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Automatic identification and location of farmland pests are an important direction of target detection research. The wide variety
of pests and the similarity between pest categories make the automatic identification of farmland pests have some problems, such
as high error rate and difficult identification. In order to achieve a better target for automatic identification and location of
farmland pests, this paper proposes a lightweight pest detection model, and the network is the EfficientNet proposed by
Google, which achieves the detection of 26 pests, the idea based on the classical Yolo target detection algorithm. First of all,
features were extracted through the lightweight backbone, and then multiscale feature fusion is performed by PANet; finally,
three feature matrices with different sizes were output to predict pests of different sizes. Using CIOU as the loss function of
regression prediction better reflects the relative position of the prior box and the real box. The experimental results are
compared with other lightweight algorithms, and the results show that the accuracy rate of the algorithm for identification and
localization of agricultural pest in this paper is the highest and could reach 93.73%. Moreover, the model is lightweight and
can be deployed on low-cost equipment, which reduces the cost of equipment and accurately predicts the status of pests and
diseases in farmland. In practice, it is shown that the algorithm can effectively solve the problems of large number of pests,

pest accumulation, background interference, and has strong robustness.

1. Introduction

Wheat and corn are the main food crops in North China. The
growth of crops often suffers from pests, which cause enor-
mous economic losses to wheat and corn yields every year.
There are many kinds of pests on agricultural crops, which
attack the growth of crops and often erupt into disasters;
so, there is a need for real-time and accurate monitoring of
wheat and corn pests, develop reasonable prevention, and
control measures to reduce economic losses. Traditional
wheat versus corn pest detection primary methods still
require staft from the base layer to enter the field to observe
pest type characteristics, visually observe, and diagnose pest
status in the area. This method has the characteristics of
heavy workload and low efficiency. It cannot predict the
occurrence of diseases and insect pests in real time, meet
the needs of current pest monitoring, reduce the accuracy

of agricultural pest monitoring, and is not conducive to the
scale and automation of pest detection [1-3].

With the growth of computing resources, deep learning
has developed rapidly, especially in the field of image, which
provides a technical basis for lightweight farmland pest
detection [4]. In the early stage of pest identification, artifi-
cial neural network, support vector machine, and other
methods were used to realize pest identification, mainly
based on the color, texture, morphology, and other charac-
teristics of pests. It has high requirements for the body shape
characteristics of pests in the data set and can only complete
several categories. The identification results are very unsta-
ble. This method is essentially a classification problem. Only
one pest can be solved in one picture, which is not in line
with the actual environment [5]. With the growing maturity
of deep learning technology [6, 7], a large number of excel-
lent detection models have emerged in the field of target
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detection, such as SSD, Fast-RCNN, and Yolo [8-10]. These
excellent target detection models extract features through
convolutional neural networks. These algorithms are based
on anchors to achieve target positioning. Recently, some tar-
get detection algorithms without anchors have emerged,
such as Centernet [11]. However, for small target objects
such as pests, the performance of no a priori frame algo-
rithm is not very ideal. The target detection model has been
widely used in pedestrian detection, vehicle detection, face
detection, driverless, and other fields. It is also applicable
to the target detection of pests. For example, Wei Yang
and others have realized the automatic identification of pests
by using the two-stage faster-RCNN detection model [12].
Yuan and others have realized the automatic recognition
and counting of 8 types of insects by using the yolov3 model,
and the recognition rate can reach 70.98% [13], while the
accuracy of pest recognition still needs to be improved.

