
Research Article
Virtual Network Resource Optimization Model for Network
Function Virtualization

Đani Vladislavić ,1 Darko Huljenić ,1 and Julije Ožegović 2

1Ericsson Nikola Tesla d.d., Zagreb, Croatia
2Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Croatia

Correspondence should be addressed to Đani Vladislavić; djani.vladislavic@ericsson.com

Received 25 March 2021; Revised 15 June 2021; Accepted 21 July 2021; Published 17 August 2021

Academic Editor: Ruhui Ma

Copyright © 2021 Đani Vladislavić et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Network function virtualization (NFV) is a concept aimed at achieving telecom grade cloud ecosystem for new-generation
networks focusing on capital and operational expenditure (CAPEX and OPEX) savings. This study introduces empirical
throughput prediction model for the virtual network function (VNF) and network function virtualization infrastructure (NFVI)
architectures based on Linux kernel. The model arises from the methodology for performance evaluation and modeling based
on execution area (EA) distribution by CPU core pinning. EA is defined as a software execution unit that can run isolated on a
compute resource (CPU core). EAs are derived from the elements and packet processing principles in NFVIs and VNFs based
on Linux kernel. Performing measurements and observing linearity of the measured results open the possibility to apply model
calibration technique to achieve general VNF and NFVI architecture model with performance prediction and environment
setup optimization. The modeling parameters are derived from the cumulative packet processing cost obtained by
measurements for collocated EAs on the CPU core hosting the bottleneck EA. The VNF and NFVI architecture model with
performance prediction is successfully validated against the measurement results obtained in emulated environment and used to
predict optimal system configurations and maximal throughput results for different CPUs.

1. Introduction

Modeling of network function (physical) service perfor-
mance was a straightforward task determined by well-
defined test scope during verification activities in telecom
vendors’ laboratories for a long time. Models coming from
the labs were successfully used for system dimensioning at
telecom service providers (TSPs). Determinism of the net-
work function service performance going virtual (virtual net-
work function (VNF)) has been lost due to variety of systems
(network function virtualization infrastructures (NFVIs)) it
may be deployed on. These can have different hardware
(HW) capabilities, virtualization layer, acceleration technolo-
gies applied, and the possibility of multi-VNF deployments.
Having all deployment options verified in telecom vendor
labs (even if it would be realistic) would imply huge develop-
ment costs and as such would make capital expenditure
(CAPEX) cost increase inevitably. This can jeopardize the

main idea of NFV, aiming for CAPEX and operational
expenditure (OPEX) reduction. Identifying critical VNF
and NFVI factors and bottlenecks impacting VNF service
performance and providing a model for system dimension-
ing in specific NFVI architectures become an important step
for further expansion of NFV [1].

This study proposes VNF and NFVI architecture model
with performance prediction based on measurements on
the commodity multicore system and by applying model cal-
ibration technique. This is the first study proposing VNF
throughput prediction model validated in emulated environ-
ment. The target NFVIs in this study are based on commod-
ity hardware and on the state of the art of generic Linux
kernel processing using new API (NAPI) I/O framework
and open virtual switch (OVS), providing network virtual
device emulation within the kernel (vhost-net). A proposed
model can be used to predict throughput for any virtual
machine- (VM-) based VNF using paravirtual (virtio)

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 9928210, 21 pages
https://doi.org/10.1155/2021/9928210

https://orcid.org/0000-0002-5838-7936
https://orcid.org/0000-0002-9151-0369
https://orcid.org/0000-0002-1018-3344
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9928210

network device drivers in guest operating system (OS) and
QEMU/KVM as the hypervisor in relation to target NFVI
configuration. Yet, it is required that the white box view of
its software architecture, system bottlenecks, and throughput
requirements are known in order to be applied in the model.
The representative VNF used for validation and throughput
performance prediction in this study is simple kernel-based
switching function (OVS).

Following related researches, the model defined in the
study presumes CPU processing capacity to be the bottle-
neck in packet processing systems. The model arises from
the novel methodology of throughput evaluation based on
execution area (EA) distribution derived from general
packet processing steps in operating system kernel defined
in our previous work [2]. This study extends the work in
[2] to consider processing in VMs. The proposed methodol-
ogy, in accordance with empirical EA bottleneck determina-
tion, is used to build a set of optimal modeling system
configurations for the target VNF and NFVI architectures
per given number of CPU core resources. For each of the
modeling system configurations, an empirical analysis of
throughput performance is performed. Model calibration
and validation are done against testbed measurements for
all defined modeling system configurations. The defined
VNF and NFVI architecture model with performance predic-
tion is further used to predict the throughput performance
and provide optimal VNF/NFVI system dimensioning for
any given number of CPU cores.

2. Related Work

Performance evaluation and modeling of packet processing
for virtual environments are research topics for already more
than a decade. This chapter provides an overview of the
known empirical and analytical models defined for packet
processing systems, comparing contribution of these models
for applying in modeling of VNF service performance. The
related work is divided into three basic categories: mathemat-
ical models, measurements of processing steps, and combina-
tion of previous two based on empirical modeling.

In 2006, Wu et al. [3] proposed a mathematical model for
packet reception in a user-space application. They described
the chain of components involved in packet processing from
the reception at NIC up to delegation to application. They
modeled the NIC by token bucket algorithm where tokens
presented the packet descriptors and the remaining elements
in the chain were modeled as queuing processes [4]. Baynat
et al. [5, 6] provided numerical models for virtual switching
systems based on Markov chains. These models were verified
in simulated environment only, and their applicability to real
or emulated environment including VNFs is questionable
due to basic assumptions taken (such as not considering
NIC emulation shown to be the main bottleneck in the sys-
tem). For these reasons, we applied combination of mathe-
matical and measurement-based modeling in our study
(empirical modeling). Further analytical models based on
queuing theory and network calculus applied in software-
defined networking (SDN) were presented in [7–11]. Sattar
and Matrawy [12] provided an overview on the analytical

models questioning their applicability due to simplification
of the network elements to provide a mathematical
formulation.

Bruschi and Bolla [13] in 2007 presented detailed pro-
cessing steps in Linux software router implementation based
on Linux kernel version 2.6. They applied RFC 2544 compli-
ant test cases for software router performance analysis. In
their work [14] in 2008, they concluded that smart CPU/core
allocation to multiple NIC receiving and sending buffers
gives the possibility of scaling performance of software
routers. Dobrescu et al. [15] in 2009 closely reached 10Gbps
throughput for the shortest packets by revisited software
router architecture. Our work assembles the knowledge of
the scalable software architectures presented in these papers
for building our EAs and related empirical throughput pre-
diction model. Emmerich et al. [16] compared different for-
warding engines of the Linux kernel, namely, software
router, Linux bridge, and open virtual switch (OVS) [17], giv-
ing slight throughput advantage to OVS. The authors con-
cluded that OVS throughput linearly scales with the
number of flows, until the number of used cores equals the
number of flows. This work also examined the throughput
capabilities of a VM attached to an OVS, highlighting the
huge throughput downgrade for the VM case compared to
configuration without the VM. Applying the Linux profiling
tool perf, the authors concluded the main reasons for the
throughput downgrade are increased context switching and
functions related to packet queues. Unfortunately, the work
provided no details on the applied VM network I/O mecha-
nism, only highlighting one core was used for the OVS and
one for the VM. In the subsequent work [18], the same
authors applied perf profiling to OVS, Linux bridge, and soft-
ware router, concluding that the main performance bottle-
neck is the generality of operating system’s network stack
implementation. The authors also provided an overview of
potential hardware bottlenecks (network bandwidth, NIC
processing capacity, PCIe bandwidth, memory bandwidth,
and CPU cache size) but concluded they are not related to
packet forwarding throughput limitation for the input traffic
rate not exceeding 10Gbps. They compared the results of
kernel-based forwarding engines to user-space forwarding
engines (OVS DPDK), claiming a sixfold throughput increase
for user space switches. Similar results were presented by
Paolino et al. in the work [19] where they introduced SnabbS-
witch user space virtual switch. The performance decrease
due to implementation overheads in kernel was also reported
in [20, 21]. The authors in [22] performed packet header
analysis and modifications, reporting no major impacts on
performance. Kawashima et al. [23, 24] provided a common
performance benchmark for various I/O frameworks (NAPI,
data plane development kit (DPDK), and netmap) and
related forwarding engines (OVS, OVS DPDK, and VALE
[25, 26]), focusing on latency/jitter and throughput bottle-
necks in the virtual switching technologies. They derived
similar conclusions for NAPI as authors in [16, 18], pointing
the generality of the network stack to be the main bottleneck
of the packet processing in kernel. The measurement results
in this work showed the maximum throughput on 4.0GHz
processor core for OVS kernel-space forwarding to be 1.6–

2 Wireless Communications and Mobile Computing

2.0Mpps and for OVS kernel-space forwarding with virtual
NIC emulation (vhost-net) to be 0.5–1.0Mpps, for any frame
sizes of single constant bit rate (CBR) UDP flow. Although
the authors highlighted NIC I/O (vhost-net) packet relay
overhead to be the main bottleneck for the packet processing
towards VMs, they provided no further system configuration
details nor detailed bottleneck analysis. Our work points to
different software (EA) bottlenecks in relation to applied sys-
tem configurations.

