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In recent years, cloud workflow task scheduling has always been an important research topic in the business world. Cloud workflow
task scheduling means that the workflow tasks submitted by users are allocated to appropriate computing resources for execution,
and the corresponding fees are paid in real time according to the usage of resources. For most ordinary users, they are mainly
concerned with the two service quality indicators of workflow task completion time and execution cost. Therefore, how cloud
service providers design a scheduling algorithm to optimize task completion time and cost is a very important issue. This paper
proposes research on workflow scheduling based on mobile cloud computing machine learning, and this paper conducts
research by using literature research methods, experimental analysis methods, and other methods. This article has deeply
studied mobile cloud computing, machine learning, task scheduling, and other related theories, and a workflow task scheduling
system model was established based on mobile cloud computing machine learning from different algorithms used in processing
task completion time, task service costs, task scheduling, and resource usage The situation and the influence of different tasks on
the experimental results are analyzed in many aspects. The algorithm in this paper speeds up the scheduling time by about 7%
under a different number of tasks and reduces the scheduling cost by about 2% compared with other algorithms. The algorithm
in this paper has been obviously optimized in time scheduling and task scheduling.

1. Introduction

With the widespread popularization and application of
Internet technology, as well as the rapid growth of informa-
tion, the data that scientific research and business need to
face and process has become increasingly large and complex,
far exceeding the computing power of the existing IT infra-
structures. In order to solve the problem of large-scale and
massive processing, the concept of cloud computing is pro-
posed. Cloud computing is a new resource delivery and
service provision model. Cloud computing service providers
can transfer various software and hardware resources to the
cloud computing environment to provide users with abun-
dant computing resources and computing services, such as
large-scale scientific computing services and data storage ser-
vices. At this point, users only need to dynamically select the
appropriate resources according to their own needs and pay a
certain fee to the cloud service provider, avoiding the need
for users to buy large-scale software and hardware equipment

(saving resource investment costs) or to develop specific
applications for time overhead.

In recent years, the application range of cloud computing
has become wider and wider, covering all aspects of our lives.
With the continuous improvement of cloud computing
processing task capability, people’s requirements for hardware
have gradually changed from pure device functionality to ser-
vice quality claim. For example, service cost, time, flexibility,
security, scalability, and reliability are all factors that need to
be considered in cloud computing. This is also the main reason
why cloud computing has become a research hotspot today.

According to Tawalbeh et al., mobile devices are increas-
ingly becoming an indispensable part of people’s daily lives
and are conducive to performing various useful tasks. Mobile
cloud computing integrates mobile and cloud computing to
expand its functions and benefits, overcoming their limita-
tions, such as limited memory, CPU power, and battery life.
Big data analysis technology can extract values from data.
Data has four aspects: volume, change, speed, and accuracy.
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Tawalbeh et al. discussed online healthcare and the role of
mobile cloud computing and big data analysis in its imple-
mentation. With the application of cloud computing in the
field of healthcare, the development and momentum of net-
worked medical applications and systems have also emerged.
They reviewed the techniques, tools, and applications of big
data analysis. Finally, the research results of using big data
and mobile cloud computing technology to design net-
worked medical systems are summarized. The prospects for
networked medical care are put forward. However, their
research results did not actually solve the application prob-
lems in related fields, and there are still many problems in
actual operations [1]. Buczak and Guven introduced a cen-
tralized literature review of machine learning (ML) and data
mining (DM) methods for network analysis to support intru-
sion detection. A short tutorial description of each ML/DM
method is provided. Based on the number of citations or
the relevance of emerging methods, they identified, read,
and summarized papers that represent each method. Since
data is very important in ML/DM methods, they introduced
some well-known network data sets for ML/DM. Then, they
discussed the complexity of ML/DM algorithms, discussed
the challenges of using ML/DM algorithms in network secu-
rity, and put forward some suggestions on when to use a
given method. However, they did not innovate in this area
nor did they combine with other applications to explore
practical applications [2]. According to Masdari et al., work-
flow scheduling is a prominent problem in cloud computing.
Its goal is to complete the execution of the workflow by con-
sidering the service quality requirements of the workflow
(such as deadlines and budget constraints). Aiming at the
simple and scientific workflow scheduling problem in cloud
computing, many latest workflow scheduling schemes have
been proposed in the literature, and they have conducted a
comprehensive review and analysis of these schemes. They
clarified the goals of scheduling schemes in cloud computing,
and they classified the proposed schemes according to the
type of scheduling algorithm applied in each scheme. In
addition, each program is explained and a comprehensive
comparison is made to highlight their goals, characteristics,
and limitations. Finally, the conclusions and future research
directions are put forward. However, their research plan only
considers a single effect, and they did not conduct a com-
bined study of multiple goals [3, 4].

