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Compressed sensing can recover sparse signals using a much smaller number of samples than the traditional Nyquist sampling
theorem. Block sparse signals (BSS) with nonzero coefficients occurring in clusters arise naturally in many practical scenarios.
Utilizing the sparse structure can improve the recovery performance. In this paper, we consider recovering arbitrary BSS with a
sparse Bayesian learning framework by inducing correlated Laplacian scale mixture (LSM) prior, which can model the
dependence of adjacent elements of the block sparse signal, and then a block sparse Bayesian learning algorithm is proposed
via variational Bayesian inference. Moreover, we present a fast version of the proposed recovery algorithm, which does not
involve the computation of matrix inversion and has robust recovery performance in the low SNR case. The experimental
results with simulated data and ISAR imaging show that the proposed algorithms can efficiently reconstruct BSS and have
good antinoise ability in noisy environments.

1. Introduction

Compressed sensing (CS) [1] provides a new sampling and
reconstruction paradigm, which can recover sparse signals
from linear measurements:

y =Φx + n, ð1Þ

where Φ ∈ RM×NðM <NÞ is the measurement matrix, y ∈ RM

is the measurement vector, x ∈ RN is the sparse signal, and
n ∈ RM is the additive noise. Many recovery algorithms have
been presented to reconstruct sparse signals, including
orthogonal matching pursuit (OMP) [2] and sparse Bayesian
learning (SBL) [3].

In some signal processing applications such as ISAR
imaging [4] and gene expression levels [5], there are many
sparse signals with block structural features; i.e., nonzero
elements are often clustered. Inducing structural a priori
can largely improve the reconstruction performance. There-
fore, to improve the reconstruction effect of block sparse sig-
nals (BSS), many algorithms are proposed. For instance,
Block-OMP [6] and Block-StOMP [7] are OMP-based
approaches. Meanwhile, some block recovery algorithms

based on the Bayesian compressed sensing framework are
presented, including block sparse Bayesian learning (BSBL)
[8], Cluss-MCMC [9], model-based Bayesian CS via local
beta process (MBCS-LBP) [10], and pattern-coupled sparse
Bayesian learning (PC-SBL) [11]. Among these recovery
algorithms, Bayesian algorithms have parameter learning
ability and can be applied to recovery arbitrary signals with
unknown sparse structures by flexibly imposing different
sparse prior models.

In [12], Zhang et al. have proposed an expectation-
maximization-based variational Bayesian (EM-VB) infer-
ence method, which utilizes the Laplacian scale mixture
(LSM) model as a sparse prior; i.e., it is assumed that the
sparse signal obeys the Laplacian prior because the Laplacian
distribution can represent sparseness well. Based on this
model, for the BSS with unknown block information, this
paper proposes a block Bayesian recovery algorithm by
inducing a correlated LSM prior model, which uses the
dependence between neighboring elements of the BSS. Fur-
thermore, to improve the computational efficiency of the
proposed recovery algorithm, a fast version without matrix
inversion is presented, which is suitable for noisy environ-
ments, especially in the low SNR case. The experimental
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results on simulated data and ISAR imaging show that the
proposed algorithms have a good reconstruction effect on
BSS and can resist noise in noisy environments.

The remainder of this paper is organized as follows. In
Section 2, a correlated LSM prior model for BSS is given.
Then, the proposed block Bayesian recovery algorithm and
the fast version are derived in Section 3. Simulation experi-
ments are presented in Section 4. Finally, we conclude this
paper in Section 5.

2. Signal Model

In the framework of sparse Bayesian learning, for themeasure-
ment model shown in (1), the noise n is generally assumed to
obey a Gaussian prior distribution N ðn ∣ 0, γ−1IMÞ, and a
Gamma distribution for the hyperparameter γ is

p γ ; a, bð Þ = G γ ; a, bð Þ = ba

Γ að Þ γ
a−1 exp −bγð Þ, ð2Þ

where ΓðaÞ = Ð +∞0 xa−1 exp ð−xÞdx. The sparse signal x is
usually assumed to obey a sparse prior distribution. In the
LSM layered prior model [12], the sparse signal x is supposed
to follow a Laplacian prior distribution:

p x ∣ λð Þ =
YN
n=1

La xn ∣ 0, λnð Þ =
YN
n=1

1
2λn

exp −
xnj j
λn

� �
, ð3Þ

where λnðn = 1,⋯,NÞ is the scale parameter of the Laplacian
distribution for each element in the signal. Since the Inverse-
Gamma (IG) distribution is conjugated to Laplacian distribu-
tion, the LSM model assumes that the scale parameter λn
obeys the IG distribution as follows:

p λ ; c, dð Þ =
YN
n=1

IG λn ; c, dð Þ =
YN
n=1

dc

Γ cð Þ λ
−c−1
n exp −

d
λn

� �
:

ð4Þ

In the above model, each hyperparameter λn controls the
corresponding signal element xn individually and each signal
element is considered to be independent. Considering that
nonzero elements of BSS appear in clusters, this requires a
more appropriate model for BSS. For the BSS whose structure
prior information is unknown, the PC-SBL algorithm [11]
assumes that the hyperparameters of adjacent elements have
a certain influence on its sparsity. Inspired by the PC-SBL,
we assume that the block sparse signal x obeys the following
correlated Laplacian prior distribution, i.e.,

p x ∣ λð Þ =
YN
n=1

La xn ∣ 0, λn−1, λn, λn+1ð Þ

=
YN
n=1

1/λnð Þ + β 1/λn−1ð Þ + β 1/λn+1ð Þ
2

exp

� −
1
λn

+ β
1

λn−1
+ β

1
λn+1

� �
xnj j

� �
,

ð5Þ

where the parameter β ∈ ½0, 1� indicates the degree of correla-
tion between adjacent elements in the signal. It can be seen
from (5) that the element xn is affected by its own hyperpara-
meter λn and the neighboring ones λn−1 and λn+1. For the
elements at both ends x1 and xN , let λ0 = 0 and λN+1 = 0.
The model (5) makes use of the feature of the block sparse
signal, in which the scale parameters λ still obey the IG
distribution shown in (4).

3. Block Bayesian Recovery Algorithms

In Bayesian inference, given observation y, it needs to
derive the posterior probability density for all unknown
parameters pðx, λ, γ ∣ yÞ∝ pðy ∣ x, γÞpðx ∣ λÞpðλÞpðγÞ. Varia-
tional Bayesian inference is a widely used method to approx-
imately solve the maximization of a posteriori, which
assumes that the variables x, λ, and γ are independent of each
other. Let θ = fx, λ, γg, and then

p θ ∣ yð Þ ≈ q θð Þ =
Y
i

q θið Þ = q xð Þq λð Þq γð Þ: ð6Þ

For each of these latent variables, the approximate poste-
rior distribution may be computed in an alternating manner
as follows:

q θið Þ =
exp ln p y, θð Þh iq θkð Þ,k≠i

� �
Ð
exp ln p y, θð Þh iq θkð Þ,k≠i

� �
dθi

, ð7Þ

where h·iqðθkÞ,k≠i represents the expected operation with
respect to the distributions qðθkÞ, k ≠ i. According to (7),
the proposed reconstruction algorithm is derived by alter-
nately learning the updating rules of these latent variables.

Firstly, the approximate posterior distribution qðxÞ is

ln q xð Þ∝ ln p y ∣ x, γð Þ + ln p x ∣ λð Þh iq λð Þq γð Þ, ð8Þ

where pðy ∣ x, γÞ is a Gaussian distribution N ðΦx, γ−1IMÞ
and pðx ∣ λÞ is a Laplacian distribution shown by (5). Since
these two distributions are not conjugated, a direct solution
is difficult. Similar to [12], let

L xð Þ = − ln p y ∣ x, γð Þ + ln p x ∣ λð Þh iq λð Þq γð Þ ∝
γh i
2

y −Φxk k22

+ 〠
N

n=1

1
λn

+ β
1

λn−1
+ β

1
λn+1

� �
xnj j:

ð9Þ

The maximum a posteriori (MAP) estimate of the signal
x can be obtained by x̂MAP = arg minxfLðxÞg. The derivative
of LðxÞ is