Meyer et al. [27] measured and simulated the perfor-
mance of software routers based on multicore systems. After
calibrating and validating their model based on testbed mea-
surements, they evaluated and predicted the performance of
existing and future software router architectures. The CPU
is considered to be the bottleneck of the system. From their
testbed measurements, they derived the relation that the
throughput of the software router follows a linear behavior,
depending on the number of used CPU cores and the frame
size. The model proposed in this work provides fair results
for the simplistic router network function (NF) architecture,
such as the one considered in the work. However, in more
complex architectures, such as when the network functions
are being virtualized in the context of network function vir-
tualization (NFV), the model cannot be applied. Our model,
on the other hand, has the ambition to be applied for these
kinds of architectures. Our previous work [2] presented
throughput evaluation methodology based on execution area
(EA) distribution derived from general packet processing
steps in kernel packet switching. We analyzed throughput
results at different points in the system in relation to EA dis-
tribution by core pinning, which is considered as CPU
resource consumption modeling parameter for the optimal
throughput in different scenarios where virtual switching is
applied. We presented the results for different NIC settings
of interrupt coalescing (IC), and we made the relation of
the observed throughput results to NAPI processing key per-
formance indicators (KPIs). Raumer et al. [28] introduced an
empirical model for calculating maximum packet rate of
Linux software router, claiming to be designed in confor-
mance with various high-speed packet forwarding frame-
works. The model and its validation were focused on single
core processing as software routers scale linearly with the
number of cores due to optimal parallelism [16]. Same as
for the model in [27], for more complex architectures in the
context of NFV, this model cannot be applied. The work in
[29] measured and simulated how networking software like
network interface card (NIC) driver and the OS network
stack influence the packet latency. They analyzed NIC driver
and OS mechanisms with respect to packet processing based
on commodity hardware and in respect to adaptive IC rate
algorithm. They calibrated the model according to measure-
ment and profiling results obtained in their testbed setup.
Differently than this work that focuses on packet latency in
relation to IC rate, our study considers IC rate in relation to
packet throughput.

A detailed knowledge of the complex systems is required
by the scientists aiming for low level optimizations and per-
formance predictions of these systems. Tremendous effort
has been given by the researchers in the last years for bench-

marking, modeling, extending, and in general understanding
virtual technologies on commodity hardware. Simplistic
empirical models are shown within these researches to have
better applicability to the real systems compared to analytical
models existing today. Empirical model for throughput pre-
diction and throughput-optimized environment setup is
indeed the focus of this study.

3. Execution Area-Based Throughput
Prediction Modeling

3.1. Approach. As highlighted by majority of benchmarking
and modeling researches presented in Chapter 2, the typical
and most prominent bottleneck of the packet processing sys-
tems is the software processing at CPU and the respective
software design of packet processing system. These are the
basic assumptions followed in throughput prediction model
construction.

The elements of the NF/VNF referent system architec-
ture are CPU exhaustive elements running in kernel space
of the NF/VNF. The VNF (together with QEMU emulation)
runs in the user-space of the host. The remaining elements of
the VNF/NFVI referent system architecture are CPU exhaus-
tive elements running in kernel space of the host. In order to
build a throughput prediction model of this complex soft-
ware architecture in relation to multicore CPU architectures,
the architecture needs to be presented in a per-core execut-
able modeling elements, simple to (re)build and measure in
any multicore CPU architectures.

The previous work [2] introduced the methodology of
performance evaluation of packet processing systems based
on execution areas (EAs). This methodology is further used
as a baseline for throughput prediction model construction.
EA can be defined as a software execution unit that can run
isolated on a compute resource (CPU core). EAs are derived
from the elements of referent system architecture and related
packet processing principles. Main criteria characteristics of
an EA are as follows:

(i) It can run on an isolated core for the single flow
traffic

(ii) It can run collocated with any other EA

(iii) It is CPU exhaustive execution unit influencing sin-
gle flow packet processing capacity

(iv) It has well-defined input and output interfaces

(v) It is scalable with number of flows jointly with other
units

The defined EAs are further used to build throughput
optimized system configurations for the testbed measure-
ments in terms of EA colocations for the given number of
CPU cores and the single flow to be served. System configu-
rations are denoted with “x + y”, where “x” presents the num-
ber of cores used by the NFVI and “y” presents the number of
cores used by the VNF. A prerequisite for each system config-
uration is to be scalable with the number of flows so that they
can further be used to build a simple as possible throughput

3Wireless Communications and Mobile Computing

prediction model. Besides by the EA colocations, each system
configuration is defined by NIC IC settings limited to two
options, off (favoring small latency) and set to 125μs (opti-
mizing the number of expensive HW IRQs towards CPU).
The 125μs constant is chosen empirically as it shows signif-
icant difference in VNF service performance comparing to IC
off. The system configurations are built gradually based on
bottleneck EA determination, starting from the minimal
granularity system configuration (“1 + 1” + IC off /125) up
to the bottleneck EA being fully isolated on the CPU resource
(“5 + 2” + IC off /125). The minimal granularity system con-
figuration assures the basic requirement of separating the
VNF CPU resources from the NFVI CPU resources. The bot-
tleneck EA determination is performed using representative
kernel-based virtual switching VNF. The model can be
applied to any VNF though, as long as its software architec-
ture, system bottlenecks, and throughput requirements of
the VNF within target NFVI are known. Since the CPU
resources of the VNF and NFVI are separated, it is expected
that identified bottleneck EAs within target NFVI remain
irrespective of the VNF applied in the system. A bottleneck
EA is obtained empirically for each measurement scenario
and for each system configuration applied in testbed. A mea-
surement scenario is defined by the number of constant bit
rate (CBR) flows of the fixed frame size.

Since the software processing speed at CPU is assumed to
be the bottleneck of the packet processing systems in general,
it can be assumed the empirically determined bottleneck EAs
for system configurations and measurement scenarios
applied in testbed to be valid for the same system configura-
tion in any other testbed. Under the same assumption, it can
be claimed the CPU frequency and number of CPU cores are
the factors to determine the throughput performance of any
CBR measurement scenario, defined by the fixed frame size
and number of flows, in any of the defined system configura-
tions. The former reveals the possibility of predicting
throughput performance of each system configuration indi-
vidually in relation to traffic input (frame size and number
of CBR flows) and CPU hardware architecture (CPU fre-
quency and number of cores).

The throughput prediction model for each throughput-
optimized system configuration in this study arises from
measurement results applied in testbed based on model cali-
bration technique. Due to <0.1% difference between the mea-
surements of ð“3 + 1,”“4 + 1,”“4 + 2,” and“5 + 2”Þ + IC off and
ð“3 + 1,”“4 + 1,”“4 + 2,” and“5 + 2”Þ + IC 125 pairs, the cali-
bration is arbitrarily applied for the former and the predicted
results are considered applicable for both pairs. Model cali-
bration is performed based on measurements of cumulative
packet processing cost of collocated EAs in cycles/packet
for the CPU core hosting the bottleneck EA. The measure-
ments are conducted for three times, and the mean value is
taken for the model calibration. The repeated measurements
are shown to have a small variation to the mean value (±1%)
so the confidence bounds are omitted in this study. Building
the throughput prediction model based on cost of packet
processing ensures the applicability of the model to any
CPU, regardless of frequency and number of cores. Modeling
parameter extraction based on cumulative packet processing

cost is described in Chapter 3.6. The throughput prediction
model can further be used to predict the throughput for
any measurement scenario and any of the defined modeling
system configurations, for the given number of CPU cores
and related CPU frequency. The throughput prediction
model can also be used to provide an optimal system config-
uration for the required throughput or the optimal system
configuration guaranteeing maximal throughput, for any
given measurement scenario.

3.2. Software Execution Areas of the Representative NF/VNF.
EAs in the NF/VNF referent architecture are depicted in
Figure 1. Three CPU-exhausting EAs are extracted based
on the presented EA criteria. 10Gbps NIC in testbed pro-
cesses packets on a line speed rate regardless of frame size
so it cannot bottleneck the system throughput [2].

Receiving EA controls the tasks from the Rx HW IRQ
handling up to delegation to forwarding function in kernel
(OVS kernel data path). In a VNF case, this EA also embraces
the KVM actions to kick the vhost-worker thread for inform-
ing it of the descriptors being stored in Rx available ring
(depicted in Figure 2). Fwd & Snd controls the tasks for
packet transmission through the qdisc and device driver for
storing the descriptor in the ring buffer. In case of VNF, this
EA also embraces the KVM actions to kick the vhost-worker
thread for informing it of the descriptors being stored in Tx
available ring and most of the transmission completions
(depicted in Figure 2). Clearing performs the packet comple-
tions related to transmitted packets.

3.3. Software Execution Areas of the Target NFVI. EAs in the
VNF/NFVI referent architecture are depicted in Figure 2. On
top of the three EAs of the VNF presented earlier, 6 CPU-
exhausting EAs are extracted in NFVI based on the presented
EA criteria.

Receiving EA in NFVI embraces the same functions as
Receiving EA in a NF. Fwd & Snd VM EA has the same input
as Fwd & Snd in NF, but steers the packet towards the socket
buffer, instead of pushing it towards qdisc. Receiving VM EA
performs the ingress device emulation of the VM, including
packet polling from the socket buffer, conversion to device
specific virtio format, and pushing it to the ring buffer. It also
includes communication towards KVM, including Rx HW
IRQ (KVM irqfd) initiation towards VM.

After the VNF processing in respective EAs, Sending VM
EA is kicked through the interprocess communication mech-
anism by KVM. This EA performs the egress VM device
emulation of the VM, including ring buffer polling, conver-
sion to kernel format, and pushing the packets in CPU back-
log buffer. It also includes communication towards KVM,
including Tx HW IRQ (KVM irqfd) initiation towards VM
when needed. Fwd & Snd (NIC) EA polls the packets from
the CPU backlog and pushes it through the qdisc and device
driver to the Tx ring buffer. Clearing EA finally performs the
transmission completion tasks for the sent packets.

3.4. EAs as a Server Queuing System. Figure 3 presents the
previously defined EAs of the VNF/NFVI referent system
architecture as a server queuing system. An overview of each

4 Wireless Communications and Mobile Computing

queuing server in the context of the detailed processing steps
description given previously, the notifications they send or
receive and the relevant queues they handle are given below.
Dotted red lines represent notifications that exist only for
scenarios where the servers of the same colors are physically
dislocated (to different CPU cores). The underlying marked
queues exist as well only where these servers are physically
dislocated.