The innovations of this article are as follows: (1) We com-
bined qualitative research with quantitative research and fully
analyzed the research data. (2) We combined theoretical
research with empirical research based on mobile cloud com-
puting and machine learning theory, and then we investigated
based on the specific situation of workflow task scheduling.

2. Research Method of Workflow Scheduling
Based on Mobile Cloud Computing
Machine Learning

2.1. Cloud Computing

2.1.1. Cloud Computing Overview. Cloud computing is devel-
oped on the basis of utility computing, distributed comput-

ing, and virtualization. It can integrate different software
and hardware resources into a large “resource pool” through
virtualization technology [5], and users can use the Internet
Visit as the “resource pool” and then purchase these comput-
ing resources according to their own needs [6]. At present,
there is no unified definition of cloud computing. Many
research scholars and institutions have defined cloud com-
puting according to their own understanding.

According to the National Institute of Standards and
Technology (NIST), cloud computing is defined as a kind
of computing resource (including networks, servers, storage,
applications, and services) that can be obtained through the
Internet in a convenient and on-demand manner. These
resources come from a configurable and shared resource pool
[7], and they only need very little management effort from
the users and enable users to quickly configure and release
related computing resources without interacting with cloud
providers [8]. In summary, cloud computing can also be
called grid computing; it can complete the processing of tens
of thousands of items of data in a short period of time (a few
seconds), so as to achieve powerful network services, and
through a system composed of multiple servers, it can pro-
cess and analyze these small programs to get the results and
return them to the user.

2.1.2. Features of Cloud Computing. The concept of cloud
computing is constantly changing with the development of
technology. However, regardless of the future development
of cloud computing, cloud computing will have the following
major characteristics:

(1) Virtualization [9]: cloud computing can integrate
many different hardware physical resources into a
large virtual resource pool through virtualization tech-
nology, which can be managed uniformly by cloud
computing. Users can purchase various services
through the Internet and then use various terminal
devices anytime and anywhere, without knowing the
specific location of the resources used [10]

(2) High scalability: cloud computing can realize the
scalability of IT resource utilization. Users can
dynamically purchase resources from cloud service
providers according to their own needs. When users
do not need redundant computing resources, they
can also release them in time [11]. Cloud service pro-
vider Yi can provide more virtualized resources to
meet the needs of different users to obtain more users

(3) Transparency and pooling of resources: the transpar-
ency of resources is aimed at users. Users do not need
to understand the internal structure of cloud com-
puting resources [12], but only need to pay attention
to whether their own needs are met. Pooling is for
cloud providers. In the cloud computing environ-
ment, the cloud provider virtualizes all resources into
a “virtual resource pool,” and then it performs unified
management and scheduling of virtual resources [13]
and provides corresponding services according to the
different requirements of users
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(4) The scale is huge: the scale of cloud computing is
quite large. For example, Google’s cloud computing
platform is built with more than 1 million servers.
Companies such as IBM, Microsoft, and Amazon
are also building cloud computing platforms through
spectacular physical computer clusters [14, 15] and
providing users with super computing capabilities
and storage capabilities

(5) Pay on-demand: users can pay corresponding fees
based on the resources used, which is the same as
the payment method for public infrastructure such
as electricity, water, and natural gas

(6) Reliable automatic management: the cloud comput-
ing data center is in an unsupervised state, realizing
high-reliability automated management [16]. The
data can be backed up in time, and the failed nodes
can be automatically detected and eliminated with-
out affecting the normal operation of the system,
thereby avoiding server overload, reducing the waste
of resources, and ensuring that cloud computing can
provide users with stable, safe, and sustainable ser-
vice [17]

2.1.3. Cloud Computing Classification. There are many forms
of cloud computing. According to the scope of services pro-
vided by cloud computing, it can be divided into the public
cloud, the private cloud, and the hybrid cloud.

The public cloud is a platform for several enterprises and
public users. Cloud service providers usually provide users
and enterprises with related services through the Internet,
such as storage, computing, and other types of services [18].
Enterprises or users do not need to build and manage soft-
ware and hardware platforms by themselves, but they only

need to pay on-demand to easily obtain cloud services. The
private cloud is the opposite of the public cloud. It is mainly
for enterprise users. It is a cloud computing platform inde-
pendently built by enterprises or organizations, and it only
provides resources and services for internal users of enter-
prises or organizations [19]. And compared with public
clouds, private clouds are more secure. The hybrid cloud is
formed by the integration of the public cloud and the private
cloud. This is the development direction of cloud computing
in recent years. For some enterprises, considering the security
of data, they are more willing to store data in a private cloud.
At the same time, they want to obtain public cloud comput-
ing resources [20, 21]. Therefore, the hybrid cloud is adopted
by more and more enterprises. Because the hybrid cloud
makes full use of the advantages of both public and private
clouds, it maximizes enterprise benefits. Figure 1 shows the
structure of mobile cloud computing.

