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With the vigorous development of open-source software, a huge number of open-source projects and open-source codes have been
accumulated in open-source big data, which contains a wealth of code resources. However, effectively and efficiently retrieving the
relevant code snippets in such a large amount of open-source big data is an extremely difficult problem. There are usually large
gaps between the user’s natural language description and the open-source code snippets. In this paper, we propose a novel code tag
generation and code retrieval approach named TagNN, which combines software engineering empirical knowledge and a deep
learning algorithm. The experimental results show that our method has good effects on code tag generation and code snippet retrieval.

1. Introduction

With the vigorous development of the open-source software,
the resources contained in the open-source big data are
becoming increasingly abundant [1–3], including not only
open-source software artifacts but also software development
behavior data and auxiliary documentation such as user
manuals and technique reports. On the one hand, the rapid
development of the open-source big data has provided soft-
ware developers with a huge amount of software code snip-
pets. On the other hand, the explosive growth of open-
source resources has brought considerable challenges to the
retrieval of open-source resources, especially code snippets.
Part of the current research work has been aimed at the clas-
sification of open-source resources. For example, Stack Over-
flow (http://stackoverflow.com/) classifies query questions
into different levels with different tags. These classification
levels and tag settings are determined by specialized domain
experts who spend considerable time and effort. Such a man-
ual process is difficult to scale to the explosive development
of the open-source big data [4]. Take the famous Linux ker-

nel as an example. According to statistics (http://www
.theregister.com/2020/01/06/linux_2020_kernel_systemd_
code/), the Linux kernel has 27.8 million lines of code in the
Git repository in 2020, increasing more than 1.7 million lines
compared with 2019. Such a phenomenon is common in the
open-source community. This brings great challenges to
human annotation work.

Open-source code snippets are developing at such a rapid
pace that traditional manual tagging is far from adequate.
Thus, the automatic tagging and classification of open-
source resources have begun to attract scholarly attention.
Wang et al. [5] use the existing tag of an open-source com-
munity (e.g., Stack Overflow) to tag software using classifica-
tion algorithms such as SVM. Zhou [6] puts forward a tool
named TagMulRec which contained an efficient tag-based
multiclassification algorithm that could deal with a mass of
software. These tasks are aimed at constructing tags at the
open-source software or project level.

However, with the development of the open-source big
data, the reuse of open-source resources by software devel-
opers has dived into the level of specific source codes rather

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 9956207, 11 pages
https://doi.org/10.1155/2021/9956207

https://orcid.org/0000-0002-4082-4798
https://orcid.org/0000-0002-8426-0816
https://orcid.org/0000-0002-4782-1645
https://orcid.org/0000-0002-3520-5829
https://orcid.org/0000-0001-8613-4779
http://stackoverflow.com/
http://www.theregister.com/2020/01/06/linux_2020_kernel_systemd_code
http://www.theregister.com/2020/01/06/linux_2020_kernel_systemd_code
http://www.theregister.com/2020/01/06/linux_2020_kernel_systemd_code
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9956207


than just using general mature open-source software prod-
ucts. Consequently, generating tags for natural language
queries is an effective method to enable software developers
to quickly retrieve high-quality open-source code snippets.

The traditional manual tagging model has difficulty in
supporting the generation of code tags for massive natural
language query statements. In recent years, the rapid devel-
opment of deep learning methods has many mature applica-
tions, such as image recognition, speech recognition, and
language translation. This also brings great opportunities
for code tag generation [7, 8]. Unlike traditional machine
learning models, training deep learning models require mas-
sive amounts of data. At this point, the open-source big data
has massive resources for model training. The rapid develop-
ment of deep learning in natural language processing has a
certain enlightening effect on the tag generation of open-
source resources.