3.5. Model Definition. Server queuing system described previ-
ously is modeled in Figure 4 showing EAs as bottlenecks.
Each queuing server has an input queue it serves and an out-
bound queue(s) it fills to be processed by the following server
in the sequence. The double B4 buffer between S3 and S4 from
Figure 3 is simplified, showing one lossless buffer for com-
pleteness. The lossless double buffer B7 between B6 buffer
and S7 from Figure 3 is merged into B6 buffer as it has no rel-
evance for the throughput prediction model definition.

The modeling system configurations are linearly scalable
by the factor f as f ∗ ðx + yÞ < = n, where “x + y” denotes the
modeling system configuration irrespective of the IC time
and n denotes the number of cores in the system. The simpli-
fied model of the VNF/NFVI system architecture is depicted
in Figure 5. The 1st, 2nd, and f th“x + y” represent a queuing
server model depicted in Figure 4, constructed by specific
modeling system configuration. Y in represents the traffic
input rate to the model, defined by N CBR flows of fixed

frame size S and equal rate. The CBR flows are fairly distrib-
uted to f queuing server models, each with an Y0 input rate.

Y0 represents the traffic input rate to the queuing server
model in packets per second (pps). Each server i processes
packets at rate Yi. For each packet to process, a queuing
server needs a number of CPU cycles Ci to be executed per
packet (cycles per packet). Packets that cannot be accepted
for processing by the sever need to be dropped at the preced-
ing server or even at prepreceding server with a packet rate
Y−
i−1, respectively, Y

−
i−2. The servers shown out of the packet

processing chain do not explicitly contribute to queue
entries, but they impact the processing capabilities of other
servers. A specific queuing server i uses a CPU for a mean
time of μi ≤ 1, determined by OS scheduler. The total
throughput in packets per second that can be achieved by
the specific queuing server can be defined as per

Yi = CPUfreq ∗
μi
Ci

: ð1Þ

CPUfreq is the static value representing the CPU fre-
quency in cycles per second. Obviously, the queuing server
limiting the throughput of each queuing server system will
be the one resulting with the smallest μi/Ci.

As per definition, EAs (queuing servers) can be collocated
on the same or dislocated to different CPU cores. The total
number of packets per second that can be processed by the

Ke
rn

el
 sp

ac
e /

 g
ue

st
O

S
ke

rn
el

 sp
ac

e

schedule

schedule Receiving

enqueue
poll

ISR

ClearingFwd & Snd

Qdisc

poll

Ring rx/tx Ring rx/tx
buffers buffers

xmit /
xmit &

free _old_xmit

poll

driver driver

IRQ

DMA/
memcpy

(v) nic rx/tx rx/tx
queues queues

(v) NIC

IRQ
Receive path

DMA/
(v) NIC

(v)nic

memcpy

Egress path

OS

Figure 1: Execution areas in target NF/VNF.

5Wireless Communications and Mobile Computing

specific CPU core k containing queuing server i, without
experiencing packet losses, can be defined as per

Yk =
CPUfreq

Sum Cið Þ , 1 ≤ i ≤ lð Þ: ð2Þ

The variable l presents the number of queuing servers
allocated on core k. Since μi and Ci are influenced by several
factors (server colocations, OS scheduler, cache, memory,
etc.) leading to unpredictable values, the smallest μi/Ci is

derived empirically based on the overflowed queues in mea-
surements, without quantifying μi and Ci, assuming the heu-
ristic to be valid in general.

Assuming the uniform traffic split into f CBR flows with
constant frame size, the total throughput of the system is then
defined as per

Y = f ∗
CPUfreq

Cf
: ð3Þ

Receiving VNF Fwd & Snd VNF Clearing VNF

Guest OS

QEMU
Process

IRQ

IRQ
Driver
(virtio)

tx available ring tx used ring

Driver
(virtio)

rx used ringrx available ring

pop push

Receiving
VM EA

Sending
VM EA

Vhost–netvhost–net
write (kick fd)

poll Enqueue

pop push

Drive
(TAP)

Driver
(TAP)

ConversionConversion

xm it PollSchedule

vmexit

Write
(kick fd)
Write
(call
fd)

write
(call
fd)

Receiving EA Fwd & Snd (VM) EA Fwd & Snd (NIC) EA Clearing EA

ISR

Schedule

Poll
Enqueue

xmit

Ring rx/tx
buffers

DriverDriver
Ring rx/tx

buffers

poll

NIC NICDMADMA

NIC rx/tx
queues

(NIC rx/tx
queues

Egress pathReceive path

Qdisc
OS

IRQ

IRQ

IRQFD (KVM) IOEVENTFD
(KVM)

vm exit

H
os

t k
er

ne
l s

pa
ce

G
ue

st
ke

rn
el

-s
pa

ce

H
os

t u
se

r-
sp

ac
e

Figure 2: Execution areas in target VNF and NFVI.

6 Wireless Communications and Mobile Computing

Cf = SumðCiÞ ð1 ≤ i ≤ lÞ denotes the cost in cycles per
packet per each core hosting the queuing server with the
smallest μi/Ci. Based on the observed measured costs

(Figures 6 and 7), the heuristic relation is derived that cumu-
lative cost per packet processing CCf = f ∗ Cf in cycles per
packet follows the linear behavior for “1 + 1” + IC off , “1 +

S1 S2 S3 S4

S6

S5 S7 S8

S9

3000

3000

N2N1

756

B1 B2

128
3000

B3

N3 N4

256 256

N5
B4

64

av

us

N6

3000

B5
Break

Break

or 219bytes

N10
B10

256128

256

1000

B9

N9

128

B8

N8

N7

us.

256256

B7 av.

256

1000
128

B6

128
Cont.

Cont.

Figure 3: Server queuing system.

S1 S2 S3

S6

μs1/Cs1 μs2/Cs2

μs6/Cs6

μs5/Cs5 μs7/Cs7 μs8/Cs8

μs3/Cs3

μs9/Cs9

μs4/Cs4

Y0 Y1

Y0
–

Y4
– Y5

–
Y6

–
Y7

–

Y1

Y2

Y6Y5 Y8Y7

Y3 Y4

–
Y2

–

S5Cont. S7 S8

S9

S4 Break

Figure 4: Queuing server model with EAs as bottlenecks.

Y in (N x CBR_flower, s) Y out (N x CBR_flower, s)

NIC1 NIC2

N
FV

I E
A

s
V

N
F

EA
s 1st (x+y) 2nd (x+y) fth (x+y)

Receiving

Receivng VM Sending VM
Fwd.& Snd.VM

Receiving

Fwd.& Snd Clear. & Snd.Rtry

Clear. & Snd.Rtry Fwd.& Snd

Receiving

Receivng VM Sending VM
Fwd.& Snd.VM

Receiving

Fwd.& Snd Clear. & Snd.Rtry

Clear. & Snd.Rtry
Fwd.& Snd

Receiving

Receivng VM Sending VM
Fwd.& Snd.VM

Receiving

Fwd.& Snd Clear. & Snd.Rtry

Clear. & Snd.Rtry
Fwd.& Snd

Figure 5: Simplified model of the VNF/NFVI system architecture.

7Wireless Communications and Mobile Computing

0
10
20
30
40
50
60
70
80
90

100

0 256 512
Packet size (bytes)

768 1024 1280 1536

Cu
m

ul
at

iv
e c

os
t

(K
ilo

-c
yc

le
s/

pa
ck

et
)

f = 1
f = 2
f = 3
f = 4
f = 100

Linear (f = 1)
Linear (f = 2)
Linear (f = 3)
Linear (f = 4)

(a) “1 + 1” + IC off

0
10
20
30
40
50
60
70

0 256 512
Packet size (bytes)

768 1024 1280 1536

Cu
m

ul
at

iv
e c

os
t

(K
ilo

-c
yc

le
s/

pa
ck

et
)

f = 1
f = 2
f = 3
f = 4
f = 100

Linear (f = 1)
Linear (f = 2)
Linear (f = 3)
Linear (f = 4)

(b) “1 + 1” + IC 125

Figure 6: Cumulative cost: “1 + 1” + IC off and “1 + 1” + IC 125 modeling system configurations.

0

5

10

15

0 256 768512 1024 1280 1536

Cu
m

ul
at

iv
e

co
st

(k
ilo

-
cy

cle
s/

pa
ck

et
)

Packet size (bytes)

Linear (f = 1)
Linear (f = 2)

f = 1

f = 2
f = 100

Figure 7: Cumulative cost: “3 + 1” + IC off /125 modeling system configuration.

8 Wireless Communications and Mobile Computing

1” + IC 125, “2 + 1” + IC off , “2 + 1” + IC 125, and “3 + 1” +
IC off /125 modeling system configurations. It depends on
the scale factor f and the frame size S according to

CCf = a ∗ f + a0ð Þ ∗ S + b ∗ f + b0ð Þ,  1 ≤ f ≤ abs
n

x + y

� �
:

ð4Þ

For the modeling system configurations requiring >8
CPU cores for calibration (“4 + 1” + IC off /125, “4 + 2” + IC
off /125, and “5 + 2” + IC off /125), the assumption is taken
that these modeling system configurations scale equally to “

3 + 1” + IC off /125. This assumption is taken based on the
fact that none of these modeling system configurations
depend on the IC time when it comes to throughput, which
is aligned with “3 + 1” + IC off /125. Following, it is assumed
that the resulted heuristic in Equation (4) holds for arbitrary
n-core CPUs if the offered load is uniformly split into f CBR
flows with constant frame size S which are served by f ∗ ðx
+ yÞ < = n CPU cores. The constant values for a, b, a0, b0
are derived from the empirical measurements through the
model calibration, as described in Chapter 3.6. Based on
Equations (3) and (4), the total throughput in megapackets
per second (Mpps) of the system can be given as per

YMpps = min
f 2 ∗ CPUfreq ∗ 10−6

a ∗ f + a0ð Þ ∗ S + b ∗ f + b0ð Þ ,
L ∗ 10−6

S + 20ð Þ ∗ 8

 !
,

 1 ≤ f ≤ abs
n

x + y

� �
:

ð5Þ

L represents the link speed in bits per second. In order to
calculate throughput in gigabits per second (Gbps), the
Ethernet preamble (7 B), start of frame delimiter (1B), and
the interframe gap (12B) must be considered in Equation
(5) on top of the frame size, giving the following:

YGbps = min
f 2CPUfreq ∗ S + 20ð Þ ∗ 8 ∗ 10−9

a ∗ f + a0ð Þ ∗ S + b ∗ f + b0ð Þ , L ∗ 10−9
 !