2.2. Neural Network. A neural network is a commonly used
method in artificial intelligence, which mainly imitates the
working principle of a human neural network to process
information. A neural network is an arithmetic model com-
posed of a large number of nodes, and each layer of nodes
is connected with each other. The output of each node of
the neural network needs a transformation function to limit
it. In addition, the nodes between two adjacent layers are
connected by a variable called weight, which is equivalent
to the memory of a human neural network [22, 23].

A neural network has a strong information synthesis
capability, it can process qualitative and quantitative infor-
mation at the same time, it can coordinate well this relation-
ship, and it is suitable for processing complex nonlinear and
uncertain objects. The design of a neural network has strong
plasticity, so it can realize self-learning, self-organization,
and self-adaptation, and it can conveniently deal with
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Figure 1: Mobile cloud computing structure.
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uncertain systems. Since the information in the neural net-
work is distributed and stored in the neurons of the neural
network, it has strong robustness and fault tolerance. Each
neuron of the neural network is structurally parallel, which
can increase the calculation speed during design.

2.3. Workflow Scheduling. Workflow is a business process
that is automatically executed according to a series of defined
rules. Documents and tasks are transferred between different
actors and completed by multiple participants. In the process
of workflow execution, the workflow management system
executes and manages the workflow through computer tech-
nology and coordinates the information interaction between
members or jobs [24].

The traditional workflow system allows users to build
visual applications without complicated and time-consuming
programming. However, the disadvantage of the work-
flow system is that it cannot easily access the software
components, which prevents the workflow system from
being widely used [25]. It happens that cloud computing
provides a service for accessing resource pools and soft-
ware and hardware, and therefore, the workflow system
has been well developed. Among them, the cloud work-
flow task scheduling algorithm is one of the core technol-
ogies of the cloud workflow system. The quality of its
scheduling strategy will directly affect the performance
of the cloud workflow system.

With the continuous development of cloud computing,
distributed workflow systems have gradually evolved to the
direction of cloud computing workflow systems [26]. This
is a brand-new application mode produced by the workflow
management system in the cloud computing environment,
which is referred to as the cloud workflow for short. The
cloud workflow management system uniformly manages
the computation or storage of resources and realizes the
orderly and efficient execution of cloud workflow task sched-
uling [27], thereby realizing the automation of business
processes.

The cloud workflow has the following characteristics:

(1) Transparency: in the cloud computing environment,
all resources are virtualized. The operating environ-
ment, operating system, and implementation lan-
guage of all services in the cloud can be the same or
different. The user does not need to know the internal
implementation structure of the service used, let
alone where the resource used is located

(2) Scalability: cloud resources have the characteristics of
on-demand allocation, and users can purchase the
resources they need through the Internet anytime,
anywhere. Users can also release redundant resources
to reduce the cost of renting resources [28]. This
dynamic resource management method enables
efficient execution of workflow tasks. In addition, this
scalability not only enables users to adapt to comput-
ing resources but also enables cloud service providers
to maximize their use of resources and maximize
their own benefits

(3) Real-time monitoring: in the cloud computing envi-
ronment, the monitoring management module can
realize resource load balancing, fault monitoring,
and node scale control by monitoring the running
status of cloud workflow tasks [29]

In addition to some of the above features, the cloud
workflow also includes its strong security features, and it
can implement flexible out-of-office and overtime manage-
ment strategies, which are in line with the flexible task
configuration requirements required by the cloud work-
flow. All in all, the cloud workflow is an optimized solu-
tion for cloud computing systems that require flexible
configuration, automatic task scheduling, optimized man-
agement of resources, and computing process. The cloud
workflow can not only compress the cost of cloud com-
puting but also improve the quality of cloud services.
Therefore, the cloud workflow is bound to receive more
and more attention, and it will develop rapidly, thereby
promoting the development of the entire cloud computing
industry.

3. Workflow Scheduling Research SystemModel
Based on Mobile Cloud Computing
Machine Learning

3.1. Research Goals of Workflow Scheduling Based on Cloud
Computing. For the goal optimization problem of cloud
workflow task scheduling, most of them pay attention to
the following QOS indicators:

(1) Execution time: it represents the time required for
the completion of cloud workflow tasks, and it is
the most important goal in the scheduling strat-
egy. For users, if the submitted cloud workflow
tasks have an urgent need for completion time,
they only need to map them to computing
resources with good performance, which can
greatly reduce the execution time of cloud work-
flow tasks

(2) Execution cost: this is the cost incurred from the
use of service resources after the execution of a
cloud workflow task, including bandwidth trans-
mission costs and calculation costs. The execution
cost of a cloud workflow task is related to the per-
formance of the resources it uses, that is to say, if
the user wants to submit the workflow task to be
completed quickly, the task can be assigned to a
virtual resource with strong processing capabilities
for execution, and at the same time, users need
to pay more for it