Based on the above survey, we propose a technology to
automatically generate code tags for natural language
queries, in the hope of better guiding software developers to
effectively retrieve code snippets, accelerating the application
of open-source resources by software developers, and pro-
moting the growth and expansion of open-source software.
Specifically, we propose a novel code tag generation and code
retrieval approach named TagNN. The model combines the
term frequency-inverse document frequency (TF-IDF) algo-
rithm and the recurrent neural network (RNN) framework.
Our experiments found that simply generating a code
sequence of a certain length through a short natural language
description is not ideal. Therefore, we combine the deep
learning method and the empirical knowledge of software
engineering to generate the code tags for the corresponding
natural language description, thereby facilitating the effi-
ciency of code retrieval. The experimental results demon-
strate that our method designed in this paper offers good
performance results in improving the efficiency of code
retrieval. The key contributions of this paper are as follows:

(i) A new code tagging framework that combines
deep learning and software engineering empirical
knowledge

(ii) A large-scale dataset of Java code tags that contains
717,980 pairs of text summaries and code snippets

(iii) A novel code tag mining framework that leads to a
significant improvement of code retrieval compared
to the state-of-the-art methods

The rest of this paper is organized as follows. Section 2
reviews previous works. Section 3 describes our methods.
Section 4 shows the experimental design and results, and
the last section concludes this paper.

2. Related Work

Many works have been proposed for code tagging and
code retrieval. We will review these works in three
categories including code retrieval, deep learning, and
tag measurement.

2.1. Code Retrieval. In recent years, code retrieval has become
a research topic of interest in software engineering.
Researchers have proposed a variety of code retrieval
methods. These studies cover multiple aspects, provide
multiple forms of input, and recommend code resources at
various levels. The following reviews typical research work
about code retrieval.

INQRES [9] considers the relationship between each pair
of words in the source code and interactively reconstructs the
search query to optimize the query quality. Bajracharya [10]
proposes a systematic model that takes a natural language
query as input, finds the source code implementation of the
corresponding function and the calling methods of existing
code snippets, and uses the TF-IDF method and boosting
technology to identify popular classes. XSnippet [11] takes
a dedicated query statement as input. The advantage of
XSnippet is that it divides the query into two steps to expand
the scope of the query. Sourcerer [12] is a code retrieval tool
based on Lucene that combines code attributes and code
popularity as an indicator to evaluate the quality of recom-
mended codes and then retrieves relevant code snippets.

The above works have their own characteristics in the
study of code retrieval. They have contributed corresponding
solutions to the code retrieval problem by analyzing the
empirical knowledge of software engineering and the laws
of natural language. However, retrieval patterns and code
tag characteristics cannot be exhausted through manually
constructed rules. The TagNN method proposed in this
paper combines the characteristics of external rules with
data-driven generalization ability through deep learning,
which has certain innovations.

2.2. Application of Deep Learning in Natural Language
Processing. The research area of deep learning in natural
language processing has focused on sentence-level or
document-level text representation and classification methods
as follows.

UNIF [13] uses the attention mechanism to combine the
embedding of each token in the code snippet and generates
an embedding vector representation of the entire code frag-
ment. Pennington et al. [14] propose using the global
“word-word” co-occur matrix to obtain a word vector repre-
sentation in the GloVe method. Hill et al. [15] propose learn-
ing distributed expressions corresponding to sentences from
unlabeled data. Conneau [16] proposes using supervised
learning to learn general sentence representations from natu-
ral language inference data. Tai et al. [17] improve the
semantic representation model of long- and short-term
memory networks with tree structures.

These works use deep learning methods to process and
analyze natural language. However, few works applied deep
learning methods to the code snippet data. Moreover,
although the composition of the code is similar to natural
language expression, there are still some differences. Differ-
ent from other works, TagNN uses the empirical knowledge
of software engineering to process the code snippets so that
the deep learning method could effectively process the code
snippets with good results.
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2.3. Tag Measurement. The quality of tags is mainly mea-
sured from two aspects: similarity and generalization. The
similarity measure indicates the distance between tags. The
higher the value is, the closer the meaning or the stronger
the association is. Wang et al. [18] integrated tag annotation
through a labeling system that exists in the open-source com-
munity itself and then measured the textual similarity of
open-source resources on this basis. Begelman et al. [19]
measured the similarity of tags by the number of times the
tags appear together.

The generalization degree of a tag represents the number
of categories contained in the tag. The larger the value is, the
higher the level in the tag hierarchy. Schmitz [20] adjusted
the threshold to control the usage of special tags and
increased the special vocabulary in the filter to improve the
quality of the generated tags.