∇xL xð Þ = γh iΦTΦ +D
� 	

x − γh iΦTy, ð10Þ
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where

D = diag
1
λn

� �
+ β

1
λn−1

� �
+ β

1
λn+1

� �� �
1
xnj j


 �
, ð11Þ

and diag ½⋅� denotes a diagonal matrix with the elements in
the bracket. Let the derivative be equal to zero and get the
approximate MAP estimate:

x̂MAP = γh i γh iΦTΦ +D
� 	−1ΦTy: ð12Þ

So the posterior distribution can be approximated by
using the second-order Taylor expansion around x̂MAP, i.e.,

ln q xð Þ ≈ ln q x̂MAPð Þ + 1
2

x − x∧MAPð ÞTH x̂MAPð Þ x − x̂MAPð Þ,
ð13Þ

where Hðx̂MAPÞ ≈ −ðhγiΦTΦ +DÞ. After similar simplifica-
tion in [12], qðxÞ can be approximated to obey the Gaussian
distribution N ðx ∣ μ, ΣoÞ with the mean μ = hγiΣoΦTy and

covariance matrix Σo = ðhγiΦTΦ +DÞ−1. Due to that, there
exists some approximation in the above derivation of the
posterior distribution qðxÞ; the sparsity of the signal may
be underestimated. So a parameter α ∈ ½0:5, 1� is introduced
into the computation of the covariance matrix. Thus, qðxÞ
is approximated to be the following Gaussian distribution:

q xð Þ ≈N x ∣ μ, Σð Þ, ð14Þ

where the mean and covariance matrix, respectively, are

μ = γh iΣΦTy,

Σ = γh iΦTΦ + αD
� 	−1

:
ð15Þ

Secondly, the approximate posterior distribution qðλÞ is

ln q λð Þ∝ ln p λð Þ + ln p x ∣ λð Þh iq xð Þ = ln p λð Þ + ln p x ∣ λð Þh iq xð Þ:

ð16Þ

From (4) and (5), we have

ln p λð Þ∝ 〠
N

n=1
c + 1ð Þ ln 1

λn
−

d
λn

� 

, ð17Þ

ln p x ∣ λð Þh iq xð Þ ∝ 〠
N

n=1
ln

1
λn

+ β
1

λn−1
+ β

1
λn+1

� ��

−
1
λn

+ β
1

λn−1
+ β

1
λn+1

� �
xnj jh i




= 〠
N

n=1
ln

1
λn

+ β
1

λn−1
+ β

1
λn+1

� ��

− xnj jh i + β xn−1j jh i + β xn+1j jh ið Þ 1
λn




≥ 〠
N

n=1
ln

1
λn

− xnj jh i + β xn−1j jh i + β xn+1j jh ið Þ 1
λn

� 

:

ð18Þ
So qðλÞ can be approximated as

ln q λð Þ∝ 〠
N

n=1
c + 1ð Þ + 1½ � ln 1

λn

�

− xnj jh i + β xn−1j jh i + β xn+1j jh ið Þ + d½ � 1
λn



:

ð19Þ

Therefore, qðλÞ obeys an Inverse-Gamma distribution:

p λ ;~c, ~d
� �

=
YN
n=1

IG λn ;~c, ~dn
� �

, ð20Þ

with

~c = c + 1,
~dn = xnj jh i + β xn−1j jh i + β xn+1j jh ið Þ + d:

ð21Þ

We can also obtain

1
λn

� �
=

~c
~dn

=
c + 1

xnj jh i + β xn−1j jh i + β xn+1j jh ið Þ + d
, ð22Þ

where hjxnji can be computed as follows according to [13]:

xnj jh i =
ffiffiffiffiffiffiffiffiffiffi
2Σn,n
π

r
exp −

μ2n
2Σn,n

� �
+ μnj j erf

ffiffiffiffiffiffiffiffiffiffi
μ2n

2Σn,n

s !
,

ð23Þ

and erf ðxÞ = ð2/ ffiffiffi
π

p ÞÐ x0e−t2dt is the error function.
Thirdly, the approximate posterior distribution of the

noise parameter qðγÞ is

ln q γð Þ∝ ln p γð Þ + ln p y ∣ x, γð Þh iq xð Þ ∝ a − 1 +
M
2

� �
ln γ

−
y −Φxk k22

� �
2

+ b

 !
γ:

ð24Þ
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So qðγÞ obeys the Gamma distribution:

q γð Þ = G γ ; ~a, ~b
� �

, ð25Þ

with

~a = a + M
2
,

~b =
y −Φxk k22

� �
2

+ b,
ð26Þ

Input: y,Φ, ε, Max iter, β, α.
Initialize: μ0, λ, γ, a, b, c, d
While kμt+1 − μtk2 > ε or t ≤Max iter do
Update:
(1) Compute the mean μ and the covariance matrix Σ by (15) and (11).
(2) Compute λ−1 according to (22) and (23).
(3) Compute γ via (27).
Output: x̂ = μ

Algorithm 1: Block EM-VB.