(3) Reliability: in some fields such as aerospace and avia-
tion, the reliability of the execution of workflow tasks
is very high, because a data uncertainty may bring
unexpected disasters. However, it is difficult to main-
tain the reliability of data in the cloud computing
environment, because some abnormalities may occur
in the processing of the task, or the task cannot be
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executed due to problems in the underlying software
and hardware

(4) Security: cloud computing is cross-domain, and the
virtual resources used by users may be distributed
in different regions. When the cloud workflow tasks
submitted by users are executed on virtual machine
resources in different regions, tasks with dependen-
cies will have data that is transmitted on the network.
At this time, some network hackers may steal the
user’s data and cause the leakage of some important
data of the user. Therefore, cloud workflow tasks
need to ensure data security during the execution
process and meet the security requirements of users
in the cloud computing environment

In the cloud computing environment, the workflow
tasks submitted by users will be assigned to each virtual
resource for execution, and then the scheduling results will
be fed back to the user. Therefore, this section first estab-
lishes a cloud workflow task model and a virtual resource
model.

3.2. Workflow Task Scheduling System Model Based on
Mobile Cloud Computing Machine Learning

3.2.1. Cloud Computing Workflow Task Model. The cloud
workflow task in the cloud computing environment is com-
posed of interdependent tasks. This paper uses an undirected
cyclic graph (DAG) to describe them. Use H = ðY , R, VÞ to
describe cloud workflow tasks; the meaning of each attribute
and related definitions are expressed as follows: Y = ðy1, y2,
y3,⋯, yiÞ represents a cloud workflow task set, where yi is
the ith task ði = 1, 2,⋯, nÞ. yi = fyid , ylengthg represents differ-
ent attributes of the task, where yid represents the number of
the task yi and the length of the task ylength. R = ðrij ∣ rijÞ rep-
resents the edge of task yi to task yj, task yi is the predecessor
task of task yj, task yj is the successor task of task yi, and task
yj must be executed after all of its predecessor tasks are com-
pleted. V = fvðyi, yjÞ ∣ vðyi, yjÞg represents the communica-
tion time between task yi and task yj. The following
interdependent tasks are represented as follows:

(a) Predecessor task set

Pre yið Þ = yj r ji ∈ R
��n o

: ð1Þ

(b) Successor task set

Suc yið Þ = yj rij ∈ R
��n o

: ð2Þ

(c) Best precursor

ZPre yið Þ = yj Est yj
� ���� + v yj, yi

� �
≥ Est yk, yið Þ, ð3Þ

yj, yi ∈ Pre yið Þ, j ≠ k: ð4Þ

3.2.2. Resource Model. Cloud resources are composed of a
series of heterogeneous virtual machine resources. The
heterogeneity of virtual machines means that the comput-
ing power, memory, computing service unit price of dif-
ferent virtual machines, and the service unit price of
communication bandwidth are different. Therefore,
remember BiBjðB1, B2, B3,⋯, BmÞ as the set of virtual
machines in the cloud computing data center, Bi = ðBid,
Bpe, Bmips, BramÞ represents the different attributes of vir-
tual machines, Bid represents the number of the virtual
machine resource Bi in the data center, Bpe represents
the number of cores of the virtual machine Bi, Bmips rep-
resents the computing power of the virtual machine Bi,
Bram represents the memory size of the virtual machine
Bi, and priceðBiÞ represents the task in the virtual machine
Bi. The service unit price is calculated above, where cwij
represents the communication bandwidth between the vir-
tual machine Bi and the virtual machine BBj and trðbi, bjÞ
represents the service unit price of the communication
between the virtual machine Bi and the virtual
machine Bj.

In order to facilitate the study of subsequent algo-
rithms, the following assumptions are made for the model:
(1) A virtual machine can only perform one task in a
period of time, and virtual resources cannot be preempted
when a task is being performed. (2) There are two depen-
dent relationships, and the communication time of a task
in the same virtual machine is 0. (3) The communication
bandwidth between a virtual machine and another virtual
machine is 1, that is, the communication time between
tasks is equal to the amount of data transfer between
tasks. (4) For tasks and tasks, the data transmission
between virtual machines can be completed concurrently.
(5) The communication of tasks between virtual machines
does not affect the execution of tasks on virtual machines.

3.2.3. Scheduling Algorithm for Task Migration. The HEFT
algorithm is used to find the earliest completion time of each
cloud workflow task, the latest completion time is defined as
the global latest completion time, and then makespan is used
to replace the global latest completion time. For the conve-
nience of the subsequent algorithm description, the following
definitions are given.