The above are all very classic works in this field which
mainly judge the quality of the tag by measuring the attri-
butes of the tag itself. In this paper, TagNN will judge
whether tags are good or bad based on their effectiveness in
assisting code retrieval that is different from the above work.

3. Overview of TagNN

In this section, we describe the framework of our approach.
TagNN involves two main methods. One is a tag generation
model based on deep learning methods, and the other uses
TF-IDF to extract keywords from generated code snippets
[21–24]. The deep learning model has a good effect on natu-
ral language processing, and TF-IDF has a good effect on
extracting key information in the text. Thus, we combine
the two types of methods for code tag generation. As shown
in Figure 1, TagNN consists of five parts: data collection,
training data processing, model training, model testing, and
code retrieval.

Figure 1 shows the framework of our approach, which
consists of five steps for code retrieval with code tags. This sec-
tion describes the first three parts (i.e., data collection, training
data processing, and model training), and Section 4 describes
the last two parts (i.e., model testing and code retrieval).

We give a brief description of the first three parts. First, we
obtain a large number of high-quality open-source projects
from the open-source community, from which we extract
code snippets and corresponding summary information.
Then, we analyze the summary information according to the
empirical knowledge of the natural language and process the
code snippets according to the software engineering domain
knowledge to obtain high-quality summary information and
code snippets. Next, with the previously obtained dataset, we
train the deep learning model. In addition, based on the
trained model, we input the natural language description
information to acquire the corresponding code tags. Finally,
the generated code tags are passed to the corresponding code
retrieval method to improve the efficiency of code retrieval.

3.1. Data Collection. We use the Kraken (https://forgeplus
.trustie.net/projects/zenglingbin12/summer_all) [25] tool to
acquire data, and the specific steps are shown in Figure 2.

Step 1 (Project requirements). First, we need to clarify the
type, quantity, and sorting criteria of the project to be
obtained. However, measuring the quality of open-source
projects is a complex system engineering problem. In this
paper, we adopt the concept of crowd intelligence and use
the star mechanism in GitHub to filter projects. Specifically,
when users in the open-source community like the project,
they can give the project a star. The more stars a project
has, the more people acknowledge the project. Based on this
concept, we collected the top-ranked projects in GitHub as
the source of projects.

Step 2 (Project lists). According to the requirements men-
tioned before, we use the API provided by GitHub to obtain
the metadata of all projects through the Kraken tool and then
analyze the data and sort out the project list.

Step 3 (Cloning projects). According to the project lists, we
use the protocol provided by the Git tool to clone and store
the remote projects locally. Because the protocol provided
by the Git itself is single-threaded, it is difficult to clone pro-
jects concurrently on a large scale. Thus, we design a multi-
threaded concurrent algorithm to clone projects.

Step 4 (Extracting code files). Every project containsmany dif-
ferent types of files, including documentation, technical man-
uals, and source codes. We need to filter out the source code
files. In our work, we filter the corresponding code files by file
name suffix matching. In addition, it should be noted that we
believe that each project has only one main programming
language. For projects composed of multiple programming

Summary
code snippet

Summary processing Code processing

Recurrent neural network 

Natural language
description Code tags 

Training data 
processing

Code retrieval method Code snippets 

Model training

Model testing

Data collection

Code retrieval

Java projects

Figure 1: The framework of the TagNN.
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languages, we clarify the main programming language of the
project through the information provided by GitHub.

Step 5 (Extracting methods). For the obtained source code
files, we use the characteristics of the programming language
and the empirical knowledge of natural language to filter out
method-level code snippets and corresponding description
information in the code files.

Step 6 (Paired dataset). The method-level code snippets and
summaries are stored in a local database as a basic dataset
for model training and testing.

3.2. Training Data Processing

3.2.1. Summary Processing. In the training data processing
module, we process information of code snippets and code
summaries separately. We believe that the quality of code
snippets and code summaries extracted from high-quality
projects in the GitHub community is generally high. How-
ever, the open-source community has a large number of
contributors, and their mastery levels are uneven, which
inevitably leads to uneven code summary quality. There
could be invalid or nonfunctional descriptions. Based on this
consideration, through the observation of the code summary
information and the understanding of language grammar
rules, we developed heuristic rules to filter code descriptions.
Figure 3 shows our process and rules for filtering code sum-
maries. We have a total of six steps for summary processing.

