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With the continuous progress of edge computing technology and the development of the Internet of Things technology,
scenarios such as smart transportation, smart home, and smart medical care enable people to enjoy the smart era’s
convenience. Simultaneously, with the addition of many smart devices, a large number of tasks are submitted to the edge
server, making the edge server unable to meet the needs of completing tasks submitted by the smart device. Besides, if the
task is submitted to the remote cloud data center, it increases the user’s additional delay and cost. Therefore, it is
necessary to improve the task offloading strategy and resource allocation scheme to solve these problems. This paper first
proposes a new task offloading mechanism and then proposes a two-stage Stackelberg game model to solve each
participant’s interaction problem in the task offloading mechanism and ensure the maximization of their respective
interests. Finally, a theoretical analysis proves the equilibrium of the two-stage Stackelberg game. Experiments are used to
prove the effectiveness of the proposed mechanism. Comparative experimental results show that the proposed model can
achieve better results regarding delay and energy consumption.

1. Introduction

The urban Internet of things (IoT) plays a vital role in our
daily life. It realizes smart city, urban brain, and other appli-
cations by processing the data generated by the intelligent
devices deployed in the city. In the urban IoT scenario, the
traditional processing method is cloud computing, because
it can provide rich computing or storage resources to process
much urban IoT data. However, when the task is submitted
from an urban IoT device to a cloud computing data center,
a large amount of data transmission seriously affects the pro-
cessing performance, resulting in network congestion or
high latency. Therefore, edge computing technology is used
to offload tasks to edge servers or IoT devices. It is closer
to end-users, to improve the system’s performance in terms
of service delay, QoS, and resource utilization. However,
with the proliferation of smart devices in recent years, mas-
sive amounts of data are transmitted to edge servers or IoT

devices. These bring a heavy burden to the communication
bandwidth because the resources of the edge server or the
IoT devices are limited. It inevitably leads to the phenome-
non that multiple tasks compete to use the limited resources
when providing services. A large number of resource con-
tentions in edge servers undoubtedly lead to unbearable
waiting delays, energy consumption, and degradation of
end-user service quality. There are also many other edge
servers or IoT devices in the urban IoT that may be idle or
unused, which leads to the waste of resources. In addition,
end-users obtain related services through payment. To
obtain lower latency and higher satisfaction, users are willing
to pay more, which inevitably causes users to spend more.
Therefore, how can we offload the overloaded data to suit-
able processing facilities and provide high-quality services?
How can we achieve low latency and high quality of user
experience (QoE) for users with less expenditure and energy
consumption? These have become an important issue.
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In response to the above challenges, our goal is to design
a method to utilize the unused or idle resources in the urban
IoT. The task is offloaded to other servers or IoT devices to
improve the efficiency of edge computing. In this paper, we
call this pattern as “cooperative edge computing (CEC).”
There are many types of research on collaborative edge com-
puting. Ren et al. [1] propose to offload tasks to remote
cloud computing centers for collaborative execution; it can
use the system resources more effectively. Chen et al. [2]
propose to offload tasks to multiple edge servers for collabo-
rative execution. This method improves the performance of
edge service providers. In [3], Device-to-Device (D2D) is
utilized to offload tasks to other smart devices for collabora-
tive execution. Various device resources are shared with
other users through high-quality cellular connections. It
can provide more and better services to attract more users.
Jie et al. [4] propose an optimal resource allocation scheme
for the IoT environment based on fog computing. To maxi-
mize resource utilization, the authors model the resource
allocation problem as a two-stage Stackelberg game and pro-
pose three algorithms to achieve the Nash equilibrium and
Stackelberg equilibrium. Although these methods all adopt
the collaborative approach, they are fundamentally different
from the model proposed in this paper. End-users perform
the collaboration methods above by offloading tasks to
remote cloud servers or other edge servers or IoT devices.
The model proposed in this paper uses the edge scheduler
to offload the overloaded tasks on the edge server to other
idle edge servers or IoT devices for execution. The edge
scheduler is also responsible for executing CEC task offload-
ing strategies between other edge servers and IoT devices.