,

  1 ≤ f ≤ abs
n

x + y

� �
:

ð6Þ

The min calculus in Equations (5) and (6) assures the
estimated throughput not to exceed the physical bandwidth
link limits.

3.6. Calibration. Model calibration is the process of setting
the well-defined parameters of the model with respect to a
specific real system. The determination of the model param-
eters is based on measurement results of the modeled system.
In this study, the modeling parameters are obtained based on
cumulative cost (see Chapter 3.5 for cumulative cost defini-
tion). Equation (3) is used to obtain the cumulative cost from
maximum throughput measurements. Only measurements

with <0.5% packet loss are considered. The results comply
with perf measurements for NFVI cores.

Figure 6 presents the cumulative cost CCf for the
“1 + 1”

+ IC off and “1 + 1” + IC 125 modeling system configura-
tions. On 8-core CPU verification can be performed for max-
imal scale factor f = 4. As it can be observed in Figure 6, there
is no influence on cost variation with increasing the number
of flows to higher number than applied scale factor f , as long
as the load is equally distributed. This conclusion stands for
all modeling system configurations. Full curve connects the
points obtained by measurements. The dotted lines repre-
sent the linear regression line for the measuring points. In
order to obtain the modeling parameters for the calibration
ða, b, a0, b0Þ, only 4 calibration points are needed. The 4
points are taken from the regression lines shown in red cir-
cles/crosses in Figure 6 for better approximation to all mea-
sured values. The modeling parameters are obtained by
applying Equation (4).

The same procedure is applied for obtaining modeling
parameters in the “2 + 1” + IC off and “2 + 1” + IC 125
modeling system configurations. The maximal scale factor f
that can be verified in testbed for these modeling system con-
figurations is f = 2. Cumulative cost CCf for the

“3 + 1” + IC
off /125 modeling system configuration is given in Figure 7.
In this modeling system configuration, the maximal scale fac-
tor f that can be verified in testbed is also f = 2. For “4 + 1”
+ IC off /125, “4 + 2” + IC off /125, and “5 + 2” + IC off /125
modeling system configurations, the maximal scale factor f
that can be verified in testbed is f = 1. This is insufficient to
obtain modeling parameters. The model is calibrated for
these modeling system configurations following assumption
in throughput prediction model definition that throughput
scales with f equally to “3 + 1” + IC off /125modeling system
configuration.

The calibration points for all modeling system configura-
tions are given in Table 1. Calibration points for modeling
system configurations “1 + 1” + IC off and “1 + 1” + IC 125
are taken arbitrarily for f = 2 and f = 4, while for other
modeling system configurations calibration points are taken
for f = 1 and f = 2. The resulting modeling parameters are
given in Table 2.

Applying the throughput prediction model parameters in
Table 2 to Equations (5) and (6), the maximum achievable
throughput can be predicted for any number of CBR flows
and any fixed frame size S for any number of CPU cores n
per individual modeling system configuration.

4. Model Validation

4.1. Testbed. Figure 8 shows the testbed setup and Table 3
gives details of the hardware/software components of the
testbed and used kernel/driver settings. The measurements
were conducted using two physical machines. One of the
machines is considered a Device under Test (DuT) and the
other machine is used as traffic emulator. Both machines
are equal in HW configuration. Traffic is run from the emu-
lator node (MoonGen [30] traffic generator) towards the
DuT that returns it back to the emulator. MoonGen is a

9Wireless Communications and Mobile Computing

T
a
bl
e
1:
C
al
ib
ra
ti
on

po
in
ts
(S
,C

C
f)
.

C
C
f

“ 1
+
1”

+
IC

of
f

(f
=
2,
4)

“ 1
+
1”

+
IC

12
5

(f
=
2,
4)

“ 2
+
1”

+
IC

of
f

(f
=
1,
2)

“ 2
+
1”

+
IC

12
5

(f
=
1,
2)

“ 3
+
1”

+
IC

of
f/
12
5

(f
=
1,
2)

“ 4
+
1”

+
IC

of
f/
12
5

(f
=
1,
2)

“ 4
+
2”

+
IC

of
f/
12
5

(f
=
1,
2)

“ 5
+
2”

+
IC

of
f/
12
5

(f
=
1,
2)

S
(B
)

64
37
23
2

21
58
3

59
67

39
78

40
72

35
62

31
14

27
57

10
24

40
96
2

24
51
1

88
09

59
20

51
91

39
18

39
89

41
87

64
86
89
8

51
47
3

16
26
2

12
13
0

11
04
4

10
46
6

10
01
8

96
61

10
24

92
45
6

58
33
6

18
97
4

14
80
0

12
63
0

11
02
3

11
09
4

11
29
2

10 Wireless Communications and Mobile Computing

T
a
bl
e
2:
T
hr
ou

gh
pu

t
pr
ed
ic
ti
on

m
od

el
pa
ra
m
et
er
s.

P
ar
am

et
er

“ 1
+
1”

+
IC

of
f

“ 1
+
1”

+
IC

12
5

“ 2
+
1”

+
IC

of
f

“ 2
+
1”

+
IC

12
5

“ 3
+
1”

+
IC

of
f/
12
5

“ 4
+
1”

+
IC

of
f/
12
5

“ 4
+
2”

+
IC

of
f/
12
5

“ 5
+
2”

+
IC

of
f/
12
5

a
0.
95
21

2.
04
94

-0
.0
62

1.
16
43

0.
78
17

0.
78
17

0.
78
17

0.
78
16

a 0
1.
98
13

-1
.0
48
6

2.
48
40

0.
39
36

0.
05
75

-0
.4
29
3

-0
.1
46
2

-0
.3
36
72

b
24
77
2.
0

14
81
4.
0

10
73
8.
9

82
37
.4

68
54
.9

68
54
.9

68
54
.9

68
54
.9

b 0
-1
25
60
.8

-8
23
9.
8

-4
66
5.
4

-4
14
1.
8

-2
65
6.
4

-3
34
0.
9

-3
74
9.
1

-3
74
9.
1

11Wireless Communications and Mobile Computing

DPDK traffic generator, capable of saturating 10Gbps link
even with the smallest 64B UDP packets using single flow.
The DuT runs the Linux profiling tool perf that reduces the
maximum throughput for <1%.

The measurements are performed for the two types of sys-
tem compositions for the DuT machine. At first, a forwarding
engine (OVS) is executed on a physical machine that bridges
two physical NICs. This is referred to as network function
(NF) composition. At second, a forwarding engine is executed
as a VM-based VNF that is connected to the host using a virtio
mechanism and that bridges two virtual NICs. This is referred
to as VNF and NFVI composition. In both system composi-
tions, NF and VNF execute simple flow entry into OVS that
forwards incoming packets from (v)NIC1 to (v)NIC2. OVS
is configured to switch the packets from one port to another.

In NFVI, the flows are configured to forward incoming
packets from NIC1 to TAP1 and from TAP2 to NIC2.

For each system composition, system configurations are
applied based on throughput optimized distribution of EAs
per number of available cores for single flow, each in addition
considering NIC settings without interrupt coalescing (IC)
and IC time arbitrary set to 125μs. The system configuration
is defined by “x + y” + IC settings, where “x” is the number of
cores reserved for NFVI, “y” is the number of cores reserved
for VNF for each flow, and IC represents one or both setting
of IC time. The system configuration for single flow is further
scaled linearly up to the number that is allowed by the total
number of CPU cores. The allowed scale factor f is deter-
mined by f ∗ ðx + yÞ < = 8, where 8 is the total number of
cores in the DuT. The empirical methodology used for build-
ing the system configuration is described in Chapter 4.2. The
throughput measurements for the NF configurations pub-
lished in [2] are used in this study for comparison to VNF
system configurations’ measurements.

For each “x + y” + IC system configuration in VNF and
NFVI system, composition measurement scenarios are
defined in terms of UDP CBR traffic of 1 – f and 100 flows
with fixed frame sizes of 64, 128, 256, 512, 1024, and 1500
bytes and packets per second (pps) rates of 50, 200, 400,

600,…, max kpps (with packet loss < 0:5%),…, max kpps.
The max kpps is derived from the frame size and the limit
of physical link (10Gbps). The same measurement scenarios,
limited to single UDP CBR traffic, are executed and pub-
lished in [2] for the NF system composition. The frame size
is denoted as the Ethernet frame size without preamble
(7 B), start of frame delimiter (1 B), and interframe gap
(12B). The frame structure is depicted in Figure 9.

Each measurement scenario was conducted for 12
minutes. Each case is repeated 3 times to conduct statistical
analysis. Packet counters, used for throughput measurements
and packet loss analysis per each defined EA, are extracted on
the DuT before and after the test to obtain counter values rel-
evant for the measurement scenario. In order to discover and
confirm the bottleneck EA for of the particular system con-
figuration, NAPI processing key performance indicator
(KPI) (soft IRQs, IPIs, and HW IRQs) counters are extracted
for each measurement scenario, also before and after mea-
surement in order to obtain counter values relevant for the
measurement scenario. Perf is applied on each core to mea-
sure the number of cycles per each CPU core relevant for
the test. These measurements are required to obtain average
CPU utilization and cost per packet in terms of cycles per
packet for CPU core. Perf is limited for usage only in NFVI
due to limited possibilities in VNF environment. For the
VNF in context of this study, it is enough to understand if
the CPU is fully utilized or not. The full CPU utilization for
target VNF cores can be understood from NAPI KPIs.