Step 1 (Remove @ block information). For programmers who
use the integrated development environment, as shown in
Figure 4, if they create a comment after writing the code,
the integrated development environment automatically adds
some predefined information for the class-level and method-
level code snippets. Take the well-known integrated develop-
ment environment Eclipse as an example. It can automati-
cally generate information such as “@author,” “@data,” and
“@return.” Although this information can help developers
understand the code better, they are not functional descrip-

tions. Therefore, in this step, we remove the code summaries
that contain “@” block information.

Step 2 (Remove other @ information). After removing the
“@” block information in the first step, there is still some
“@” information added by the software developer in the code
summaries. As shown in Figure 5, “@link” indicates the class
related to the object. In addition, there is still information
similar to “@deprecated” and “@code.” We use regular
expressions to remove the code summary information that
contains these “@” information.

Step 3 (Remove web page information). Through the analysis
of the code summary data, as shown in Figure 6, we found
that there are many web page tag elements to better display
the code summary information. However, these web page
tags are noisy data for the code description data, which is
not good for model training. We use regular expressions to
remove these web page tag data.

Step 4 (Remove punctuation information). The code sum-
mary is written by the software developer during the code
development, which contains many punctuation marks
(e.g., “,”, “.”, “?”, “!”, “:”, and “;”) and other symbols. To
reduce the noisy influence of punctuation marks on the code
summary information, as shown in Figure 7, we remove the
punctuation marks and remove the summary information
containing the question mark.

Step 5 (Remove non-English vocabulary). For the method
level, we only consider the functional summaries of the
method. Therefore, as shown in Figure 8, we remove the
summary information that contains non-English words. In
this step, we use Python’s pyenchant module to check each
word described.

Step 6 (Remove the description that is too short). In this step,
we remove the ambiguous code description information.

As shown in Figure 9, this code summary information
can only be understood by the code writer. Generally, a com-
plete code description in English must have at least one verb

Project lists

Cloning projects

Extracting code files

Project requirements

Code 
snippets

Extracting methods

Summaries

Figure 2: Data collection processing.
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and one object. Therefore, we have deleted descriptions that
are fewer than two words.

3.2.2. Code Processing. In this section, we deal with method-
level code snippets to obtain code tags, as shown in Figure 10.

(1) Code Segmentation. As shown in Figure 11, a piece of the
original code snippet is successfully segmented after six steps
of processing.

Step 1 (Remove parentheses). Parentheses in the code snip-
pets have no actual special meaning. Thus, we replace them
with blanks in the first step.

Step 2 (Remove punctuation information). We delete the
punctuation information of the code snippet as we did for
the summary before.

Step 3 (Remove underlining). When writing Java codes, some
programmers are accustomed to using underscores in

Remove @ block information 

Remove other @ information

Remove punctuation information

Remove too short description

Original summary information

High-quality summary information

Remove non-english vocabulary

Remove web page information

Figure 3: Summary information processing.

/⁎⁎Write a localized message, using the default resource bundle.
⁎@param key the key for the message to be localized
⁎@throws IOException if there is a problem closing the underlying stream

/
public void write I18N (String key) throws IOException { 

write (getString (i18n, key)) ;
}

⁎

Figure 4: Summaries containing “@” block information.

/  Returns the string for rendering the{@link IJavaElement#getElementName() element name} of
the given element.

 ⁎ /
protected String getElementName (IJavaElement element) {

return element.getElementName(); 
}

⁎⁎

⁎

Figure 5: Summaries containing other “@” information.

/⁎⁎Returns the coefficient of determination <em>R</em><sup>2</sup>.
⁎ @return the coefficient of determination <em>R</em><sup>2</sup>,

which is a real number between 0 and 1
/

public double R2() {
return R2 ;

}

⁎

Figure 6: Summaries containing web page information.

/ ⁎?? ´ ? ´ ? ´ /́ ?????⁎ http://mavin-manzhan.oss.-cn-hangzhou 
aliyuncs.com/ ...
⁎/
private static String getUrlFileName(String url) {

String filename = null;
String[] strings = url.split("/");
...
return filename; }

Figure 7: Summaries containing punctuation information.
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variable names to connect nouns. We delete the underscores
and decompose the variable names.