Input: y,Φ, ε, Max iter, β, α
Initialize: μ0, λ, γ, a, b, c, d
While kμt+1 − μtk2 > ε or t ≤Max iter do
Update:
(1) Compute the mean μi and the variance σ2i ði = 1, 2,⋯,NÞ, sequentially by (35).
(2) Compute λ−1 according to (22) and (23).
(3) Compute γ via (27) and (36).
Output: x̂ = μ

Algorithm 2: Fast Block EM-VB.
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Figure 1: The support recovery rate versus the sparsity in the noiseless case when (a) M = 30 and (b) M = 40.
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and we can obtain

γh i = ~a
~b
=

a + M/2ð Þ
y −Φxk k22

� �
/2

� 	
+ b

, ð27Þ

where hky −Φxk22i = ky −Φμk22 + Tr½ΣΦTΦ� and Trð⋅Þ is
the trace of a matrix.

Therefore, the whole process of the proposed algorithm
is summarized in Algorithm 1, where ε is the preset error
that can be tolerated. The proposed algorithm can be
regarded as an extension of the EM-VB algorithm for the
recovery of BSS, which is termed the Block EM-VB algo-
rithm. It has an additional parameter α except for the block

parameter β. When α = 1 andβ = 0, the Block EM-VB
algorithm reduces to the EM-VB. The parameters α in (15)
and β in (22) have great influences on the recovery perfor-
mance of the Block EM-VB. It is appropriate to set α < 1
to void underestimation of the support set if the sparsity of
the signal is larger, while larger α can suppress nonzero sig-
nal elements and has certain antinoise capacity in noisy
environments. For the choice of β, it is similar that larger
β may enhance the influence between adjacent elements
and could suppress the nonzero values to make the signal
more sparse in noisy environments.

Remark 1. From (23), it can be seen that the computation of
hjxnji is related to the erf ðxÞ involving integral operation. In
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Figure 2: The success rate vs. the sparsity level in the noiseless case when (a)M = 30 and (b) M = 40.
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Figure 3: The success rate vs. the number of measurements in the noiseless case when (a) K = 20 and (b) K = 25.
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practice, to reduce the complexity, erf ðxÞ can be calculated
by utilizing some approximation equations such as

erf xð Þ ≈ 1 − e−4x
2/π 1 +

8x4

π

1
3
−

1
π

� �
 �� 
1/2

: ð28Þ

From the process of the Block EM-VB algorithm, it can
be seen that its complexity is almost the same as that of
the PC-SBL.

The proposed Block EM-VB algorithm involves the
matrix inversion shown in (15), which is the main computa-

tional complexity. It is better to consider the fast version of
the proposed algorithm. To void computation of the inverse
of the matrix, we can use the following approximate poste-
rior distribution, which is expressed as

p θ ∣ yð Þ ≈ q θð Þ =
YN
i=1

q xið Þq λð Þq γð Þ: ð29Þ

That is to say, it assumes the independence on the poste-
rior of each coefficient element of the signal. Similarly, by
using (7), we can alternately learn the updating rules of these
latent variables.
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Figure 4: The reconstructed signal by different algorithms when N = 100, M = 50, K = 25, and SNR = 10 dB. (a) Original signal, (b)
reconstructed signal by PC-SBL with NMSE = 0:2362, (c) reconstructed signal by Block EM-VB with NMSE = 0:2184, and (d)
reconstructed signal by Fast Block EM-VB with NMSE = 0:1092.
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Figure 5: The NMSE vs. the sparsity level when SNR = 10 dB and (a) M = 40 and (b) M = 50.
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Firstly, the approximate posterior distribution qðxiÞ
ði = 1, 2,⋯,NÞ is

ln q xið Þ∝ ln p y ∣ x, γð Þ + ln p xi ∣ λi−1, λi, λi+1ð Þh iq γð Þq λð Þq xjð Þ j≠i ,