MoonGen load generator is used to produce artificial
CBR traffic at packet rates that scale up to the link speed of
10Gbps. As explained above, the produced traffic consists
of 1 − f and 100 flows with evenly distributed packet rates.
These flows are distributed to 1 − f sets of “x + y” cores. In
case of 1 − f flows, this effectively means that each flow is
processed by a dedicated set of “x + y” cores. For 100 flows,
Receive Side Scaling (RSS) assures fair share of the flows
amongst the sets of “x + y” cores.

The different “x + y” + IC system configurations and
packet flow distribution to different sets of “x + y” cores are

HW
OS

User space

Moon Gen

VNF adn NFVI system composition

NF system composition

HW
OS

Qemu
User space

User space

Quest OS
Quest

vNC

TAP

NICNIC NIC NIC

TAP

vNC

Figure 8: Testbed configuration.

12 Wireless Communications and Mobile Computing

achieved by configuring the features in HW NIC, Linux ker-
nel, and virtio mechanism. The HW NIC feature used is RSS
and already mentioned IC. Each queue can be attached to dif-

ferent cores by configuration. A flow entering the kernel for
processing through physical or virtual (TAP) interface can
further be pushed for kernel processing to a different core
than it was processed for reception from (v)NIC. The Linux
kernel feature that is used to achieve this configuration is
called Receive Packet Steering (RPS). A thread isolation is
another kernel feature that is used to pin kernel device emu-
lation threads to specific cores. Finally, virtio multiqueue fea-
ture is used in the kernel device emulation and guest driver
that enables parallel packet processing in VM. In order to
enable a parallel processing and scale the performance, each
queue requires dedicated cores for kernel device emulation
and VNF (VM) processing.

4.2. Building the “x + y” + IC System Configurations. “x + y”

+ IC system configurations are built based on empirical bot-
tleneck EA determination, starting from the minimal granu-
larity (“1 + 1” + IC off /125) up to the bottleneck EA being
fully isolated on the CPU core. The gradual construction of
system configurations is depicted in Figure 10 from top to
bottom. Bottleneck EA per “x + y” + IC system configuration
are marked with a plus sign. The bottleneck EA remains the
same irrespective of the number of flows. The following cri-
teria are considered for the “x + y” + IC system configuration
definition:

(i) Receiving EA and Fwd & Snd VM EA are dislocated
as the last resort due to additional processing over-
head introduced in dislocated system configuration

(ii) Sending VM EA and Fwd & Snd NIC EA are dislo-
cated as the last resort due to additional processing
overhead introduced in dislocated system
configuration

(iii) Clearing EA is collocated either with Fwd & Snd
NIC EA or Receiving EA based on the higher total
throughput measurements

The maximum granularity “x + y” + IC system configura-
tion based on this methodology is shown to be “5 + 2” + IC.
Further separation provides no additional throughput
increase as the bottleneck remains in highlighted EAs.

4.3. System Configuration: “1 + 1” + IC Off . Figure 11 shows
the predicted and measured maximum throughput for “1 +
1” + IC off system configuration in 8-core CPU with
3.7GHz clock. The respective system configuration scales
by the factor 4 in the 8-core CPU. The x-axis shows the frame
size in bytes. The y-axis represents the measured and pre-
dicted maximum throughput of the VNF in (a) Mpps and
in (b) Gbps. The results reveal poor throughput performance
that can be achieved by this setup in comparison to theoret-
ical values. The reason is that the collocated EAs competing
for CPU resources on NFVI core cause the full CPU utiliza-
tion already for small packet rates, leading the bottleneck
EA to cause buffer overflow. The throughput increases with
the number of flows until the number of flows reaches scale
factor number. This observation reveals the strong depen-
dency of the maximum throughput to the scale factor and,

Table 3: DuT, VNF, and emulator setup.

Host (DuT)

CPU
Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz, 8
cores, HT off, Turbo boost off, C-state disabled

RAM Dual channel 4 × 32GB, 2666MHz

OS Ubuntu 16.04.5 LTS

NIC1/2 82599ES 10-Gigabit SFI/SFP+

Network
driver

ixgbe 4.2.1

Forwarding
engine

OVS 2.5.5

NF OVS 2.5.5

I/O
framework

NAPI

Hypervisor QEMU 2.5

Kernel settings

net:core:dev weight = 128
txqueuelen = 1000

net:core:netdev budget = 300
netdev max backlog = 3000

Driver/NIC
settings

NICoffload functions = off
Rx/Tx‐usecs = 0/125
Rx ring buffer = 256
Tx ring buffer = 256

VNF

vCPU 2 cores, HT off

RAM 4GB

OS Ubuntu 16.04.5 LTS

vNIC1/2 vhost-net

Network
driver

virtio-net 1.0

VNF OVS 2.5

I/O
framework

NAPI

Kernel settings

net:core:dev weight = 128
txqueuelen = 1000

net:core:netdev budget = 300
netdev max backlog = 3000

Driver/NIC
settings

NICoffload functions = off
Rx/Tx‐usecs = ‐

Rx ring buffer = 256
Tx ring buffer = 256

Emulator

CPU Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz

RAM Dual channel 4 × 32GB, 2666MHz

OS Ubuntu 16.04.5 LTS

Traffic
generator

MoonGen

NIC1/2 82599ES 10-Gigabit SFI/SFP+

I/O
framework

DPDK

13Wireless Communications and Mobile Computing

respectively, to the number of used cores due to parallel
processing. The predicted throughput results for 100 flows
are the same as for 4 flows, since the number of flows
exceeding the scale factor number has no effect on the
throughput prediction model. The measured results for
100 flows coincide with the measurements for the 4 flows.
The maximum throughput also depends on the frame size,
but to a lower magnitude than for the number of used cores.
As it can be observed, predicted results highly match the
measured values.

Relative error ERR in percentage as ERR = ðY sim −
YmeasÞ/Ymeas reveals the worst-case prediction is for single
flow where the relative error of the prediction is up to
~15%. The mean deviation is 3.55%. This result reveals a
decent precision of throughput prediction model for this
modeling system configuration. The confidence bounds are
omitted in this study as the predictions are based on CBR
flows which do not show large variance. The latter is valid
for the validation process within this chapter in general.

4.4. System Configuration: “1 + 1” + IC 125. The subject sys-
tem configuration differs from the previous in the value of
IC time only. Figure 12 shows the predicted and measured
maximum throughput for this system configuration in 8-
core CPU with 3.7GHz clock. As it can be observed, the con-
clusion from previous system configuration analysis related
to maximum throughput dependency to the scale factor
and, respectively, to the number of used cores is equally valid
for this system configuration. The maximum throughput also
slightly depends on the frame size, as in the previous system
configuration. Although the general conclusions for the two
system configurations are equal, there is a 2-fold increase in
maximum throughput for the “1 + 1” + IC 125 system config-
uration. It is still valid for this system configuration that col-
located EAs compete for CPU resources on NFVI core that
causes eventually the full CPU utilization and buffer overflow
at the bottleneck EA. However, less CPU cycles are con-
sumed per packet on this core since the HW IRQs are being
suppressed by IC time. This leads to lower CPU consumption

Ethernet
header

14 bytes

IP header
20 bytes

UDP header
8 bytes

Data
18/82/210/

466/978/
1454 bytes

FCS
4 bytes

IPG
12 bytes

Preamble+
SFD

8bytes

L2 frame

Figure 9: Ethernet frame structure.

NFVI

NFVI

2: Fwd & Snd (VM) EA

2: Fwd & Snd (VNM) EA

3: Receiving VM EA

3: Receiving VM EA

4: Sending VM EA
5: Fwd & Snd (NIC) EA
6: Clearing EA

3: Clearing VNF EA

1: Receiving EA

VNF
“1+1”+ICoff

“1+1”+IC125

“2+1”+IC125
“2+1”+ICoff

“3+1”+IC125

“4+1”+ICoff

“4+2”+ICoff

“4+1”+IC125

“4+2”+IC125

“5+2”+ICoff
“5+2”+IC125

“3+1”+ICoff

Core0
| 1 | 2 | 3 |
| 4+ | 5 | 6 |

Core0
| 1 | 2 | 3 |

Core0
| 1 | 2 | 3+ |

Core0
| 1 | 2 | 3 |

NFVI

NFVI

NFVI

NFVI

NFVI

VNF

VNF

VNF

VNF

VNF

VNF

Core1
| 4+ | 5 | 6 |

Core1
| 4+ | 5 |

Core0
| 1 | 2 | 3 |

Core0
| 1 | 2 | 6 |

Core0
| 1 | 2 |

| 1+ | 2 |

| 1 | | 2 | | 3+ | | 4+ | | 5 | 6 | | 1 | 3 | | 2 |

| 3+ | | 4 | | 5 | 6 | | 1 | 3 | | 2 |
Core0

Core0 Core0 Core0 Core0 Core0 Core0 Core0

Core0 Core0 Core0 Core0 Core0

Core0 Core0 Core0 Core0

Core0
| 3 |

| 3+ | | 4 | | 5 | 6 | | 1 | 2 | 3 |

Figure 10: “x + y” + IC system configuration decision flow.

14 Wireless Communications and Mobile Computing

for the same rates, comparing to previous system configura-
tion, leading to higher maximum throughput.

The subject system configuration enables the 10Gbps
link saturation for the <1200B frames with minimum 4 flows
according to predictions. The measurements confirmed the
link to be the system bottleneck for 1500B frames and 4
flows. As it can be observed, the predicted results highly
match the measured. It can be concurred though, based on
observation, that the measured results are not entirely follow-
ing linear behavior. The high slope observed for the measure-
ment curves for 4 and 100 flows between 1024B and 1500B is
caused by not having measurement for the frame size

between the two. Performing the measurements for 1152B
or 1280B frames would probably lead to lower slopes of the
measurement curves, in line with the predictions.

Relative error ERR reveals that the worst-case prediction
is for single flow where the relative error of the prediction
reaches 9.4%. The mean deviation is 2.88%, which points to
even slightly better prediction results of the throughput pre-
diction model for this system configuration.