Most of the existing recognition methods use network
pictures as datasets for training. Although they have good
recognition rate, the pictures collected on the network can
only identify one side of the pests [14]. There is a big gap
in practical applications. The robustness of the model is
not high, and the deployment needs a high computing
resources device, which cannot meet the current actual
needs [15]. In this paper, a lightweight detection model is
proposed to solve the problem that the existing target detec-
tion model requires a large amount of computing resources.
The model is deployed on low-cost devices, mainly to mon-
itor pests in farmland, so as to achieve the scale and automa-
tion of pest monitoring. The detection model in this paper
mainly refers to the idea of the Yolo algorithm. Because each
pest has a different size, the model outputs three different
size feature matrices, and sets three anchors with different
size for each feature matrix, and the regression predicts pests
with different size. The deployment of the detection model
on the local device is implemented, which reduces the waste
of computing resources and greatly reduces the cost.

2. Related Work

2.1. Image Processing. The nature of depth learning is end-
to-end; so, the construction of datasets is the basis of indepth
learning. Because of the scarcity of public pest datasets, there
is a big difference from the actual situation. The pest dataset
used in this paper was obtained by using a telemetry lamp
device in Shandong Province. The device mainly uses light
to attract pests, kills pests through heating chamber, falls
on the insect board, and takes pictures of pests through
high-definition camera. A total of 10,000 pictures of pests
were collected. 6,144 useful pictures of pests were manually
screened out. A total of 26 pests were identified. Some of
the samples were shown in Figure 1. The category and
number distribution of pests were shown in Table 1 below.
The labellmg tool was used for labeling manually to generate
VOC2007 format [16].

The input of the pest detection model in this paper is a
416 x 416 size picture, while the size of the data set is not
the same, the data need to be adjusted to a uniform size to
be the input of the network, if the direct resize the picture
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is distorted, and may lose the original characteristics of the
picture; so, the method of adding padding to the picture is
adopted to prevent the distortion of the data set. For a good
target detection model, it requires massive data sets for
training to avoid overfitting of the network and enhance
the robustness of the model, while the number of this data
set is obviously insufficient, a total of seven methods have
been used to further augment the data set, namely, rotation,
horizontal translation, vertical translation, perspective trans-
formation, and scaling horizontal inversion as well as bright-
ness enhancement, thereby enhancing the generalization
ability of the model, and the dataset was expanded to more
than 20000 sheets [17].

In order to further improve the robustness of the model
and enhance its generalization ability, the mosaic data
enhancement method is used when loading the data set.
The mosaic data enhancement refers to the data enhance-
ment method of Cutmix [18]. The Cutmix data enhance-
ment method is to splice two images, but mosaic uses four
images to enrich the background of the object and increase
the diversity of the data. When calculating in BN (batch nor-
malization) layer, the larger the setting of batch size is, the
closer the mean value and variance of the whole data set will
be, and the better the effect will be. Due to the limitation of
GPU memory, it is impossible to train multiple pictures at
one time. When we put four pictures together and input
them into the network, the batch size of the input network
will be increased in disguise. As shown in Figure 2, the image
is enhanced by mosaic data.

2.2. Target Detection Algorithm. The object detection algo-
rithm in deep learning consists of three parts: backbone,
neck, and head. Backbone is mainly used for feature extrac-
tion to generate feature map, such as VggNet, ResNet, and
Densenet [19-21]. The function of neck is to fuse feature
maps of different scales for further feature extraction, such
as FPN, PAN, and BiFPN [22-24]. Finally, the head is used
for classification and regression prediction to complete the
target recognition and positioning. The head is mainly
divided into two parts. One is based on anchor, such as
SSD, Yolo, and Retinanet. It sets anchor box in feature points
in feature map in advance and locates the target by adjusting
the size and position of anchor box. There are two main
problems: the preset anchor box size is fixed, and the other
is based on anchor free, such as Cornernet [25] and Center-
net. When building the model, it takes the target as a point;
that is, the center point of the target BBox uses key points
to find the center point and returns to other target attributes;
in the experimental study, the accuracy of anchor is higher
than that of anchor free; so, this paper proposes a lightweight
target detection algorithm based on Yolo’s idea and improves
the two shortcomings of two anchor bases.