Step 4 (Dividing codes). The Java code writing rules follow
the camel case naming rules, so we decompose the variable
names based on the camel case rules and decompose each
independent word from it.

Step 5 (Remove Arabic numbers). The Arabic numbers
themselves do not represent special meanings, so we remove
the Arabic numbers that exist after the code participles.

Step 6 (Lowercase vocabulary). After the final processing, we
uniformly convert the vocabulary to lowercase and finally
output high-quality code snippets.

(2) Remove Reserved Words. The keywords of the Java code
exist in the system itself and have little meaning for the char-
acterization of the function itself [26]. Therefore, when we

obtain the code snippets processed in the first step, we pro-
cess the code and delete the Java keywords.

(3) Generate Tags. After the first and second steps, the code
snippets become code vocabulary sequences. We use the
TF-IDF algorithm to select the most representative words
for each code snippet in the entire training set. TF-IDF is a
statistical method that evaluates the importance of a word
to one of the documents in a document set. The importance
of a word increases in proportion to the number of times it
appears in the document, but at the same time, it decreases
in inverse proportion to the frequency of its appearance in
the corpus [27, 28]. Through the TF-IDF algorithm, we
generate the top ten important words in each code snippet.
The ten words are used as the tag of the code snippet to
characterize it.

3.3. Model Training. After the data are processed in the
second step, TagNN implements the construction of the
model through a recurrent neural network (RNN) algorithm.
We choose the classic Encoder-Decoder model that is often
used in natural language processing. Next, we will give a gen-
eral introduction to the selected model.

3.3.1. Input. We use the natural language description proc-
essed by heuristic rules as the input of the model.

3.3.2. The Basic Theory of the Model. The RNN is a classic
neural network model. It is composed of an input layer, a
hidden layer, and an output layer. For the convenience of
description, we use d to refer to the input layer, t to refer to
the output layer, and h to refer to the hidden layer. The depth
of the hidden layer can be set flexibly. The state of the hidden
layer h is changed by its previous state and the influence of
the state d, and finally, t is affected by the cumulative network
weight propagation [29–31]. Besides, this paper uses the
LSTM as an activation function [32], which has a good effect
on natural language processing. Next, we will introduce the
Encoder and Decoder in detail.

(1) Encoder. The Encoder is essentially an RNN. This paper
takes the natural language description of the code snippet
as the input sequence D which inputs the words into the
model one by one from the head position to the tail position,
and the state of the corresponding hidden layer changes
accordingly. After the D sequence is input and processed by
the hidden layer, the Encoder will output the intermediate
state m, as shown in Figure 12 [30].

/⁎ writes data to a random filename 
(update_<per JVM random UUID>_<COUNTER>.tmp)
/

private static DiskFileItem write ( String dir, byte[] data ) throws IOException, Exception
{

return makePayload(data.length + 1, dir, dir + "/whatever", data);
}

⁎

Figure 8: Summaries containing non-English vocabulary.

// where
void findFiles (File dir, Set<File> files) { 

for (File f: dir.listFiles()) { 
if(f.isDirectory())
findFiles(f, files);

else
files.add(f);

}
}

Figure 9: Overly short description.

Code segmentation

Remove reserved words

Original code snippet 

Code tags

Figure 10: The key steps of code processing.
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(2) Decoder. The Decoder is also an RNN like the Encoder.
When the Encoder outputs the state m to the Decoder, the
Decoder will output ti one by one, which is a tag that is used
to measure the code snippets. Finally, the Decoder will out-
put the sequence T which is the set of tags.

3.3.3. Output. The output of the model is a set of tags that we
want to measure the code snippets.

4. Experimental Design and Effect Verification

To demonstrate the validity of our TagNN model, we
designed two related problems and conducted corresponding
experiments. This section introduces experimental data and
evaluates our experimental results.

4.1. Experimental Setup

4.1.1. Model Settings. Table 1 shows the basic parameters of
TagNN.We implement TagNN with the famous TensorFlow
[33] framework. The model has six hidden layers, each of
which has 128 neurons. The neuron type is LSTM, and the
learning rate is set as 0.5.