ð30Þ

where pðy ∣ x, γÞ =N ðΦx, γ−1IMÞ and pðxi ∣ λi−1, λi, λi+1Þ
= ððð1/λiÞ + βð1/λi−1Þ + βð1/λi+1ÞÞ/2Þ exp ð−ðð1/λiÞ + βð1/
λi−1Þ + βð1/λi+1ÞÞjxijÞ. Let

l xið Þ = − ln p y ∣ x, γð Þ + ln p xi ∣ λi−1, λi, λi+1ð Þh iq γð Þq λð Þq xjð Þ j≠i ∝
γh i
2

y −Φxk k22
� �

q xjð Þ j≠i

+
1
λi

+ β
1

λi−1
+ β

1
λi+1

� �
xij j∝ γh i

2
−2yTΦx + xTΦTΦx
� �

q xjð Þ j≠i

+
1
λi

+ β
1

λi−1
+ β

1
λi+1

� �
xij j∝ γh i

2
−2yTφixi + φT

i φix
2
i + 2xiφT

i 〠
j≠i
φj xj
� � !

+
1
λi

+ β
1

λi−1
+ β

1
λi+1

� �
xij j,

ð31Þ

where φi is the i-th column of Φ. The derivative of lðxiÞ is

∇xi
l xið Þ = γh i

2
−2yTφi + 2φT

i φixi + 2φT
i 〠
j≠i
φj xj
� � !

+
1
λi

+ β
1

λi−1
+ β

1
λi+1

� �
xi
xij j :

ð32Þ

Let ∇xi
lðxiÞ = 0 and obtain the following approximate

MAP estimate:

~xi = γh i γh iφT
i φi +

1
λi

+ β
1

λi−1
+ β

1
λi+1

� �
1
xij j

� �−1
y −〠

j≠i
φj xj
� � !T

φi:

ð33Þ

Similarly, qðxiÞ is approximated to obey the following
Gaussian distribution:

q xið Þ ≈N xi ∣ μi, σ
2
i

� 	
, ð34Þ

where

μi = γh iσ2i y −〠
j≠i
φj xj
� � !T

φi,

σ2i = γh iφT
i φi +

1
λi

+ β
1

λi−1
+ β

1
λi+1

� �
α

xij j
� �−1

,

ð35Þ
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Figure 6: The NMSE vs. the number of measurements when SNR = 10 dB and (a) K = 20 and (b) K = 25.
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in which a parameter α is also introduced to avoid
underestimation of the sparsity of the signal. Thus, hxii = μi
ði = 1, 2,⋯,NÞ can be computed in a sequential manner.

Secondly, the approximate posterior distribution qðλÞ
still obeys an Inverse-Gamma distribution shown in (20)
and the computation of hλ−1i is the same as (22).

Thirdly, the approximate posterior distribution qðγÞ
obeys the Gamma distribution Gðγ ; ~a, ~bÞ and we can obtain
hγi = ~a/~b = ða +M/2Þ/ðhky −Φxk22i/2 + bÞ, where

y −Φxk k22
� �

= y −Φμk k22 + Tr ΣΦTΦ
� �

= y −Φμk k22 + 〠
N

i=1
σ2
i φ

T
i φi,

ð36Þ

and μ = ðμ1, μ2,⋯, μNÞT and Σ ≜ diag ½σ2i �.
Compared with the Block EM-VB algorithm, the above

algorithm has low computational complexity due to without
matrix inversion in each iteration. It can be called Fast Block
EM-VB, and its process is summarized in Algorithm 2. In
noisy environments, the correlations between adjacent signal
elements may be weakened, especially in the low SNR case,
so it is appropriate to assume independence on the posterior
of each coefficient element, which implies that the Fast
Block EM-VB is suitable to recover the BSS under the
low SNR case.

4. Simulation Experiments

In this section, some simulation experiments are carried out
to demonstrate the performances of the proposed Block
EM-VB algorithm and its fast version. A comparison with
other algorithms such as EM-VB [12] and PC-SBL [11] is
also given.

4.1. Performance Analysis via Simulated Data. In the follow-
ing simulation, let the length of the sparse signal be N = 100,
and an arbitrary block Gaussian sparse signal is randomly
generated with its nonzero entries randomly distributed in
B = 3 blocks, and the measurement matrix is a random
Gaussian matrix. The number of Monte Carlo simulations
is 200. The parameters in EM-VB and in the Block EM-VB
and its fast version are set as a = b = c = d = 10−6, Max iter =
200, and ε = 10−5. The parameters α and β in the Block
EM-VB and its fast version will be set adaptively according
to the noiseless and noisy cases because their performances
are sensitive to the choice of α and β. The parameters of
PC-SBL are set the same as those in [11].