4.5. System Configuration: “2 + 1” + IC Off . Figure 13 shows
the predicted and measured maximum throughput for “1 +
1” + IC off system configuration in 8-core CPU with

0
1
2
3
4
5
6
7
8
9

10

f = 4,100
f = 3

f = 2

f = 1

0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536

Th
ro

ug
h

pu
t (

G
bp

s)

Packet size (bytes)

Measured, f = 1 simulated, f = 1
simulated, f = 2
simulated, f = 3
simulated, f = 4, 100

Measured, f = 2
Measured, f = 3
Measured, f = 4
Measured, f = 100

Figure 11: Predicted (simulated) and measured maximum throughput of the VNF in “1 + 1” + IC off modeling system configuration on 8-
core CPU with 3.7GHz and 10Gbps links.

0
1
2
3
4
5
6
7
8
9

10

0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536

Th
ro

ug
h

pu
t (

G
bp

s)

Packet size (bytes)

Measured, f = 1
Measured, f = 2
Measured, f = 3
Measured, f = 4
Measured, f = 100

Simulated, f = 1
Simulated, f = 2
Simulated, f = 3
Simulated, f = 4, f = 100

f = 4,100
f = 3

f = 2
f = 1

Figure 12: Predicted (simulated) and measured maximum throughput of the VNF in “1 + 1” + IC 125 modeling system configuration on 8-
core CPU with 3.7GHz and 10Gbps links.

15Wireless Communications and Mobile Computing

3.7GHz clock. The respective system configuration scales by
the factor 2 in the 8-core CPU. The x-axis shows the frame
size in bytes. The y-axis represents the measured and pre-
dicted maximum throughput of the VNF in (a) Mpps and
in (b) Gbps. The general conclusions from the previous sys-
tem configuration with regard to dependency to number of
used cores (i.e., scale factor) and frame size are applicable
for this system configuration as well. This system configu-
ration shows significantly higher maximum throughput
for the same number of used cores in comparison to “1 +
1” + IC off system configuration (see f = 3 in Figure 11
and f = 2 in Figure 13). The reason is that the obstacle of
generality of NAPI design in kernel stack that is preventing
Sending VM EA to run when CPU is fully utilized is
avoided by dislocating Sending VM EA and Receiving EA
to different cores. Comparing the results for the same num-
ber of used cores with “1 + 1” + IC 125, it can be observed
that the results match to high extent (see f = 3 in
Figure 12 and f = 2, 100 in Figure 13). This shows that
the interrupt suppression also mitigates the mentioned
obstacle. However, this mitigation comes with the penalties
of latency and jitter. Although the throughput prediction
model considers maximum throughput, respectively, packet
loss, the influence of system configurations on latency and
jitter must be understood to properly dimension and con-
figure the system.

Observing the predicted and measured maximum
throughput in the subject system configuration, it can be
concluded they coincide to high extent. However, the mea-
surements for single flow and 512B frames deviate from
the prediction significantly. The reason for this is unknown.

Relative error ERR reveals that the worst-case prediction
is for single flow where the relative error of the prediction is
up to ~15%. The worst case is an extreme for the already
mentioned 512B single flow measurements. The mean devi-
ation is 3.64%, which points to slightly worse prediction
results than in formerly analyzed system configurations.

4.6. System Configuration: “2 + 1” + IC 125. The subject sys-
tem configuration differs from the previous in the value of
IC time only. Figure 14 shows the predicted and measured
maximum throughput for this system configuration in 8-
core CPU with 3.7GHz clock. As for previously analyzed sys-
tem configuration, the general dependencies of maximum
throughput to a number of used cores and frame size are
valid for this system configuration. As it can be observed both
from predicted and measured maximum throughput results,
this system configuration outperforms previous system con-
figurations for the same number of used cores (see f = 3 in
Figures 11 and 12 and see f = 2, 100 in Figures 13 and 14).
The reason is that this system configuration benefits from
both Receiving EA dislocation from Sending VM EA, miti-
gating the obstacle of generality of NAPI design in kernel
stack, and from IC time, suppressing the interrupts. IC time
interrupt suppression again comes with latency and jitter
penalties of course.

Predicted maximum throughput points that the subject
system configuration hits the physical link limit of 10Gbps
for the frames > 1280 B and minimum 2 flows. The measure-
ments confirmed the prediction for 1500B frame size.
Observing the predicted and measured results, we concur
on the slight deviation of the measured results from linear
predictions. This guides on the influence of the parameters
not considered by the throughput prediction model (such
as cache or memory). Yet, the linear approximation used
in the throughput prediction model provides satisfactory
predictions.

Relative error ERR reveals the worst-case prediction is for
single flow where the relative error of the prediction is up to
~6.5%. This is the lowest extreme compared to relative errors
from previously analyzed system configurations. The mean
deviation is 3.4%. The mean deviation and extreme deviation
lead to the conclusion that most of the measurements are
similarly deviating from the predicted values. This can also
be concluded from observing Figure 14.

0

2

4

6

8

10

0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536

Th
ro

ug
h

pu
t (

G
bp

s)

Packet size (bytes)

Measured, f = 1
Measured, f = 2
Measured, f = 100

Simulated, f = 1
Simulated, f = 2,100

f = 2,100

f = 1

Figure 13: Predicted (simulated) and measured maximum throughput of the VNF in “2 + 1” + IC off modeling system configuration on 8-
core CPU with 3.7GHz and 10Gbps links.

16 Wireless Communications and Mobile Computing

4.7. System Configuration: “3 + 1” + IC Off /125. Figure 15
shows the predicted and measured maximum throughput
for “3 + 1” + IC off /125 system configuration in 8-core CPU
with 3.7GHz clock. The respective system configuration
scales by the factor 2 in the 8-core CPU. The x-axis shows
the frame size in bytes. The y-axis represents the measured
and predicted maximum throughput of the VNF in (a) Mpps
and in (b) Gbps. As for previously analyzed system configu-
ration, the general dependencies of maximum throughput
to a number of used cores and frame size are valid for this
system configuration. It can also be observed that the mea-
sured results slightly deviate from linear predictions, but still
to a level of satisfactory results of the predictions. The
throughput prediction model considers no result deviation
for IC off and IC 125μs. This is supported by the measure-
ments that show almost no deviation as well. This system
configuration achieves the highest maximal throughput for
the CPU under test in comparison to previously analyzed
system configurations. The reason is that it completely sepa-
rates the vNIC emulation (Receiving VM EA and Sending
VM EA) from the EAs handling HW IRQs (Receiving EA
and Clearing EA) in NFVI, completely mitigating the influ-
ence of HW IRQs to vNIC emulation. The predicted maxi-
mal throughput points that this system configuration hits
the physical link limit of 10Gbps for the frames > 1024 B
and minimum 2 flows. The measurements confirmed the
prediction for 1500B frame size.

Relative error ERR reveals that the worst-case prediction
is for IC 125μs and single flow where the relative error of the
prediction is up to ~5.6%. This extreme does not deviate a lot
from the mean deviation that is 2.02%.

4.8. System Configuration: “4 + 1” + IC Off /125. Figure 16
shows the predicted and measured maximum throughput
for “4 + 1” + IC off /125 system configuration in 8-core CPU
with 3.7GHz clock. The respective system configuration
scales by the factor 1 in the 8-core CPU. The x-axis shows
the frame size in bytes. The y-axis represents the measured
and predicted maximum throughput of the VNF in (a) Mpps

and in (b) Gbps. This system configuration can saturate the
10Gbps link already for single flow. Predictions point this
can be achieved for the frame sizes > 1280 B. The measure-
ments confirmed this is possible for 1500B frames. In this
system configuration, both Receiving VM EA and Sending
VM EA are completely isolated on dedicated CPU cores.
Since Receiving VM EA is the bottleneck EA for 512B-
1024B frame size measurements (see Chapter 4.2), it can be
concurred that this is the optimal configuration to achieve
the highest throughput for these frame size for single flow,
when applied in testbed CPU. Based on this conclusion, it
can be claimed the target VNF will never be saturated for
these frame size with ingress traffic since the bottleneck will
always hit the Receiving VM EA (vNIC). Although this sys-
tem configuration is optimal for some frame sizes applied
for single flow in testbed CPU, this is not the optimal system

0

2

4

6

8

10

0 256 512 768 1024 1280 1536

Th
ro

ug
h

pu
t (

G
bp

s)

Packet size (bytes)

f = 2,100

f = 100

Measured, f = 1
Measured, f = 2

Simulated, f = 1
Simulated, f = 2,100

Measured, f = 100

Figure 14: Predicted (simulated) and measured maximum
throughput of the VNF in “2 + 1” + IC 125 modeling system
configuration on 8-core CPU with 3.7GHz and 10Gbps links.

0
1
2
3
4
5
6
7
8
9

10

0 256 512 768 1024 1280 1536

Th
ro

ug
h

pu
t (

G
bp

s)

Packet size (bytes)

Measured (IC off), f = 1
Measured (125 μs), f = 1
Measured (0 μs), f = 2
Measured (125 μs), f = 2

Measured (0μs), f = 100

Measured (125μs), f = 100

f = 1

f = 2,100

Simulated, f = 1

Simulated, f = 2, 100

Figure 15: Predicted (simulated) and measured maximum
throughput of the VNF in “3 + 1” + IC off /125 modeling system
configuration on 8-core CPU with 3.7GHz and 10Gbps links.

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

0 256 512 768 1024 1280 1536

Packet size (bytes)

measured (IC off), f = 1
measured (IC 125μs), f = 1
Simulated, f = 1, 100

Figure 16: Predicted (simulated) and measured maximum
throughput of the VNF in “4 + 1” + IC off /125 modeling system
configuration on 8-core CPU with 3.7GHz and 10Gbps links.

17Wireless Communications and Mobile Computing

configuration to achieve the highest throughput in general
for the respective CPU. Higher maximal throughput can be
achieved for “3 + 1” + IC off /125 (see Figure 15), applying
minimum 2 flows or even “2 + 1” + IC 125, also applying 2
flows as a minimum (see Figure 14, f = 2).