Definition 1. Task execution time refers to the execution time
allocated to the virtual machine resource bk for the cloud
workflow task yi, which is recorded as follows:

e yi, bkð Þ = ylength
bmips

: ð5Þ

Definition 2. The earliest start time Est refers to the earliest
start time of the cloud computing workflow task yi scheduled
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to the virtual machine resource bk. The calculation formula is
as follows:

Among them, avaðbkÞ represents the earliest available
time of the virtual machine.

Definition 3. The earliest completion time Eft, that is, the ear-
liest completion time of a cloud computing workflow task on
a virtual machine, is recorded as follows:

Eft yi, bkð Þ = Est yi, bkð Þ + e yi, bkð Þ: ð7Þ

Definition 4. Actual start time (Ast)/actual completion time
(Aft) refers to the actual start time/actual completion time
of the task on the assigned virtual machine.

Definition 5. The total time to complete a cloud computing
workflow task makespan, that is, the longest time to complete
a cloud computing workflow from the beginning of the task
to the end of the task, is denoted as follows:

Mak =max Eft yið Þf g: ð8Þ

Definition 6. The latest completion time Lft, that is, the latest
completion time of a cloud workflow task on a virtual
machine, is denoted as follows:
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workflow-related concepts

Cloud workflow task
scheduling target

classification

Cloud computing
related concepts

Target optimization scheduling
algorithm based on machine

learning

Simulation

Result analysis

Conclusion and outlook

Target optimization
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on task migration

Figure 2: The research framework of this article.

Est yi, bkð Þ =
0, Pre yið Þ = 0,

max ava bkð Þ, max Aft yj
� �

+ v yj, yi
� �n on o

, Pre yið Þ ≠ 0, yj ∈ Pre yið Þ:

8<
: ð6Þ

Lft yi, bkð Þ =
makespan, Suc yið Þ = 0,

min Lst yj
� �

− v yi, yj
� �n o

, Suc yið Þ ≠ 0, yj ∈ Suc yið Þ:

8<
: ð9Þ
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Definition 7. The latest start time Lst, that is, the latest start
time of the cloud workflow task on the virtual machine, is
recorded as follows:

Lst yi, bkð Þ = Lft yi, bkð Þ − e yi, bkð Þ: ð10Þ

Definition 8. Critical Path (CP), the longest path of the cloud
workflow from the starting task to the ending task, is defined
as the critical path of the cloud workflow.

Definition 9. Critical tasks refer to the tasks on the critical
path. For cloud workflow tasks, if the task satisfies

Eft yið Þ =max Eft yið Þf g, ð11Þ

then yi is the key task, and right again yq ∈ PreðyiÞ, if the task
yq satisfies EftðyqÞ + vðyq, yiÞ =maxyq∈PreðyiÞfEftðyqÞ + vðyq,

yiÞg, then yq is the key task. This way, we get all the key tasks
on the critical path in turn.

Definition 10. Execution cost refers to the sum of the cost of
cloud workflow tasks mapped to virtual machine resources
and the communication cost of all predecessor tasks and
tasks:

Cos yið Þ = 〠
yj∈Pre yið Þ

v yj, yi
� �

∗ tr bc, bkð Þ + e yi,bk

� �
∗ Pri bkð Þ

� �
,

ð12Þ

where bc is the virtual machine allocated by the predecessor
task yj. The completion time and economic cost of task yi
are related to the processing performance of resource bk
and the communication time between tasks.

Whenmigrating noncritical tasks, you need to find a suit-
able idle time period ½Ds, Df � on other virtual machines with
low execution costs. First, determine whether the idle time
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period can execute the task to be migrated, and then deter-
mine after the task is migrated whether it will affect the com-
pletion time of the subsequent tasks; if the idle time period
½Ds, Df � can execute the task to be migrated and does not
affect the completion time of the subsequent tasks, then the
task will be migrated. That is, for a given cloud workflow task
yi ∈ Y , if SucðyiÞ ≠ 0, the migration condition (10), condition
(11), and condition (12) are met, and the task can be
migrated; if Succðy iÞ = 0, only condition (10) and condition
(11) can migrate, where bk is its newly allocated virtual
machine, bp is its previously allocated virtual machine, and

costsum′ is the cost of all tasks after task yi migrates from
virtual machine bk to virtual machine bp.

max max Aft yj
� �

+ v yj, yi
� �

, Fs

n o
+ e yi, bkð Þ

n o
≤ Ff ,

ð13Þ

Costsum′ < Costsum, ð14Þ

Aft yi, bkð Þ + v yi, ycð Þ ≤min Aet ycð Þf g, yc ∈ Suc yið Þ:
ð15Þ

When the current noncritical tasks have migrated, pro-
vide more free time for migration for the tasks to be migrated
later, and move the current noncritical tasks to the latest
completion time of the assigned virtual machine. If the
current noncritical task does not meet the migration condi-
tions, it will also be moved to the latest completion time of
the allocated virtual machine.