First, we discuss the influences of two parameters α and
β on the performance of the proposed Block EM-VB and
make a comparison with the EM-VB, which is a special case
of the Block EM-VB when α = 1 andβ = 0. To demonstrate
the effect of these two parameters, the performances of the
Block EM-VB with α = 0:7 andβ = 0 and α = 1 andβ = 0:5
are also given. The support recovery rate is used to evaluate
the performance of the Block EM-VB algorithm with differ-
ent parameters. The recovered support of the sparse signal is
defined as supp ðx̂Þ = fi,∣x̂i∣>0:001g, and then the support

recovery rate is defined by ∣supp ðx̂Þ ∩ supp ðxÞ ∣ / ∣ supp ðx̂Þ
∪ supp ðxÞ ∣ , where j⋅j denotes the number of elements in a
set. If the overlap between the estimated support and the true
support is more, the recovery rate is closer to 1. Figure 1 plots
the support recovery rates of different algorithms versus the
sparsity level K when the number of measurements is
M = 30 and M = 40, respectively. It can be seen that the
parameters of the Block EM-VB algorithm have an important
influence on the recovery performance. The appropriate
parameter α < 1 can avoid the underestimation of the support
of the sparse signals, and the block parameter β > 0 is helpful
to recover the block sparse signals. Thus, the proposed Block
EM-VB algorithmwith appropriate parameters has better per-
formance than the EM-VB.

Then, we make a comparison between the Block EM-VB
and its fast version with the PC-SBL. In the noiseless case, the
success rate is used to evaluate the performances of these differ-
ent algorithms. When a trial satisfies kx̂‐xk22/kxk22 < 10−6, it is
regarded as a successful trial. The success rate is defined as
the percentage of successful trials in the total of independent
trials. In the noisy case, the reconstruction performance of each
algorithm is evaluated by the normalized mean square error
(NMSE), where NMSE = kx̂‐xk22/kxk22.

In the noiseless case, let α = 0:7 andβ = 0:5 in the Block
EM-VB and α = 0:5 andβ = 0:5 in the Fast Block EM-VB.
Figure 2 plots the success rate of individual recovery algorithm
versus the sparsity level K when the number of measurement
is M = 30 and M = 40, respectively. Then, let the sparsity
K = 20 and K = 25, and the success rate of each algorithm ver-
sus the number ofmeasurementsM is shown in Figure 3. From
these results, it is observed that the Block EM-VB is superior to
the PC-SBL when the number of measurements is less or the
sparsity is smaller. The Fast Block EM-VB is inferior to these
two algorithms due to the independent assumption.

Then, we consider the noisy case where the Gaussian
noise is added to the measurements with the signal-to-
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Figure 8: The average runtimes vs. the length of signal N .
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noise ratio (SNR) defined as 20 log10ðkΦxk2/knk2Þ. It
should be noted that the setting of parameter α in the pro-
posed algorithms needs to consider the trade-off between
removing the noise and maintaining the nonzero elements
of the signal. A larger value of α tends to suppress noise
while losing the nonzero values of the signal. Compared with
the Block EM-VB, the fast version needs to select smaller
α to ensure the recovery of nonzero elements of the
sparse signal because of its inherent denoising ability.
Let SNR = 10 dB and α = 0:85 and β = 0:5 in the Block

EM-VB and α = 0:5 andβ = 0:5 in the Fast Block EM-VB.
The reconstruction results of different algorithms when
K = 25 and M = 50 are given in Figure 4. It can be seen
that the Block EM-VB algorithm and its fast version have
better reconstruction performance than the PC-SBL in the
low SNR environment.

The NMSE of each algorithm versus the sparsity K in the
case of SNR = 10 dB is shown in Figure 5, where the num-
bers of measurements are given as M = 40 and M = 50,
respectively. Figure 6 plots the NMSE of individual recovery
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Figure 9: Reconstructed images with different algorithms (the left column is the noiseless case, and the right column is the noisy case).
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algorithm versus the number of measurementsM in the case
of SNR = 10 dB, where K = 20 and K = 25, respectively. It
can be found that the Block EM-VB algorithm is superior
to the PC-SBL when the number of the measurements is
larger or the sparsity is less, and the latter is better than
the former when the number of the measurements is less
and the sparsity is larger. It is also observed that the Fast
Block EM-VB is better than the Block EM-VB when the
number of measurements is less or the sparsity is larger. In
addition, it is shown that the Fast Block EM-VB outperforms
the PC-SBL when the sparsity is less or the number of the
measurements is larger.