The subject system configuration is the only system con-
figuration where the VNF can be the system bottleneck (see
Chapter 4.2), which is the case for 64B-256B frame size mea-
surements. This leads to the fact that this system configuration
is the only system configuration that can be used to directly
compare target NF with virtual representation (VNF). Based
on observation of Figure 16, it can be concluded that the pre-
dicted results highly match the measured values.

Relative error ERR reveals that the worst-case prediction
is not exceeding 2.4%. The mean deviation is 0.97%. 2.4% is
the lowest extreme and 0.97% is the lowest mean deviation
amongst all analyzed system configurations.

4.9. System Configuration: “4 + 2” + IC Off /125. Figure 17
shows the predicted and measured maximum throughput
for “4 + 2” + IC off /125 system configuration in 8-core CPU
with 3.7GHz clock. The respective system configuration
scales by the factor 1 in the 8-core CPU. The x-axis shows
the frame size in bytes. The y-axis represents the measured
and predicted maximum throughput of the VNF in (a) Mpps
and in (b) Gbps. As it can be observed, both predicted and
measured results point to slight increase in maximal
throughput for 64B-256B frames. The reason is that by pro-
viding additional core for VNF processing, the bottleneck is
pushed towards Receiving EA. Although predictions show
slight maximal throughput increase for the larger frames as
well, the measured results for 512B-1024B frame sizes show
actually slight degradation. It can be assumed that the slight
decrease is due to cache memory handling between CPU
cores that needs more frequent flushing and loading than
for previous system configuration. The bottleneck EA for
measurement scenarios with larger frame sizes continues to
be Receiving VM EA. The measured results for small frame

show significantly higher maximal throughput than larger
frames, causing the measurement curve to deviate from lin-
ear approximation. This leads to slightly increased deviation
between predicted andmeasured results for large frames. The
predicted results point that the single flow can saturate the
10Gbps physical link for measurement scenarios including
frames larger than 1280B. This is confirmed for 1500B
frames by measurements.

Relative error ERR reveals that the worst-case prediction
is for 512B and 1024B frame size measurements where the
relative error of the prediction is up to ~7.8%. This extreme
does not deviate a lot from the mean deviation that is
3.35%. This result reveals a decent precision of throughput
prediction model for this modeling system configuration
comparable to previous system configurations.

0

2

4

6

8

10

0 256 512 768 1024 1280 1536

Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (bytes)

measured (IC off), f = 1

measured (IC 125 μs), f = 1
measured (IC off), f = 100

Simulated, f = 1, 100
measured (IC 125 us), f = 100

Figure 17: Predicted (simulated) and measured maximum
throughput of the VNF in “4 + 2” + IC off /125 modeling system
configuration on 8-core CPU with 3.7GHz and 10Gbps links.

0

2

4

6

8

1010

Th
ro

ug
hp

ut
 (G

bp
s)

0 256 512 768 1024 1280 1536

Packet size (bytes)

measured (IC 125 μs), f =100

measured (IC 125 μs), f = 1
measured (IC off), f =100

Simulated, f = 1, 100

measured (IC off), f = 1

Figure 18: Predicted (simulated) and measured maximum
throughput of the VNF in “5 + 2” + IC off /125 modeling system
configuration on 8-core CPU with 3.7GHz and 10Gbps links.

0

0.2

0.4
0.6

0.8
1

1.2
1.4

0 256 512 768 1024 1280 1536

Th
ro

ug
hp

ut
 (M

pp
s)

Packet size (bytes)

"4+1"+IC off/125, f = 1

Theoretical

"4+2"+IC off/125, f = 1
"5+2"+IC off/125, f = 1

"1+1"+IC off, f = 4
"1+1"+IC 125, f = 4
"2+1"+IC off, f = 2

"2+1"+IC 125, f = 2
"3+1"+IC off/125, f = 2

Figure 19: Maximal throughput model predictions for the VNF per
system configuration in Mpps, on 8-core CPU with 3.7GHz and
10Gbps links.

18 Wireless Communications and Mobile Computing

4.10. System Configuration: “5 + 2” + IC Off /125. Figure 18
shows the predicted and measured maximum throughput
for “5 + 2” + IC off /125 system configuration in 8-core
CPU with 3.7GHz clock. The respective system configura-
tion scales by the factor 1 in the 8-core CPU. The x-axis
shows the frame size in bytes. The y-axis represents the
measured and predicted maximum throughput of the
VNF in (a) Mpps and in (b) Gbps. As it can be concluded
from the measurement curve, the values for small frames
(64B-128B) highly outperform the measured maximal
throughput values for larger frames. The only interpretation
of such results can be in memory handling and less costly
packet relay from kernel space to user space and backwards.
This relatively high deviation of the measured results from

linear approximation is causing slightly underestimated pre-
dicted values for small packets, while on the other hand
slightly overestimated results for larger frames in compari-
son to measured values. Although predicted results point
to almost matching results for this system configuration in
comparison to previous “4 + 2” + IC off /125, the measured
results show better results in this system configuration for
small frames and slightly worse measured results for larger
frames. This leads to conclusion that this system configuration
may be optimal only for extremely low frame traffic. The pre-
dicted results point that the single flow can saturate the
10Gbps physical link for measurement scenarios including
frames larger than 1280B. This is confirmed for 1500B frames
by measurements.

Packet size (bytes)

"1+1"+IC off, f = 9
"1+1"+IC 125, f = 9
"2+1"+IC off, f = 6
"2+1"+IC 125, f = 6
"3+1"+IC 0/125, f = 4

"4+1"+IC 0/125, f = 3
"4+2"+IC 0/125, f = 3
"5+2"+IC off/125, f = 2

256 512 768 1024 1280 15360
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

Th
ro

ug
hp

ut
 (M

pp
s)

Theoretical

(a) Maximum throughput in Mpps

0 256 512 768 1024 1280 1536
Packet size (bytes)

"1+1"+IC off, f = 9
"1+1"+IC 125, f = 9
"2+1"+IC off, f = 6
"2+1"+IC 125, f = 6

"3+1"+IC off/125, f = 4
"4+1"+IC off/125, f = 3
"4+2"+IC off/125, f = 3
"5+2"+IC off/125, f = 2

0
1
2
3
4
5
6
7
8
9

10

Th
ro

ug
hp

ut
 (M

pp
s)

(b) Maximum throughput in Gbps

Figure 20: Maximal throughput model predictions for the VNF per system configuration, on 16-core CPU with 3.0GHz and 10Gbps links.

19Wireless Communications and Mobile Computing

Relative error ERR reveals that the worst-case prediction
is for 512B frame where the relative error of the prediction is
up to ~14.7%. The mean deviation is 10.17%, which is the
highest mean deviation compared to all other system config-
urations. This result reveals nonsatisfactory precision of the
throughput prediction model for this modeling system
configuration.

4.11. Validation Summary. The validation of the defined and
calibrated throughput prediction model has proved the
model applicability to the referent VNF and NFVI architec-
ture. The mean deviation out of all measurements is 3.74%,
for which it can be concurred to be a satisfactory result on
a general level. The highest mean deviation is for “5 + 2” +
IC off /125 system configuration as these measurements
appeared to deviate from linear approximation significantly.
It can be concurred that for this system configuration only,
the throughput prediction model provides nonsatisfactory
preciseness of maximal throughput results. Figure 19 pre-
sents maximal throughput that can be achieved on 8-core
CPU with 3.7GHz. The y-axis represents predicted maxi-
mum throughput of the VNF in Mpps. Prediction reveals “

3 + 1” + IC off /125 to be throughput optimal system configu-
ration for this CPU when the traffic involves 2 flows mini-
mum. This system configuration requires all 8 CPU cores
to achieve this.

By observing the predicted and measured throughput
results, some general concussions are listed below:

(i) Maximum throughput highly depends on the scale
factor related to system configuration on particular
CPU (maximal throughput is increased until the
number of flows reaches scale factor number)

(ii) Maximum throughput depends on the frame size

4.12. Prediction Results for CPU: Intel® Core™ i9-10980XE.
By applying calibrated and validated VNF throughput pre-
diction model, it is possible to forecast the maximum
throughput performance for any CPU. In this chapter, we
predict the maximal throughput and optimal system config-
uration to achieve the highest throughput for sufficiently
high number of flows on the subject CPU [31] dating from
q4/2019 and 10Gbps link. The subject CPU is an 18-core
CPU with 3GHz clock. The simulation scenarios are the
same as described in Chapter 4.2. Figure 20 shows the pre-
dicted results. The y-axis represents the predicted maxi-
mum throughput for the OVS VNF in (a) Mpps and in
(b) Gbps. The physical link can be saturated with this
CPU for traffic scenarios with frame sizes > 512 B according
to predictions. This can be achieved for “2 + 1” + IC 125 sys-
tem configuration and 6 flows minimum. Amongst the two
least optimal throughput system configurations is “5 + 2”
+ IC off /125 according to predicted results. If the criteria
would be set to consider only single flow, then this system
configuration would come on top. For traffic scenarios with
frame sizes < 512 B, the throughput prediction model still
imposes the throughput to be strongly limited by CPU pro-
cessing capacity.