In the scenario with collaborative service providers, users
hope to obtain more resources within their budget. Local
edge service providers hope to obtain more revenue by pro-
viding services to more users. Collaborative service providers
can get rewards by providing resources to local edge service
providers. Users, local edge service providers, and collabora-
tive service providers all pursue their interests. It is necessary
to establish a feasible incentive mechanism to maximize
interests for all participants and promote cooperation. Game
theory is an effective tool to solve this problem.

This paper proposes a cooperative task offloading and
resource allocation mechanism between edge servers and
other edge servers or IoT devices. The proposed mechanism
uses a two-stage Stackelberg game [5, 6] to solve matching
tasks and resources in multiple rounds. Users give corre-
sponding payments when the service quality meets their
requirements. To increase the utilization rate of resources
to save energy consumption and reduce costs, edge service
providers match tasks with available resources in specific
strategies according to users. According to particular strate-
gies, the collaborative service provider matches the tasks
submitted by the local edge service provider with the avail-
able resources. The two-stage game is based on the oppo-
nent’s possible strategy, choosing the strategy to ensure
that interests are maximized under its strategies to achieve
the game equilibrium. The experimental results show that
under the premise of ensuring high user satisfaction and
not exceeding the user total budget, our proposed mecha-

nism can obtain a near-optimal offloading strategy and is
superior to traditional solutions in time delay and energy
consumption.

The main contributions of this paper are as below.

(1) We establish delay, user satisfaction, cost, and energy
consumption models and define formal task offload-
ing and resource management problems in coopera-
tive edge computing

(2) We propose a two-stage Stackelberg game model to
solve the participant interactive problem in the task
offloading mechanism and ensure the maximization
of their respective interests

(3) We conduct a theoretical analysis of the game equi-
librium of the two-stage Stackelberg game. Experi-
ments are used to prove the effectiveness of the
proposed mechanism

The remainder of this paper is organized as follows. In
Section 2, we briefly review related works. In Section 3, we
describe the system model and problem formulation. In Sec-
tion 4, we propose a two-stage Stackelberg game model and
analyze the model’s game equilibrium. Section 5 shows the
simulation results, and the conclusion is presented in Section
6.

2. Related Work

In recent years, researchers have made many studies in task
offloading strategies and resource allocation for edge com-
puting. Edge computing not only enriches cloud computing
but also brings many challenges. Research on CEC has
attracted wide attention.

Many studies deal with end-user offloading tasks collab-
oratively with multiple edge servers or base stations. Chen
et al. [2] propose to offload tasks to multiple edge servers
for collaborative execution. This method improves the per-
formance of edge service providers. Fan and Ansari [7]
design an application workload allocation scheme for the
IoT based on edge computing. By determining the target
cloudlet for each request of different IoT users, the amount
of computing resources is allocated to each IoT user; IoT
application requests’ response time is minimized. Niu et al.
[8] propose a workload allocation mechanism for the power
IoT based on edge computing to minimize service delays. A
workload optimization allocation model is established.
Based on the optimization of computing resources in a sin-
gle edge node, the optimal workload allocation between mul-
tiple edge nodes based on the delay is further realized. Hao
et al. [9] propose a Smart-Edge-CoCaCo algorithm. To min-
imize the total delay and confirm the computational offload-
ing decision, Smart-Edge-CoCaCo utilized the wireless
communication model, the collaborative filter cache model
in the edge cloud, and the joint optimization of the compu-
tational offloading model. Parwez and Rawat [10] propose a
resource allocation method in an adaptive virtual wireless
network with mobile edge computing. According to the
demand of users, the authors study how to allocate mobile
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virtual network operator resources to maximize revenue
with satisfied service quality. Cooperative resource allocation
is proposed to maximize the utilization ratio of mobile vir-
tual network operators with desired QoS of user network
speed. Zhang et al. [11] propose a collaborative task offload-
ing scheme that considers the reuse of calculation results and
minimizes energy consumption.