The performances of each algorithm in different SNR
cases are shown in Figure 7, where K = 20 and M = 50. For
the Block EM-VB, the parameters β = 0:5 and α is set to vary
with the SNR, i.e., α = 0:85 when the SNR varies from 0dB
to 15dB, α = 0:75 when the SNR changes from 20dB to
25 dB, and α = 0:73 for the case of 30 dB. The parameters
in the Fast Block EM-VB algorithm are still set as α = 0:5
and β = 0:5. From Figure 7, it can be seen that the Block
EM-VB algorithm and the fast version have good recon-
struction performance in the case of low SNR when
compared with the PC-SBL. The Fast Block EM-VB
especially has robust recovery performance in respect of
noise immunity.

Finally, the average runtimes of these algorithms versus
the length of signals N by 5 independent trials are given in
Figure 8, where M =N/2, K =N/10, SNR = 10 dB, and the
number of nonzero blocks B = K/5. It validates that the
Block EM-VB almost has considerable computational
complexity as the PC-SBL and the Fast Block EM-VB has
the highest computational efficiency compared with other
recovery algorithms, which makes it have a potential advan-
tage in practical application.

4.2. Application in ISAR Imaging. The inverse synthetic
aperture radar (ISAR) imaging is appropriately implemented
under the framework of sparse signal recovery due to the
sparse characteristic of the target [14]. In this experiment,
the “Yak-42” dataset is used, in which the number of range
cells is 256 and the number of pulses is 256. 128 pulses are
randomly sampled to simulate the sparse aperture data.
Here, we use the MATLAB code provided in [14], where
the PC-SBL adopts a pruning operation. For a fair compari-
son, the proposed Block EM-VB and the fast version also use
a similar pruning operation and the parameters in these two
algorithms are set as Max iter = 200 and ε = 10−6. Image
entropy is usually used to measure image quality in ISAR
imaging. The smaller image entropy means better recon-
struction performance. The image entropy is defined as

Entropy = −〠
i

〠
j

x i, jð Þj j2
E

 !
log

x i, jð Þj j2
E

 !
, ð37Þ

where E =∑i∑jjxði, jÞj2 is the energy of the radar image x.
Here, the image is reconstructed by each range cell.

Figures 9(a), 9(c), and 9(e) give the reconstruction results
of these algorithms in the noiseless case, where we set

α = 1 andβ = 1 for the Block EM-VB and α = 0:8 andβ = 1
for the Fast Block EM-VB. In the noisy case, the data are cor-
rupted by additive Gaussian noise and let α = 0:85 andβ = 1
for the Block EM-VB and α = 0:6 and β = 1 for the Fast Block
EM-VB. Figures 9(b), 9(d), and 9(f) demonstrate the results
in the case of SNR ≈ 3 dB (the noise variance γ−1 = 0:0025).
The entropy values of these algorithms are shown in
Table 1. From these reconstruction results, it can be seen that
the image obtained by the Block EM-VB and its fast version
has better quality in the noisy case, which implies that the
Block EM-VB and its fast version have strong noise immu-
nity ability. Table 2 gives the corresponding runtimes of these
algorithms, which demonstrates that the Fast Block EM-VB
has the highest computational efficiency and can be used in
real-time processing.

5. Conclusions

Considering the clustered structural features of nonzero
elements of block sparse signals, this paper proposes the
Block EM-VB algorithm for signal recovery, which is based
on a correlated LSM model. Furthermore, a fast version of
the Block EM-VB is presented, which can recover the block
sparse signals with lower computational complexity because
of no inversion in each iteration. Experimental results with
simulation data and ISAR imaging demonstrate that the
Block EM-VB and its fast version have good BSS reconstruc-
tion performance and noise tolerance capability, especially
in the low SNR scenarios, which implies that the proposed
algorithms can be potentially applied in various signal pro-
cessing fields.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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Table 2: Comparison of the runtimes (s) of different algorithms.

PC-SBL Block EM-VB Fast Block EM-VB

Noiseless 27.7130 7.8391 3.3582

Noisy 30.3940 31.6483 6.8828

Table 1: The PSNR results of different algorithms.

PC-SBL Block EM-VB Fast Block EM-VB

Noiseless 5.6384 5.3275 5.4201

Noisy 5.5457 5.0689 5.0059
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