The rankuðtiÞ value of the task is determined by the
HEFT algorithm, then the priority of the task is determined,
then the cloud workflow tasks with high priority are sched-
uled to the virtual machine with the minimum completion
time in turn, and finally the total of the cloud workflow tasks
is obtained. Completion time ismakespan, and total comple-
tion cost iscostsum. We define makespan as the global latest
completion time. And according to the abovementioned
knowledge, the total completion time of cloud workflow tasks
is determined by the critical path, that is, determined by all
the key tasks on the critical path. The cost optimization
scheduling algorithm based on task migration is mainly for
reasonably migrating some noncritical tasks to virtual
machine resources with low execution cost under the premise
of ensuring that the total completion time of the task remains
unchanged, so as to optimize the total service cost. Figure 2
shows the research framework of this article.

4. Workflow Scheduling Based on Mobile Cloud
Computing Machine Learning

4.1. Cloud Computing Workflow Task Scheduling Experiment
Results. Nine DAG workflow tasks are randomly generated
and assigned to 3 virtual machines for simulation, and then
the results of 10 simulation experiments of the algorithm in
this section and the HEFT algorithm are compared as shown
in Figure 3. It can be seen that the algorithm in this section
does not increase cloud work. In the case of the total comple-
tion time of the flow task, the algorithm in this section can
save costs more effectively than the HEFT algorithm. This
is mainly because the algorithm in this section migrates some
noncritical tasks to low execution costs while ensuring that

Table 1: Details of algorithm task scheduling in this article.

Task
Data transmission before task execution Task performance

Parent task Subtasks Source resource Target resource
Transmission

time
Resources

Starting
time

Operation
hours

Complete
time

1 — — — — — — 15.8 12.6 32.8

2 1-1 1-3 3 3 0.0 3 17.8 14.0 31.8

3 1-1 1-2 3 1 0.0 1 17.8 15.3 33.2

4 1-2 1-4 1 3 0.0 3 33.1 12.5 45.5

5 1-3 1-4 3 3 0.0 3 33.1 12.5 45.5

6 1-6 1-4 3 3 0.0 3 45.5 9.4 54.9

7 1-7 1-4 3 1 0.0 1 45.5 7.5 52.9

8 2-2 — — — — 4 0.0 13.2 13.2

9 2-1 — — — — 2 0.0 14.5 14.5

10 2-3 2-1 2 4 0.0 4 14.5 19.8 34.3

11 2-1 2-5 2 2 0.0 2 14.5 9.4 23.9

12 2-2 2-4 4 2 0.0 2 23.9 4.6 28.5

13 2-4 2-6 2 4 0.0 4 34.3 16.2 50.4

14 2-3 2-7 4 2 0.0 2 36.3 15.8 50.1

15 3-3 3-5 2 4 0.0 4 58.4 13.7 72.1

16 3-1 3-6 4 2 0.0 2 58.4 13.8 72.2

17 3-2 3-4 4 3 14.2 3 68.6 5.2 73.8

18 3-1 3-7 4 1 8.4 1 66.0 9.3 75.3
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the total completion time of cloud workflow tasks is not
affected. It executes on virtual machine resources. The
worst-case cost of the algorithm in this section is the same
as the cost of the HEFT algorithm.

4.2. Comparison of Task Completion Time. Compare the
algorithms in this section with the HEFT, QOS-HEFF, and
TCCS algorithms. Among them, the QOS-HEFF algorithm
is an improved algorithm for the HEFT algorithm according
to user preferences (time and cost). This section evaluates the
performance of this section’s cloud workflow task scheduling
algorithm through two indicators: cloud workflow task com-
pletion time and total service cost. This experiment uses five
types of cloud workflows: 10, 20, 30, 40, and 50 tasks. The
number of layers is set to 4, 6, 8, 10, 12, and 10 of each type
of cloud workflow task that is randomly generated and then
assigned to 3 virtual machines for simulation experiments,
and each cloud work is recorded. The average values of the
completion time and cost of the flow task and the experimen-
tal results are shown below.

It can be seen from Figure 4 that when the cloud work-
flow task scale is small, the task completion time of the
algorithm in this section is slightly lower than the TCCS
and HEFT algorithms, but far lower than the QOS-HEFT
algorithm. As the cloud workflow task scale increased, the
difference in completion time between the algorithm in this
section and the TCCS, HEFT, and QOS-HEFT algorithms
is becoming more and more obvious. This is mainly because
the algorithm in this section reasonably copies the predeces-
sor tasks of the current task and reduces the communication
time between tasks. Thus, the current task is completed early,
and the total completion time of the cloud workflow tasks is
ultimately reduced.