4.1.2. Data Settings. We design an experiment based on
GitHub’s Java projects, from which we selected the top
5,000 Java projects based on the ranking of stars. After
screening and distinguishing abstracts, we selected 717,980
summary-code pairs that met the conditions. As shown in
Table 2, we use 80% of the data for the training set, 10% for
the validation set, and 10% for the test set.

4.2. Research Question. To study the effect of TagNN on tag
generation and whether the generated tags can help improve
the search and retrieval of open-source codes through natural
language, we propose the following two research questions:

(1) Question 1. What is the effect of generating code tags for
natural language through TagNN?

(2) Question 2. Can the code tags generated by TagNN
improve the accuracy of natural language retrieval codes?

For the first question, we analyzed the accuracy of the
code tags generated by TagNN, and for the second question,

Remove parentheses

Remove punctuation information

Dividing codes

Lowercase vocabulary Remove underline

Original code snippets

Meaningful code snippets

Remove arabic numbers 

Figure 11: The key steps in code snippet processing.

Encoder d1 d2 d3 dn

...

m

......

t1t2t3tn
...

Decoder

Tags set (T)

Model training

Input
Natural lanuage description (D)

Output

Figure 12: The architecture of model training.
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we used the traditional code search matching method plus
the code tag data to see how it affects the search results.

4.3. Metric Methods. For problem one, the experiment uses
the accuracy index. When the predicted tag generated by
the model matches the true tag of the code snippet, the accu-
racy index is one; otherwise, the value is zero. In addition, we
use the index of the recall rate, which is the probability that
the true tags of the code snippets appear in the tags generated
by the model.

4.4. Results. This section presents the final results of the above
two experiments and targeted comparative analysis.

4.4.1. The Effect of Generating Code Tags for Natural
Language through TagNN.We use the TagNNmodel trained
by the RNN to read the 71,798 natural language descriptions
in the test set and correspondingly generate 71,798 code tags.
As shown in Table 3, the accuracy rate of tag generation is
78.03%, and the recall rate is 31.00%. The experimental
results prove that our model has a high accuracy rate and a
reasonable recall rate. To the best of our knowledge, this is
the first time that code tags have been generated through nat-
ural language by deep learning methods to facilitate the
retrieval of code snippets in natural language. The accuracy
rate of 78.03% demonstrates that TagNN has a good effect
in generating code tags for natural language.

4.4.2. The Impact of Code Tags Generated by TagNN on
Natural Language Retrieval Codes. TagNN generates code
tags by describing natural language to improve the efficiency
of code retrieval. The role of TagNN tags is to allow existing
code retrieval methods to achieve better results after using tags.

We selected the classic TF-IDF algorithm for code
retrieval. Through the TF-IDF algorithm, we measure the
similarity scores of a single natural language description

and each piece of code and sort them with the similarity score
from highest to lowest. We believe that if the target code snip-
pet appears in the top ten code snippets, then the search task is
successful. As shown in Table 4, before adding tags, the
retrieval accuracy rate was 34.2%, while after adding tags, it
was 40.03%, an increase of approximately 17.04%. This means
that the code tags generated by TagNN are of great help in
improving the accuracy of natural language retrieval codes.

4.5. User Study. Through the above data analysis, we verified
the accuracy of code tag generation and the effect of code tag-
assisted code retrieval, which effectively proved the effective-
ness of TagNN at the data level. To further measure the
effectiveness of TagNN, we conducted a user study.

We invited 16 students with different backgrounds to
evaluate the results. Among them, there are eight software
development engineers, four master’s students, and four
doctoral students, all of whom have no less than five years
of Java software development experience. They were asked
to analyze the relevance of our tags and code snippets and
the effectiveness of tags to help code retrieval.

4.5.1. Relevance Evaluation. We ask students to evaluate the
relevance between the tags generated by TagNN and the cor-
responding code snippets. The evaluation uses the Likert-
type method [34], which has a variety of different expression
choices and can effectively measure users’ agreement with the
relevance of tags and code snippets. Users need to choose one
of five candidate options to express their agreement with the
degree of relevance. Table 5 indicates these options.