5. Conclusion

This study proposed a VNF and NFVI architecture model
with performance prediction and bottleneck determination
for optimal virtual network function performance analysis.
It is presented in the study that the throughput performance
of the VNF can be modeled using software execution units
(EAs) that can run isolated or collocated on a compute
resource (CPU core). A prerequisite for the VNF to be
applied in the model is that the white box view of its software
architecture is known and that system bottlenecks and
throughput requirements are already identified. The valida-
tion results of the model using representative VNF showed
the mean deviation out of all measurements from predicted
results to be 3.74%. Although the mean deviation points to
respectable prediction results of our model, setting loose
some of the prerequisites and assumptions of the model
(CBR traffic, same frame size, and linearly scalable system
configurations with number of flows) could lead to signifi-
cantly higher deviations. In addition, the defined EA-based
throughput prediction model considers only a single static
value of IC against the IC off, not considering the latency/jit-
ter dimension of the traffic that is affected by the IC. Besides
CPU processing resources and IC, network functions,
regardless if deployed as NF or VNF, may be impacted by
other parameters, such as CPU cache memory, CPU NUMA
topology, L3 cache memory sharing, or the usage of CPU
hyperthreading. Therefore, it is important in the future to
validate the throughput prediction results for more real-
world VNFs. The future work will concentrate to carry out
more fine-grained measurements, modeling, and simulation
in order to extend the proposed throughput prediction model
and to extend its applicability.

Data Availability

Research data is confidential.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] ETSI Industry Specification Group (ISG) NFV, “ETSI GS NFV
002 V1.2.1: network functions virtualization (NFV); architec-
tural framework,” 2014.

[2] D. Vladislavic, G. Topic, K. A. Vrgoc, J. Ozegovic, and
D. Huljenic, “Throughput evaluation of kernel based packet
switching in a multi-core system,” in 27th International Con-
ference on Software, Telecommunications and Computer Net-
works (SoftCOM), pp. 1–6, Split, Croatia, 2019.

[3] W. Wu, M. Crawford, and M. Bowden, “The performance
analysis of Linux networking - packet receiving,” Computer
Communications, vol. 30, no. 5, pp. 1044–1057, 2007.

[4] A. O. Allen, Probability, Statistics, and Queueing Theory with
Computer Science Applications, Academic Press, 2nd Edition
edition, 1990, ISBN: 0-12-051051-0.

[5] G. A. Gallardo, B. Baynat, and T. Begin, “Performance model-
ing of virtual switching systems,” in 2016 IEEE 24th

20 Wireless Communications and Mobile Computing

International Symposium on Modeling, Analysis and Simula-
tion of Computer and Telecommunication Systems (MAS-
COTS), pp. 125–134, London, UK, 2016.

[6] Z. Su, B. Baynat, and T. Begin, “A new model for DPDK-based
virtual switches,” in 2017 IEEE Conference on Network Soft-
warization (NetSoft), pp. 1–5, Bologna, Italy, 2017.

[7] B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li, “Performance
evaluation of OpenFlow-based software-defined networks
based on queueing model,” Computer Networks, vol. 102,
pp. 172–185, 2016.

[8] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder,
R. Yahyapour, and D. Simeonidou, “An analytical model for
software defined networking: a network calculus-based
approach,” in 2013 IEEE Global Communications Conference
(GLOBECOM), pp. 1397–1402, Atlanta, US, Dec. 2013.

[9] K. Mahmood, A. Chilwan, O. Østerbø, and M. Jarschel,
“Modelling of OpenFlow-based software-defined networks:
the multiple node case,” IET Networks, vol. 4, no. 5, pp. 278–
284, 2015.

[10] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and
P. Tran-Gia, “Modeling and performance evaluation of an
OpenFlow architecture,” in 2011 23rd International Teletraffic
Congress (ITC), pp. 1–7, Anaheim, US, Sept 2011.

[11] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow
switching: data plane performance,” in 2010 IEEE Interna-
tional Conference on Communications, pp. 1–5, Cape Town,
South Africa, 2010.

[12] D. Sattar and A. Matrawy, “An empirical model of packet pro-
cessing delay of the Open vSwitch,” in 2017 IEEE 25th Interna-
tional Conference on Network Protocols (ICNP), pp. 1–6,
Toronto, Canada, 2017.

[13] R. Bolla and R. Bruschi, “Linux software router: data plane
optimization and performance evaluation,” Journal of Net-
works, vol. 2, no. 3, pp. 6–17, 2007.

[14] R. Bolla and R. Bruschi, “PC-based software routers: high per-
formance and application service support,” in Proceedings of
the ACMworkshop on Programmable routers for extensible ser-
vices of tomorrow, pp. 27–32, Seattle, US, 2008.

[15] M. Dobrescu, N. Egi, K. Argyraki et al., “RouteBricks: exploit-
ing parallelism to scale software routers,” in Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems princi-
ples, pp. 15–28, Montana, US, 2009.

[16] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Perfor-
mance characteristics of virtual switching,” in 2014 IEEE 3rd
International Conference on Cloud Networking (CloudNet),
pp. 120–125, Luxembourg, 2014.

[17] “Open vSwitch,” http://www.openvswitch.org/.

[18] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle,
“Assessing software and hardware bottlenecks in pc-based
packet forwarding systems,” in ICN 2015 : The Fourteenth
International Conference on Networks, p. 90, Barcelona,
Spain, 2015.

[19] M. Paolino, N. Nikolaev, J. Fanguede, and D. Raho, “SnabbS-
witch user space virtual switch benchmark and performance
optimization for NFV,” in 2015 IEEE Conference on Network
Function Virtualization and Software Defined Network
(NFV-SDN), pp. 86–92, San Francisco, US, 2015.

[20] Y. Zhao, L. Iannone, and M. Riguidel, “Software switch perfor-
mance factors in network virtualization environment,” in 2014
IEEE 22nd International Conference on Network Protocols,
pp. 468–470, Raleigh, US, Oct. 2014.

[21] B. Zhang, X. Wnag, R. Lai et al., “Evaluating and optimizing
I/O virtualization in kernel-based virtual machine (KVM),”
in IFIP International Conference on Network and Parallel
Computing, pp. 220–231, Heidelberg, 2010.

[22] S. Lange, A. Nguyen-Ngoc, S. Gebert et al., “Performance
benchmarking of a software-based LTE SGW,” in 2015 11th
International Conference on Network and Service Management
(CNSM), pp. 378–383, Barcelona, Spain, Nov. 2015.

[23] R. Kawashima, H. Nakayama, T. Hayashi, and H. Matsuo,
“Evaluation of forwarding efficiency in NFV-nodes toward
predictable service chain performance,” Transactions of Net-
work Services and Management, vol. 14, no. 4, pp. 920–933,
2017.

[24] R. Kawashima, S. Muramatsu, H. Nakayama, T. Hayashi, and
H. Matsuo, “A host-based performance comparison of 40G
NFV environments focusing on packet processing architec-
tures and virtual switches,” in 2016 Fifth European Workshop
on Software-Defined Networks (EWSDN), pp. 19–24, The
Hague, The Netherlands, Oct. 2016.

[25] L. Rizzo and G. Lettieri, “VALE, a switched Ethernet for virtual
machines,” in Proceedings of the 8th international conference
on Emerging networking experiments and technologies,
pp. 61–72, Nice, France, 2012.

[26] M. Honda, F. Huici, G. Lettieri, and L. Rizzo, “mSwitch: a
highly-scalable, modular software switch,” in Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Net-
working Research, pp. 1–13, Santa Clara, US, June 2015.

[27] T. Meyer, F. Wohlfart, D. Raumer, B. Wolfinger, and G. Carle,
“Validated model-based prediction of multi-core software
router performance,” Praxis der Informationsverarbeitung
und Kommunikation (PIK), vol. 37, no. 2, pp. 93–107, 2014.

[28] D. Raumer, F. Wohlfart, D. Scholz, P. Emmerich, and G. Carle,
“Performance exploration of software-based packet processing
systems,” Leistungs-, Zuverlässigkeits-und Verlässlichkeitsbe-
wertung von Kommunikationsnetzen und verteilten Systemen,
vol. 8, 2015.

[29] A. Beifuß, D. Raumer, P. Emmerich et al., “A study of network-
ing software induced latency,” in 2015 International Confer-
ence and Workshops on Networked Systems (NetSys), pp. 1–8,
Cottbus, Germany, 2015.

[30] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and
G. Carle, “MoonGen: a scriptable high-speed packet genera-
tor,” in Proceedings of the 2015 Internet Measurement Confer-
ence, pp. 275–287, Nice, France, 2015.

[31] “Intel® Core™ i9-10980XE extreme edition processor,” https://
www.intel.com/content/www/us/en/homepage.html?ref=
https://www.intel.com/content/www/us/en/products/
processors/core/x-series/i910980xe.html/.

21Wireless Communications and Mobile Computing

http://www.openvswitch.org/
https://www.intel.com/content/www/us/en/homepage.html?ref=https://www.intel.com/content/www/us/en/products/processors/core/x-series/i910980xe.html/
https://www.intel.com/content/www/us/en/homepage.html?ref=https://www.intel.com/content/www/us/en/products/processors/core/x-series/i910980xe.html/
https://www.intel.com/content/www/us/en/homepage.html?ref=https://www.intel.com/content/www/us/en/products/processors/core/x-series/i910980xe.html/
https://www.intel.com/content/www/us/en/homepage.html?ref=https://www.intel.com/content/www/us/en/products/processors/core/x-series/i910980xe.html/

	Virtual Network Resource Optimization Model for Network Function Virtualization
	1. Introduction
	2. Related Work
	3. Execution Area-Based Throughput Prediction Modeling
	3.1. Approach
	3.2. Software Execution Areas of the Representative NF/VNF
	3.3. Software Execution Areas of the Target NFVI
	3.4. EAs as a Server Queuing System
	3.5. Model Definition
	3.6. Calibration

	4. Model Validation
	4.1. Testbed
	4.2. Building the “x+y”+IC System Configurations
	4.3. System Configuration: “1+1”+IC Off
	4.4. System Configuration: “1+1”+IC 125
	4.5. System Configuration: “2+1”+IC Off
	4.6. System Configuration: “2+1”+IC 125
	4.7. System Configuration: “3+1”+IC Off/125
	4.8. System Configuration: “4+1”+IC Off/125
	4.9. System Configuration: “4+2”+IC Off/125
	4.10. System Configuration: “5+2”+IC Off/125
	4.11. Validation Summary
	4.12. Prediction Results for CPU: Intel® Core™ i9-10980XE

	5. Conclusion
	Data Availability
	Conflicts of Interest