4.3. Task Cost Comparison. Assuming that the vmips of virtual
machines V1, V2, and V3 are 600, 700, and 800Mbits/s,
respectively, the corresponding virtual machine service prices
are 0.02, 0.05, and 0.09 yuan/sec, and the communication
bandwidth service price is 0.03 yuan/sec. It can be seen from
Figure 5 that by determining the rank ðtiÞ of each task, the
priority order of the cloud workflow task scheduling is deter-
mined as T2, T1, T5, T3, T4, T6, T7, T9, and T8. First, the
cloud workflow task is prescheduled through the HEFT algo-
rithm, and the total completion time of the cloud workflow
task is madepan = 61:75 seconds, the total cost spent is
costsum = 6:8569 yuan, and makespan is defined as the
global latest completion time.

The total service cost refers to the cost of completing all
tasks. As shown in Figure 6, the algorithm in this section
requires the least cost to complete all tasks, which is signifi-
cantly better than the TCCS and QOS-HEFT algorithms.
The performance of the HEFT algorithm is the worst. This
is because the algorithm in this section takes into account
the communication cost between tasks. The replication stage
reasonably replicates the precursor tasks to reduce the execu-
tion cost, then goes through the recopying stage to further

Table 3: Energy consumption composition of cloud data center.

Energy consumption composition Composition ratio

Computing equipment 46%

Cooling equipment 32%

Power system 5%

Lighting system 5%

Other devices 12%

Table 2: Details of resource usage in the algorithm scheduling process of this article.

Resources Previous task completion time Idle time Task Starting time Operation hours Complete time Resource utilization

1 0.0 17.8 1-2 17.8 15.3 33.1

45.0
2 33.2 12.5 1-7 45.6 7.4 52.9

3 52.9 0.0 1-5 52.9 2.0 54.9

4 54.9 11.1 3-7 66.0 9.3 75.3

5 0.0 0.0 2-1 0.0 15.5 14.5

88.2

6 14.5 0.0 2-5 14.5 9.4 23.9

7 23.9 0.0 2-4 23.9 4.6 28.5

8 28.6 5.8 2-7 34.3 15.8 52.1

9 50.2 0.0 3-3 50.2 8.3 58.4

10 58.4 0.0 3-6 58.4 13.8 72.3

11 0.0 0.0 1-1 0.0 17.6 17.8

78.1

12 17.8 0.0 1-3 17.8 14.0 31.8

13 31.8 1.3 1-4 33.2 12.5 45.5

14 45.6 0.0 1-6 45.6 9.5 54.9

15 54.9 13.7 3-4 68.6 5.3 73.8

16 0.0 0.0 2-2 0.0 13.2 13.2

93.017 13.2 1.3 2-3 14.5 19.8 34.3

18 34.3 0.0 2-6 34.4 16.2 52.4
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reduce the execution cost, and finally optimizes the overall
service cost by deleting redundant tasks.

4.4. Task Scheduling and Resource Usage. According to the
algorithm in this paper, for the tasks of the three workflows,
first, the time weight of the task is calculated according to the
average execution time of the task, the average transmission
time of the task in the resource, the task entry time, and the
task exit time; then the tasks are sorted into the task execu-
tion sequence; and then appropriate resources are assigned
to the task for execution. The execution scheduling results
of the tasks are shown in Table 1:

The scheduling algorithm in this article is based on the
task execution sequence. For each task in the sequence,
first traverse all resources, then determine the idle time
period in the resource, whether the task is satisfied, and
if it is satisfied, it will be scheduled; otherwise, the running
time will be selected.

It can be seen from Table 2 that in the process of the
scheduling algorithm, resource 1 generates a total of 3 idle
time periods, resource 2 generates a total of 1 idle time
period, resource 3 generates a total of 2 idle time periods,
and resource 4 generates a total of 2 idle time periods. The

resource utilization rates of the 4 resources are 45.0%,
88.2%, 78.1%, and 93.0%, respectively, and the average
resource utilization rate is 74.1%.

4.5. Influence of the Number of Workflows and Tasks on the
Experimental Results. The current development trend of
cloud data centers is towards high-density and large-scale
models, and its energy consumption is mainly concentrated
on computer equipment, refrigeration equipment, and power
systems. Many companies and researchers have investigated
the energy consumption rate of various types of machines
in data centers. It can be seen from Table 3 that other
machinery and equipment account for about 22%, and the
energy consumption of the computing machine as the pro-
cessor accounts for 46% of the total energy consumption.
Therefore, computer equipment has become an important
factor in data center energy consumption.

Figure 7 shows that for data-intensive workflows, as the
number of workflows increases, the total completion time
of the tasks of the four algorithms does not change much,
while the average resource utilization rate has increased but
the growth is slower, and the maximum value of the resource
utilization rate is always small and does not exceed 0.15. This

Impact on total completion time Impact on average resource utilization Impact on energy consumption
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is also due to the fact that the data transmission time of the
data-intensive workflow is much longer than the task execu-
tion time, which results in an excessively long period of
resource idle time.