Many studies consider multiple influencing factors and
handle tasks offloaded by end-users in a cloud-edge collabo-
rative manner. Ren et al. [1] study the collaboration between
cloud computing and edge computing, where tasks can be
partially processed on edge nodes and cloud servers. The
authors further transformed the communication and com-
puting resource allocation problem into an equivalent con-
vex optimization problem and obtained a closed-form
resource allocation strategy. Jie et al. [4] propose an optimal
resource allocation scheme for the IoT environment based
on fog computing. To maximize resource utilization, the
authors model the resource allocation problem as a two-
stage Stackelberg game and propose three algorithms to
achieve the Nash equilibrium and Stackelberg equilibrium.
Guo et al. [12] propose a delay-based workload distribution
scheme. It realizes the optimal workload distribution among
local edge servers, neighboring edge servers, and remote
clouds to achieve the minimum energy consumption of the
IoT-edge-cloud system and a delay guarantee for arriving
jobs. For the problem of cloud-mobile edge computing col-
laborative computing offloading, Guo and Liu [13] propose
an approximate collaborative computing offloading scheme
and a game theory cooperative computing offloading scheme
as approximate solutions. Deng et al. [14] introduce an
intermediate fog layer between mobile users and the cloud.
An optimal workload distribution method between fog and
cloud is proposed to solve the trade-off between power con-
sumption and transmission delay in the fog-cloud comput-
ing system. The service delay is decreased with minimum
power consumption. To minimize the average response
time, mobile users offload their application workloads to
geographically dispersed cloudlets. He et al. [15] provide a
collaborative computing offloading example based on energy
consumption, computing power, variable transmission
power, and remaining battery power. To handle delay-
sensitive tasks effectively, they designed an iterative search
algorithm for a collaborative computing offloading scheme
to minimize task offloading overhead. To minimize energy
consumption under the conditions of ensuring service com-
pletion time, Liu et al. [16] propose an energy-saving collab-
orative task computing offloading algorithm based on
semideterministic relaxation and random mapping methods.
Wu et al. [17] propose an edge-cloud collaborative multitask
computing offloading model. The latency and energy costs
are considered. By converting the model solution to a search
solution in limited strategy space, it is solved by a nonlinear
exponential inertia weighted particle swarm optimization
algorithm. By dynamically adjusting the inertia weight, the
premature convergence defect of the standard particle
swarm algorithm can be compensated. The optimal local
solution can be effectively avoided. Li et al. [18] propose a
computing offloading mechanism based on the Stackelberg

game to analyze the interaction between multiple edge
clouds and numerous industrial IoT devices. The payment
cost is considered. The author also formulates the revenue
function by considering the social interaction information
from potential industrial IoT devices.

Some scholars use cloud-edge-end collaboration to han-
dle tasks offloaded from end-users. Hossain et al. [19] pro-
pose a collaboration model. It can dynamically offload
computing tasks’ execution to the SBS-MEC server and
mobile devices or remote cloud. In [20], one task can offload
subtasks. The subtask can be offloaded according to the
characteristics of the edge server (such as transmission dis-
tance and central processing unit capacity). The authors pro-
pose a low-complexity adaptive offloading scheme based on
the Hungarian algorithm using a multi-subtask multiserver
model for new applications that require real-time informa-
tion work.

Some scholars use D2D collaboration to implement col-
laborative edge computing. Ciobanu et al. [21] propose a
computational offloading solution that can improve user
QoE, reduce application and service developers’ cost, and
reduce battery consumption. In [3], the D2D is utilized to
offload tasks to other smart devices for collaborative execu-
tion. Various device resources are shared with other users
through high-quality cellular connections. It can provide
more and better services to attract more users.