2.3. Model Structure. The network architecture draws lessons
from the Yolo model structure and uses the one stage
method to build the model. The Yolo series detection model
has been very perfect after three generations of iteration. It
has the advantages of high calculation speed and high accu-
racy and is widely used. In this paper, the network
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FIGURE 1: Insect samples of each classification target.

TaBLE 1: Sample and target quantity of each classification.

No. Name Sample quantity No. Name Sample quantity
0 Corn borer 545 13 Amata emma 492
1 Cotton bollworm 1565 14 Gryllotalpa spps 167
2 Chafer 1799 15 Chiasmia cinerearia 221
3 Macdunncughia crassisigna 159 16 Eupolyph 256
4 Athetis lepigone 928 17 Callambulyx tatarinovi 340
5 Mamestra brassicae linnaeus 727 18 Scarites 229
6 265 19 Cricket 179
7 Striped sorghum borer 73 20 Diaphania quadrimaculalis 238
8 Agrotis ypsilon 624 21 200
9 Mythimna Separata 189 22 Agrius convolvuli 200
10 Latoia sinica Moore 366 23 Smeritus planus walker 203
11 Beet armyworm 183 24 Parum colligata 190
12 Agrotis segetum 374 25 Bremer et Grey 147

Ladybug Butler




I oy 4 ey

FIGURE 2: Mosaic enhanced image.

architecture constructed by the algorithm according to its
idea is shown in Figure3. The darknet-53 of the backbone
in yolov3 is replaced by the improved Efficientnet [26],
and the PAN is replaced by the FPN in neck to improve
the feature fusion.

The backbone in this algorithm is based on Efficientnet-
B2 [26] network, which was proposed by Google in 2019 for
image classification. The input of the Efficientnet-B2 net-
work is 260 x 260. In order to better extract the characteris-
tics of the image, the input size is changed to 416 x 416, and
the SPP network structure is added in the last block, so as to
further sample the feature map. The Efficientnet-B2 network
is mainly composed of seven MBConv blocks. The structure
is shown in Figure 4. It uses 1 x 1 ordinary convolution for
dimension raising, then BN and swish activation functions,
and then uses deep separable volume for down sampling.
After an SE module, it uses a 1 x 1 convolution for dimen-
sion reduction, and normalizes through a BN layer. Finally,
the input characteristic matrix is added with the main chan-
nel characteristic matrix through the shortcut branch to
complete the output of the characteristic matrix. Only when
the dimension of the input MBConv structure characteristic
matrix is the same as that of the output characteristic matrix,
the splicing operation is carried out. In the first ascending
dimension of 1x 1 convolution layer, the input MBConv
structure characteristic matrix is connected with the output
characteristic matrix, and the number of convolution kernels
is N times of the input characteristic matrix channel.

The changed network parameters are shown in Table 2,
rechanging the input size and adding the SPP structure,
enhancing the generalization ability of the algorithm and
having a broader vision of features.

Deep separable convolution [27] is a deformation of
traditional convolution. It is different from traditional con-
volution in that the number of channels of its convolution
core is equal to the number of channels of the input charac-
teristic matrix, the number of channels of the output charac-
teristic matrix, the number of convolution cores, and the size
of the convolution core is a matrix of 1 x 1. The structural
schematic of the ordinary convolution is shown in
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Figure 5, the deep separable convolution is shown in
Figure 6, assuming that D} represents the size of the input
feature matrix, M is the number of feature matrices, Dy is
the size of the convolution kernel, N is the number of output
feature matrices, and the computational comparison of the
deep separable convolution with ordinary convolution is
shown by equation (1).

D DyM-Dy-Dg+M-N-Dy-Dp _ 1 1
Dy Dy-M-N-D;-D; N DY’

(1)

Assuming that the size of the convolutional kernel is
3 x 3, the formula is equal to 1/N +1/9; so, the computa-
tion of the ordinary convolution is theoretically 8 to 9
times the depth, which is visible to be much less than
the ordinary convolution.