MWFTS is a task scheduling algorithm based on multiple
workflows, and on this basis, the MWFTEES energy-saving
strategy is proposed. The SHEFTEX algorithm is mainly used
to deal with resource idleness that easily occurs in the work-
flow process. Through the comparison of the data in Figure 8,
it can be found that whether it is the total completion time of
the task or the average utilization of resources, the perfor-
mance of the algorithm in this paper is far better or slightly
better than the MWFTS algorithm, the MWFTEES algo-
rithm, and the SHEFTEX algorithm in terms of scheduling;
in the system energy consumption above, the energy-saving
effect of the algorithm in this paper is obviously better than
the other three algorithms. From this set of experiments, we
can fully see the superiority of the algorithm in this paper
for task scheduling based on multiple workflows.

Figure 8 shows the comparison between the SHEFTEX
algorithm, the MWFTS algorithm, and the MWFTEES algo-
rithm, and the experimental results of this algorithm from
the three aspects of the total completion time of workflow
tasks, the average utilization of resources, and system energy
consumption. It can be seen from graphical comparison that
for data-intensive workflows, the total task completion time
and the average resource utilization change of the SHEFTEX
algorithm and the MWFTS algorithm are basically the same;
but the resource utilization is very small, not exceeding 0.3.
This is also due to the fact that the data transmission time of
the data-intensive workflow is much longer than the task exe-
cution time, which results in an excessively long period of
resource idle time. In terms of energy consumption, the algo-
rithm in this paper is better than the other three algorithms.

This paper defines the standard deviation of the total
number of tasks running on a virtual machine as a load fac-
tor. If a large number of tasks are allocated on some virtual
machines and some are idle, the load of the system is unbal-
anced. A 10-layer DAG workflow model is used for experi-
ments; Gaussian random is used to set virtual machine and
task parameters, and 20 virtual machines are configured.
The average processing capacity of the virtual machine is
1200, and the standard deviation is 150; the average of the
task length is 15000, the standard deviation is 200, and the
number of tasks is 100~400. The experimental results are
shown in Figure 9. As can be seen from the data in
Figure 9, the algorithm in this paper achieves simple load
balancing.

According to the random search function of the algo-
rithm, the results of multiple simulation experiments are
selected, and the results are shown in Figure 10. Because
the number of LIGO operations is increased from 30 to
150, and the overall average and variance of the solution
are compared, the algorithm proposed in this article has spe-
cific advantages. The reason for this phenomenon is that the
algorithm proposed in this paper improves the grid coordi-
nate adaptation system and dynamically adapts to changes
based on network distribution, so that the algorithm takes
into account a certain degree of time and cost.

4.6. Task Scheduling Optimization Effect of the Algorithm.
Figure 11 shows that the algorithm in this paper is 7.38%,
7.84%, 7.93%, and 8.23% faster in scheduling time. Moreover,
as the workload increases, the effect of the algorithm in this
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paper to optimize the time will be more obvious. Compared
with the HEFT algorithm, this algorithm only increases the
service overhead by 2.56%, 2.22%, 2.24%, and 2.48%. Exper-
imental results show that by adding a small amount of cost,
the scheduling time can be greatly optimized. This is espe-
cially important in time-sensitive mission planning.

In this paper, the number of LIGO tasks is set to 150, and
the time to plan to obtain the optimal solution is used as an
indicator. As shown in Figure 12, the ant colony algorithm
will iterate about 90 times for convergence, but the algorithm
in this paper will converge about 105 times for iteration.
Therefore, the experimental results show that the ant colony
algorithm is slightly better than the algorithm proposed in
this paper in terms of convergence speed. From the perspec-
tive of scheduling time, the final scheduling time of the ant
colony algorithm is about 640 s, but the algorithm scheduling
time of this article is about 588 s. Therefore, the algorithm in
this paper is better than the ant colony algorithm in terms of
time scheduling. It can be seen that task aggregation plays a
better role in work scheduling.

5. Conclusion

This article is mainly about the research of workflow sched-
uling based on mobile cloud computing machine learning.
Unlike previous research, this article adds new concepts
and uses new applications of machine learning based on this
research, and considers the cost and time dual-objective opti-
mization problem. The algorithm in this paper is better than
other algorithms on the whole, and has obvious improve-
ments in time scheduling and task scheduling, in shortening
the total completion time of the entire workflow task, and in
saving the cost of task service. The innovation of this paper is
to conduct a large number of simulation experiments, com-
bining theory with empirical research and analysis, highlight-
ing the focus of this paper. In the future, we will consider the
next step of multiworkflow task scheduling, expanding the
application of mobile computing and machine learning,
and hope that there will be better breakthroughs.
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