Some scholars implement collaborative edge computing
in an edge-to-end cooperative manner. He et al. [22] pro-
pose an effective method to find the best solution to optimize
the system allocation time, transmit power and CPU on each
device, and maximize the amount of data that two users can
process in a given time frame. Kim et al. [23] propose a new
concept of IoT-assisted edge computing, which provides
edge services by integrating idle resources in IoT devices
and offloading tasks to nearby IoT devices.

Although these methods all adopt the collaborative
approach, they are fundamentally different from the model
proposed in this paper. End-users perform the collaboration
methods above by offloading tasks to remote cloud servers
or other edge servers or IoT devices. The model proposed
in this paper uses the edge scheduler to offload the over-
loaded tasks on the edge server to other idle edge servers
or IoT devices for execution. The edge scheduler is also
responsible for executing CEC task offloading strategies
between other edge servers and IoT devices. In addition,
due to the user time tolerance and the user total budget con-
straints, relevant research does not consider the impact of
user costs and user satisfaction. Therefore, the main research
content of this paper is to integrate idle trusted devices
within a short distance from the end-user, assist the local
edge service provider to complete the end-user offloading
tasks, and jointly consider the impact of the end-user cost
and QoE factors on the offloading strategy from the user
view.

3. System Model and Problem Formulation

As shown in Figure 1, the entire system consists of end-
users, edge service providers, edge scheduler, and
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collaborative service providers. Smart devices include mobile
smart terminals, IoT devices, notebooks, smart medical
devices, and the Internet of Vehicles. Here, EU = feu1, eu2,
⋯,euNg represents the set of all devices in the smart device,
where N represents the number of devices. The edge service
provider is composed of base stations with edge servers dis-
tributed across different locations. The edge service provider
can handle tasks submitted by related smart devices in their
area and tasks migrated by other edge devices if resources
are available. The set ESP = fesp1, esp2,⋯,espMg represents
the collection of all edge servers in the edge service provider,
where M represents the number of edge servers in the edge
service provider. The set R = fR1, R2, R3,⋯,RNg is the set of
resources required by all smart device users. The collabora-
tive service provider includes other edge servers in the edge
service provider and other smart devices with idle resources.
The collaborative service provider can help the local edge
device complete the smart device tasks as needed. For exam-
ple, for the edge server at location A in Figure 1, when the
resources of the edge server cannot meet user requirements,
the task can be offloaded to the edge server at location B or C
where the resources are available for execution. We call the
edge server at location A local edge server and the edge
server at location B or C collaborative edge servers. Besides,
at position A in Figure 1, the smartphone’s task can also be
offloaded to the laptop for execution while waiting in the
waiting queue of the local edge device. We call the laptop
at this time as a collaborative smart device.

In the urban IoT scenario, the edge scheduler runs the
task offloading decision mechanism to allocate task offload-
ing strategies. Tasks are reasonably scheduled to different
edge servers or edge devices by the edge scheduler, which
can realize the collaborative processing of tasks between
edge servers and edge devices. In this paper, cloud data cen-

ters are generally far from edge servers and devices. The off-
loading task to remote cloud data centers takes a long time
and consumes more energy. Therefore, we do not consider
the implementation of task offloading to remote cloud data
centers. The mathematical symbols are summarized in
Table 1.

3.1. Delay Model. As shown in Figure 1, the end-user off-
loads the task to the service device of the edge service pro-
vider. The end-user offloads the task to the base station
wirelessly, and then, the base station transmits the task to
the edge server through the optical fiber. This part of the
delay can be expressed by

To = 〠
Γ

i=1

Bo
i

Co
i
+ Bo

i

Fo
i

� �
: ð1Þ

Here, Bo
i represents the size of the offloading task i, Co

i
represents the transmission rate of the uploading in the
wireless method, and Fo

i represents the transmission rate of
the uploading using the fiber method. Γ represents the num-
ber of offloading tasks.