As shown in Figure 13, among the 10 samples, there were
six samples with a median of 4, three samples with a median
of 4.5, and one sample with a median of 3.5. The median
average value is 4.1, which is more than 4. This shows that
the tags generated by our TagNN method are highly corre-
lated with the code snippets, reaching the relevant level.

4.5.2. Usability Evaluation. To determine whether the tags
generated by TagNN are helpful for code retrieval, we orga-
nize users to evaluate the usability of tags for code retrieval.
As before, we use the Likert-type method. As shown in

Table 1: Basic parameters of TagNN.

Training tools TensorFlow

Hidden layers 6

Number of neurons per layer 128

Neuron type LSTM

Learning rate 0.5

Table 2: Experimental dataset.

The total amount of experimental data 717,980

Training set 80%

Validation set 10%

Test set 10%

Table 3: The effect of TagNN.

The total amount of test data 71,798

Accuracy rate 78.03%

Recall rate 31.00%

Table 4: The boost effect of TagNN.

Algorithm Accuracy rate

Classic TF-IDF algorithm 34.2%

TF-IDF algorithm with code tags 40.03%

Boost effect 17.04%

Table 5: Response categories for relevance evaluation.

Scale Response category

5 Very relevant

4 Relevant

3 Neither relevant nor irrelevant

2 Irrelevant

1 Very irrelevant
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Table 6, users need to choose one of the five different options
that best expresses their attitude.

As shown in Figure 14, the median value of the TagNN
method is 4, and the average value is 4.06. The median value
of the classic TF-IDF is 3, and the average value is 3.13.
Experimental results show that from the views of users, the
tags generated by TagNN have reached a useful level for code
retrieval and are superior to the classic TF-IDF method.

4.5.3. Discussion. Through user evaluation, we found that the
TagNN method demonstrates outstanding performance in
relevance because the TagNN method combines the charac-
teristics of deep learning methods with natural language

and code language, which reflect the important characteris-
tics of the code snippets.

As for the usability evaluation, TagNN has a better per-
formance than the traditional TF-IDF. The reason is that
the tags generated by the TF-IDFmethod are all derived from
the code snippet itself, so there will be no vocabulary outside
of the code snippet. However, TagNN uses deep learning
methods and is trained based on a large amount of data to
generate tags that may not be contained by the code snippet
itself, which is more flexible and broad-sourced.

5. Conclusion and Future Work

In this paper, we aim to address the difficulty of retrieving
massive codes in the open-source community to help devel-
opers quickly retrieve code resources, thereby speeding up
the development efficiency of software developers and realiz-
ing the reuse and dissemination of high-quality code
resources in the open-source community.

Based on the massive code snippets and natural language
description information of the open-source community, we
propose a novel code tag generation and code retrieval
approach named TagNN, which combines software engi-
neering empirical knowledge and a deep learning framework.
Our method generates corresponding code tags for natural
language descriptions through the RNN, thereby improving
the retrieval effect. With large-scale experiments on the
high-quality Java open-source project dataset collected from
the GitHub community, we empirically evaluate the code
tag generation effect of the model and the tags’ role in
improving the retrieval of code snippets.

There are still several shortcomings in our work. One is
that when we selected the tags of code snippets in the training
set, we simply applied the relatively rudimentary TF-IDF
algorithm and did not choose a more effective weight mea-
surement algorithm based on the actual situation of the code
snippets. Second, we added the tag data directly to the natural
language query to retrieve the code snippets without making
more effective use of the tag data.

In future work, we will try to carefully analyze and
observe the characteristics of the code snippets themselves
and propose a more effective method of extracting code tags.

Samples
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e
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1 2 3 4 5 6 7 8 9 10

Figure 13: User evaluation on relevance.

Table 6: Response categories for usability evaluation.

Scale Response category

5 Very useful

4 Useful

3 Not sure

2 Useless

1 Very useless

1.0
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2.0

2.5

3.0

3.5

4.0

4.5

5.0
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TagNN Classical TF-IDF
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Figure 14: User evaluation on usability.
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In addition, we will explore a more reasonable and effective
application of tags to optimize the code retrieval effect.
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