The structure of SE module is shown in Figure 7. The
feature map performs a global average pooling and trans-
forms the size of the feature matrix to 1 x 1, which performs
two full connection layers. The first full connection uses the
swish activation function, and the number of channels
becomes 1/4 of the original number. The second full connec-
tion uses the sigmoid activation function, the number of
nodes is equal to the number of channels of the output char-
acteristic matrix of the depth separable convolution layer,
and the final output is obtained by multiplying with the
input feature map. The SE module is similar to the self-
attention [28] mechanism and increases the interesting
features through the output of the sigmoid function.

In the main feature network, a SPP (spatial pyramid
pooling) structure is added; that is, three maximum pooling
samplings are conducted after the last MBConv block,
because the stride is all one, the size of the padding, and fea-
ture matrix in the feature matrix is added not to change. The
three obtained feature matrices and the input feature matrix
are splicing to obtain the feature matrix of 4 times the depth.
The structure is shown in Figure 8.

In the stage of feature fusion, the idea of the PANet (path
aggregation network) structure is used for multiscale feature
fusion. In the backbone feature network, three feature matri-
ces with different sizes are collected, as shown in Figure 3.
The three feature matrices are MBConv5, MBConv7, and
MBConv8. First, convolution and SPP operations with con-
volution kernel size of 3 x 3 are performed on MBConvs,
and then up sampling and stacking with MBConv7 are per-
formed. The feature layer continues to perform up sampling
and fusion stacking with MBConv5. Through two times of
length and width expansion, the up sampling operation is
completed, and the feature layer with high semantics is
obtained. The convolution operation with convolution
kernel size of 5x5, and down sampling are carried out,
respectively, to ensure the feature information of the target,
which is more conducive to detecting objects of different sizes.

In neck, after completing the fusion stack, the three char-
acteristic matrices perform the convolution operation with
the convolution kernel size of 5 x 5, respectively, and output
three characteristic matrices with different sizes, namely,
(13,13,93), (26,26,93), and (52,52,93). The first two
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TaBLE 2: Network parameters of features extraction.

Operation type/

Matrix Number of Number of

Stage convolut.ional core size channels  repetitions
size
1 Conv, k3 x 3 416 x 416 32 1
2 MBConv, k3x3 208 x 208 16 1
3 MBConv, k3 x 3 208 x 208 24 2
4 MBConv, k5% 5 104 x 104 48 2
5 MBConv, k3 x 3 52 x 52 80 3
6 MBConv, k5 % 5 26 x 26 120 3
7 MBConv, k5 x 5 26 X 26 192 4
8 MBConv, k3 x 3 13x13 350 1
9 SPP, k5, k9, k13 13x13 1408 1

dimensions represent the size of the feature layer and are
used to detect objects of different sizes, while 93 represents
that each feature point has three a priori boxes. Each a priori
box contains five parameters, namely, length, width, center
point, and classification probability. A total of 26 pests are
detected this time; so, this dimension is 3 x 31.

Swish activation function is used in MBconv block.
Swish is an improved version of sigmoid and Relu, similar
to the combination of Relu and Sigmoid, which contains a
parameter f3, and f3 can be set as a constant or a trainable
parameter. It has the characteristics of no upper bound but

lower bound, smoothness, and nonmonotonicity, as shown
in formulae (2) and (3).

Sigmoid(x) = 1+1 —, (2)
e X

f(x) =x - sigmoid(x). (3)

The Swish activation function not only has the advan-
tages of the Relu and Sigmoid functions but also is superior
to Relu in the deep model. It can be seen as a smoothing
function between the linear function and the Relu function.