When a large number of tasks are waiting on the local
edge server, the edge scheduler offloads tasks to other collab-
orative edge servers and other collaborative smart devices to
reduce the waiting time and increase the completion rate of
tasks.

When the local edge service provider has no resources to
use, some tasks can be offloaded to the server of the cooper-
ative edge service provider for execution. In this case, the
delay of this part includes task transmission time To

i,ne, task
execution time Tne

i , and return time after task completion

Td
i,ne. Since the parallel mode is adopted, the delay is

Edge server 

Edge server

Edge server 

Location A

Location B

Location C

�e offloading data stream
�e collaborative offloading data stream

Edge scheduler

Figure 1: Multiedge resource cooperative offloading mechanism system structure diagram.
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calculated according to the longest time required to com-
plete the offloading task:

Tne = 〠
κ

i=1
To
i,ne + Tne

i + Td
i,ne

� �
= 〠

κ

i=1

Bo
i,ne
Cne
o

+ Bo
i,ne

Capne
+ Bd

i,ne
Cne
d

 !
:

ð2Þ

Here, κ represents the number of tasks that are offloaded
to the server of the collaboration service provider for execu-
tion. Bo

i,ne represents the size of the task i that is offloaded to
the neighboring collaborative edge server, and Cne

o represents
the local edge server’s transmission rate to the collaborative
edge server. Capne represents other collaborative edge
devices’ computing power. Bd

i,ne represents the size of the
backhaul data of the offloading task i from the neighboring
collaborative edge server, and Cne

d represents the backhaul
data transmission rate from the collaborative edge server to
the local edge server.

When the local edge service provider has no resources to
use, some tasks can be offloaded to the edge device of the
collaborative edge service provider for execution. In this
case, this part of the delay includes task transmission time
To
i,ns, task execution time Tns

i , and return time after the task

is completed Td
i,ns. Since it is carried out in parallel, the delay

is calculated according to the longest time required to com-
plete the offloading task:

Tns = 〠
l

i=1
To
i,ns + Tns

i + Td
i,ns

� �
= 〠

l

i=1

Bo
i,ns
Cns
o

+ Bo
i,ns

Capns +
Bd
i,ns
Cns
d

 !
:

ð3Þ

Here, l represents the number of tasks performed off-
loaded to the smart device of the collaboration service pro-
vider. Bo

i,ns represents the offloaded task i’s size to the
neighboring collaborative smart device, and Cns

o represents
the local edge server’s transmission rate to the collaborative

smart device. Capns represents the computing capabilities
of other collaborative smart devices. Bd

i,ns represents the size
of the back-transfer data of the offloaded task i from the
neighboring collaborative smart device, and Cns

d represents
the backhaul data transmission rate from the collaborative
smart device to the local edge server.

When the tasks are completed, the edge service provider
returns the result to the end-user. The delay of this part can
be expressed by

Td = 〠
Γ

i=1

Bd
i

Fd
i

+ Bd
i

Cd
i

 !
: ð4Þ

Here, Bd
i represents the size of the backhaul data of the

offloading task i, Fd
i represents the transmission rate of the

backhaul using the fiber method, and Cd
i represents the

transmission rate of the backhaul in the wireless method.
In summary, the total time delay to complete the task

can be expressed by

T = To + Tne + Tns + Td: ð5Þ

3.2. Energy Consumption Model. According to the Shannon
formula, the transmission rate of uploading data and the
transmission rate of backhauling data are shown in equa-
tions (6) and (7):

Co
i =Wo × log 1+Poi ×G/Pnð Þ

2 : ð6Þ

Here,Wo represents the bandwidth of the wireless trans-
mission channel from the smart device to the local edge
server, Po

i represents the smart device’s transmit power dur-
ing the process of wirelessly uploading data, G represents the
gain of wireless transmission channel from the smart device
to the local edge server, and Pn represents the Gaussian

Table 1: Symbol summary.

