Students of group 1 were
aware about the layout of designed setup, and they completed
all six tasks without any prompting. Trajectories of group 1
are traced to detect abnormal activity at real time by using
Algorithm 5 (AADTA). Students of group 1 involved in the
same task are different from unaware participants of group
2 as shown in Table 7. In other words, unaware participants
develop uncommon trajectories which were significantly
different from pattern generated by aware group. After 14.5
seconds, it is clearly shown that it repels previous possibility
of pattern 2 and it mismatches with other patterns shown in
Figure 11(a). Therefore, such kind of activity is labeled with
abnormal activity, and user’s behavior pattern privacy can
be protected by detecting such abnormal activity.

Normal Versus Abnormal. In the second experiment, it is
required from participants of group 1 to stimulate a condi-
tion which we can label as abnormal condition. To create real
abnormal situation, like as tumble, is hard to stimulate.
Therefore, to generate abnormal phenomena, some distur-
bance such as by calling to a participant randomly while
the task is being performed, are added in the experiment.
After applying disturbed method, our algorithm detects
abnormal activity at real-time occurrence without waiting
for task’s completion as shown in Figure 11(b). So our algo-
rithm detects activity at real time instead of central com-
puting in which abnormality is detected after completion
of whole process of activity, and it enhanced the real-time
performance. Hence, we found that our scheme protects
privacy of user’s behavior pattern by detecting abnormal
activity at real time without waiting for completion of the
process. Table 8 shows the result of abnormal activity
detection by our proposed BehaviorPrivacyDeg. The
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Table 8: Time-duration number of devices triggered in normal versus abnormal.

Task setting Senor devices Time duration (s) Abnormal-detection-location ADL
105-115 9 9 48.51 69.1 7 58%

115-106 12 12 80.2 85.43 8 68.4%

104-121 10 10 52.31 65.89 7 78.9%

112A-109B 4 4 12.10 24.23 4 70%

101-119 6 6 16.75 25.13 3 80%

Average ADL 71%
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transition of participants shown in Figure 9 is d26 ⟶
d24 ⟶ d22 ⟶ d34 ⟶ d40 ⟶ d21 ⟶ d19 ⟶ d17 ⟶ d13
⟶ d10 ⟶ d16 ⟶ d21 ⟶ d14. When abnormality is
detected at sensor device d19 by interfering the participants,
the trajectory remains the same but time duration is signifi-
cantly changed. Results in Figures 12(a) and 12(b) show the
suitability and effectiveness of our scheme.

User Privacy-Level Concern Index. In this section, as dis-
cussed in privacy-level design model section, experiment
result of our proposed MPCS showed that user’s behavior
pattern privacy is changed with the changing of privacy level.
Privacy levels are configured by using index value on server.
In Figure 13, index value showed that most users have much
concerned about their activity privacy in smart IoT environ-
ment. After this, result revealed that users are more
concerned about that area/zone and only 10 percent users
are worried about their location. Hence, users can control
their privacy level according to their concern by using our
proposed MPCS.

Location Privacy. To protect the location of user in smart
IoT environment, our proposed LPA achieved privacy of
user’s location by considering entropy and cloak region
(CR). Users are required to share some level of personal
information for getting services from server via installed
sensor devices which are also called access point (AP).

We used a parameter ∂ to obtain partial information. In
our experiments, we used 120 sensor devices which sense
data and ∂ = 1:5 represents the user familiarity about query
probability over 75 APs. The effect of ∂ on entropy and prod-
uct of distance are represented in results of our proposed
LPA which is shown in Figures 14(a) and 14(b). In our
simulation, P = 15, r = 500m, and change ∂ is from 0:5 to
1:5. The result revealed that location privacy algorithm
(LPA) is better and has achieved the set target. The assess-
ments of results showed that performance of LPA is better.

5. Conclusion

In this paper, we have proposed an effective multilevel pri-
vacy controlling scheme based on behavior pattern privacy

degree and multilevel privacy design model. To protect the
privacy of user’s behavior pattern, we introduced Behavior-
PrivacyDeg based on FPMTA, PCA, and AADTA. Behavior-
PrivacyDeg focuses to mine, compress, store, and compute
activities of user’s behavior pattern by using proposed
mining, compression algorithms, and storage mechanism.
To detect abnormality and to protect the activity, we use
the AADTA. Privacy levels are used for controlling method
to protect users’ behavior pattern. LCPA is used to configure
the privacy level of users according to their concern and pri-
ority. PLA protects the privacy of user’s location. PLA used
entropy and cloak region (CR) to ensure privacy of loca-
tion by spreading fake locations as far as possible. The
experiments revealed the performance and feasibility of
proposed MPCS. The scheme we proposed could provide
a basis for behavior pattern privacy, LBS research, having
the practical and theoretical significance on the study of
trajectory anonymity, and location-based privacy preserv-
ing in smart IoT environment.
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