2.4. Loss Function. The loss function in target detection can be
roughly divided into three parts: confidence loss, classification
loss, and location loss. In the confidence loss function, IOU
(intersection over union) is used to judge the relative position
relationship between the prediction frame and the real frame,
but IOU cannot judge the overlapping area, center distance,
and aspect ratio between the prediction frame and the real
frame. Therefore, this paper uses CIOU (complete, IOU)
[29] to replace IOU and adds a penalty term, so that the
regression loss function tends to converge and reduce the
divergence of loss function in the training process. The loss
function of the model is shown in formula (4).
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L(O’ 6 O’ C’ l’ g) = Achonf(O’ C) + A2Lcla\(o’ C) + /\3Lloc(l’ g)
(4)

Among them, A,, A, and A; are equilibrium coefficients.
The weight of each loss function is adjusted by setting the
size of each y. The specific formulas of confidence loss,
classification loss, and positioning loss are shown in for-
mula (5), (6), and (7).

2i(0;In (€) +(1-0;) In (1-7))

Lconf(o’ C) == N > (5)
L,,(0.C)=~- Dicpos Ljecka (Oij In (Cij) +(1- Oij) In (1- Cij)) )
Npos
(6)
) IN™ — gAmy?
Lloc(l, g) _ ZtepasZmE{x,y,Zu\)}h}( i 9N ) ] (7)
pos

In formula (5), o; € [0, 1], which represents the CIOU
between the prediction frame and the real frame, ¢ is the pre-
diction value, ¢ is the prediction confidence obtained by ¢
through the Sigmoid function, and N is the number of positive
and negative samples. In formula (6), O;; € {0, 1} indicates

whether there is a class j target in the prediction frame i, C;;
is the prediction value, C,; is the target probability obtained

ij
by C;; through the Sigmoid function, and N, is the number

pos
of positive samples. In formula (7),7;” is the center point coor-
dinate and length and width in the prediction frame, and g!" is
the information of the real frame. The formula of CIOU is
shown in (8).

P(0.")

CIOU =I0U-———— ~av, (8)

where b represents the coordinates of the distance
between the center point of the prediction box, b9 repre-
sents the coordinates of the distance between the center
point of the real box, p(.) represents the calculation of
Euclidean distance, ¢ represents the distance between the
prediction box and the diagonal line of the minimum
bounding box of the real box, and penalty factors a and v
are added to it, as shown in (9) and (10).

v

= — > 9
110U+ ®)
4 w9t w\
= — _ = J— 1
v - <arctan e arctan h) . (10)

w9'and h? represent the width and height of the real
box. w and h are the width and height of the prediction
box. This penalty is mainly to make the width of the predic-
tion box as fast as possible to be close to the width and
height of the real box. Finally, we get the regression loss
function as shown in formula (11).
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2 gt
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Lciou=1—10U+7Z+(xv. (11)

c

The present algorithm uses anchor base to predict the
target position of the object. The main idea is to set anchor,
of different sizes in each feature point in the feature matrix,
although the problem of positive and negative sample imbal-
ance during training, leading to reduced model accuracy. For
example, an image may produce tens of thousands of candi-
date boxes, but only few parts contain the target; the target
box is positive sample, and the negative sample with no can-
didate box. The focal loss [30] function solves the problem
of positive and negative sample imbalance and also controls
the weights of easily classified and difficult classified samples.
The formula of the focal loss function is as follows: (12),
(13), and (14).

pify=1
pt{ i (12)
1 - p otherwise
ify=1
o= VT (13)
1-a otherwise
FL(Pt) = _“t(l _Pt)Y log (Pt) (14)

Among them, (1-p,)" is called the adjustment coeffi-
cient. When p, tends to 0, the adjustment coefficient tends
1, the contribution to loss increases, and the adjustment
coefficient tends 0, equivalent to a small contribution to
the total loss. When the coefficients 1"=0, the traditional
crossentropy loss function realizes the adjustment coefficient
by adjusting the 1.

3. Results and Discussion

3.1. Experimental Environment. This experiment uses
Pytorch as a deep learning framework to accelerate the
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TaBLE 3: Prediction effect of target detection model in this paper on insects in each test set.
Name AP (%) Name AP (%)
Corn borer 99.36 Amata emma 99.13
Cotton bollworm 99.27 Gryllotalpa spps 95.50
Chafer 99.59 Chiasmia cinerearia 96.56
Macdunncughia crassisigna 71.43 Eupolyph 96.67
Athetis lepigone 99.01 Callambulyx tatarinovi 99.58
Mamestra brassicae Linnaeus 96.15 Scarites 94.85
Striped sorghum borer 98.20 Cricket 100.00
Agrotis ypsilon 62.86 Diaphania quadrimaculalis 97.50
Mythimna Separata 98.32 Agrius convolvuli 99.58
Latoia sinica Moore 99.94 Smeritus planus walker 86.96
Beet armyworm 92.75 Parum colligata 88.60
Agrotis segetum 81.90 Bremer et Grey 89.81
Ladybug 95.82 Butler 97.66
mAP 93.73

training model. The hardware configuration is: R5-3600 pro-
cessor, 16GB memory, and Nvidia RTX3070 graphics card;
the software environment is Windows10 system, Python3.7,
Pytorch1.9, CUDA version 11.0, and cuDNN version 8.0.1.

3.2. Evaluation Criteria. Average precision (AP) is a main-
stream measure of the target detection model. AP is calcu-
lated by calculating the AP of each target category. AP is
calculated by using the area under precision-recall (P-R)
curve as the AP value, where precision and recall formulas
(15) and (16) show.

TP
Recall= —— 15
T TPy EN (15)

TP
Precision= —— . 16
recision TP n FP ( )

TP (true positives) represents the correct target class
classification and is a positive sample, FN (false negatives)
represents the wrong result of model classification, and the
sample is negative, FP (false positives) represents the wrong
model classification, the sample is negative, and map has
become a recognized method of target detection and is
widely used.

3.3. Results and Analysis. In the process of regression predic-
tion, nine candidate frames are set according to three char-
acteristic matrices with different sizes. Because of different
training data sets, the sizes of candidate frames are also
different. In this paper, K-means clustering algorithm is used
to find the appropriate size of prior frames in the training
set. The K-means clustering algorithm is different from the
standard one. It calculates the distance between candidate
frames through CIOU, and the final nine candidate frames
are (29, 35), (55, 70), (72, 117), (87, 83), (94, 149), (115,
110), (124, 186), (145, 146), and (182, 220), which fit 81%
of the frames of the dataset. During training, the transfer
learning method is adopted. The preloaded model is the
model of VOC data set, and the partially frozen backbone

method is used to iterate 50 times, then thaw the training,
and then iterate 50 times. As shown in Figure 9, the decline
curve of the loss function after 200 times of model training is
displayed. The cosine annealing method is used to reduce
the learning rate. Among them, the learning rate adopts
the cosine annealing method to reduce the learning rate
through the cosine function. In the cosine function, with
the increase of x, the cosine value first decreases slowly, then
accelerates the decline and decreases slowly again. It is easier
for the model to find the best advantage, and the label
smoothing method is added, which is mainly to punish the
classification so that the model cannot be classified too accu-
rately and prevent overfitting

We divide the dataset into training set, validation set,
and test set according to 7:1:2 ratio and then calculate the
AP value of the pest species through the test set. Table 3
shows that the mAP value of the model can reach 93.73%,
which proves that the detection model has good perfor-
mance. We can see that the accuracy of Scarite pests can
reach 100%, while the AP of Agrotis ipsilon pests is only
62.86%. From the table, we can know that this may be
caused by the uneven distribution of pest species, or it may
make the characteristics of pests have little difference, the
number of samples is small, and the model is not enough
to extract the features. To further demonstrate the robust-
ness of the model, we tested the detection of the algorithm
in real-world situations. As shown in Figure 10, the algo-
rithm detection results in different scenarios. In Figure
10(a), there is little background interference, the number of
pests is always constant, and there is no stacking. The algo-
rithm accurately predicts the type and location of pests. In
Figure 10(b), although the number of pests has decreased,
the background has been seriously disturbed, and the pests
have been flipped. The model still finds the location and
classification of pests accurately. In Figure 10(c), stacks of
pests appear, and the number and species increase. Although
pests are identified as two species, this may be due to the low
IOU threshold, but most pests are accurately identified. In
Figure 10(d), there are a large number of pests, and some
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TABLE 4: Average recognition accuracy, detection speed, and model size of different models for insects.

Models mAP(%) Speed (s) Parameters (million) Size (MB)
Yolov3 89.71 1.90 61.66 235.21
ShuffleNet-yolo 75.71 0.42 9.60 36.60
MobileNetv1-yolo 84.66 0.60 12.40 47.31
MobileNetv2-yolo 81.65 0.63 10.51 40.09
MobileNetv3-yolo 81.93 0.54 11.13 43.63
GhostNet-yolo 82.49 0.53 11.14 42.49
EfficientNet-yolo 88.16 0.69 15.12 59.23
Our model 93.73 0.72 15.66 59.78

of them are stacked, which is compared with the actual
number. Despite the missed pest detection, the model still
detects the location of pests and their corresponding spe-
cies. Through these complex cases, it can be shown that
the target detection algorithm has excellent robustness,
can cope with a variety of complex environments, and
has wide application.

3.4. Comparison of Several Models. To evaluate the perfor-
mance of the algorithm, this paper is compared with yolov3,
yolov3 algorithm adopts Darknet-53 as the backbone feature
network, it uses the original EfficientNet-B2, for compari-
son, and finally, on the basis of this algorithm replaced
different lightweight backbone, such as Google MobileNet
[31, 32] series, and more lightweight ShuffleNet [33, 34]
and Huawei GhostNet [35], these are lightweight classifica-
tion networks. The same training set is used in the experi-

ments, finally, test evaluation using the same test set.
Finally, the model is deployed on industrial tablets, its
CPU is adopted as a J1900 processor, 4GB of running mem-
ory, and test the inference speed of the model, and results are
shown in Table 4. We can see that the yolov3 model has high
accuracy, but the number of participants can reach 60 mil-
lion, the inference of the model is the longest time-consum-
ing, high performance requirements for the equipment, not
convenient for practical deployment, and using a lightweight
backbone, we can see that the ShuffleNet parameter is min-
imal, the model is only 36 MB, and the detection speed is
also the fastest, but the model really has the lowest accuracy.
Compared with MobileNet series and GhostNet, the com-
prehensive performance of explicit GhostNet is the best,
with the volume size of only 42MB, the accuracy can be
up to 82%, and the detection speed can basically reach two
pictures per second, with good timeliness. Although these
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models are small, the accuracy does not meet the commer-
cial standard. For this algorithm compared with Efficient-
Net-B2, the accuracy rate can reach 93% and improve by
almost 5 percentage points, and the volume of the algorithm
is only a quarter more than GhostNet; so, this algorithm has
lightweight and high sex characteristics.

4. Conclusion

In order to achieve automatic recognition and classification
of farmland pests, a lightweight target detection model is
proposed. Based on the idea of yolov3, the EfficientNet-B2
classification network is used as the main feature extraction
network and improved. PANet is added to THE neck, and
CIOU is used as the loss function of target detection to high-
light the relative position between the prediction box and the
real box. The problem that the low confidence prediction
box is filtered due to the overlap of the target box, and the
prediction box is avoided. Focal loss function is used to solve
the imbalance between positive and negative samples during
training. In order to increase the diversity of datasets, the
Mosaic data enhancement method is used to increase the
diversity of data and improve the robustness of the model.
Experiments show that the mAP value of this algorithm
can reach 93% accuracy, and it has good recognition ability.
The algorithm also has strong recognition ability in complex
environment. Compared with other algorithms, this algo-
rithm not only recognizes many kinds of classes but also
has high accuracy and wide application.
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