Symbol Definition

T Total delay

E Total energy consumption

Cco The cost of end-user

pci The price of CPU for the edge server

psi The price of storage for the edge server

pmi The price of memory for the edge server

Cesp The cost of edge service provider

pnei The price of other collaborative edge servers executing various types of resources

pnsi The price of other collaborative smart devices executing various types of resources

Qi The satisfaction score of user i

bidi The bidding price of the smart device

pi The edge service provider’s resource price
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white noise power. Po
i ×G/Pn is the signal-to-noise ratio:

Cd
i =Wd × log 1+Pd

i ×G/Pnð Þ
2 : ð7Þ

Here, Wd represents the bandwidth of the wireless back-
hauling data transmission channel from the local edge server
to the smart device and Pd

i represents the transmit power of
the local edge server in the process of backhauling data in
the wireless link mode. According to the research in [24],

G = 103:8 + 20:9 × logðdistÞ10 , where dist represents the dis-
tance between the smart device and the local edge server.

According to equations (6) and (7), we then obtain the
energy consumption from the smart device to the local edge
server and the energy consumption of the backhauling pro-
cess after the task is completed, as below:

Eo = 〠
Γ

i=1
Po
i ×

Bo
i

Co
i
+ Po

f ×
Bo
i

Fo
i

� �
, ð8Þ

Ed = 〠
Γ

i=1
Pd
i ×

Bd
i

Cd
i

+ Pd
f ×

Bd
i

Fd
i

 !
: ð9Þ

Here, Po
f represents the upload power of optical fiber

transmission and Pd
f represents the backhaul power of opti-

cal fiber transmission.
When the edge service provider has no resources to use,

some tasks can be offloaded to the servers of other collabora-
tive edge service providers or smart devices for execution.
This part of the energy consumption includes the energy
consumption of tasks transferred to the collaboration server
and transfer to the collaboration energy consumption of
edge devices. In this case, the energy consumption can be
expressed by equations (10) and (11), respectively:

Eo
ne = 〠

κ

i=1
Po
ne ×

Bo
i,ne
Cne
o

� �
, ð10Þ

Eo
ns = 〠

l

i=1
Po
ns ×

Bo
i,ns
Cns
o

� �
: ð11Þ

Here, Po
ne represents the power offloaded from the local

edge device to the cooperative edge server and Po
ns represents

the power offloaded from the local edge device to the collab-
orative smart device.

When executed on the server of the collaborative edge
service provider, the energy consumption of this part
includes the energy consumption of task execution and the
energy consumption of the return after the task is com-
pleted. In this case, the energy consumption can be
expressed by

Ene = 〠
κ

i=1
Pim
ne ×

Bo
i,ne

Capne + Pd
ne ×

Bd
i,ne
Cne
d

 !
: ð12Þ

Here, Pim
ne represents the power performed by the coop-

erative edge server and Pd
ne represents the backhaul power

after the completion of the cooperative edge device. Bo
i,ne rep-

resents the size of task i offloaded to the adjacent collabora-
tive edge server, and Capne represents the computing power
of the collaborative edge server. Bd

i,ne represents the size of
the returned data after task i is offloaded to the adjacent col-
laborative edge server for execution, and Cne

d represents the
backhaul data transmission rate from the collaborative edge
server to the local edge server.

When executed on smart devices of collaborative edge
service providers, this part of the energy consumption
includes task execution energy consumption and backhaul
energy consumption after the task is completed. In this case,
the energy consumption can be expressed by

Ens = 〠
l

i=1
Pim
ns ×

Bo
i,ns

Capns + Pd
ns ×

Bd
i,ns
Cns
d

 !
: ð13Þ

Here, Pim
ns represents the power executed by the collabo-

rative smart device and Pd
ns represents the backhaul power

after the completion of the collaborative smart device. Bo
i,ns

represents the size of the task i offloaded to the adjacent col-
laborative smart device, and Capns represents the computing
power of collaborative smart devices. Bd

i,ns represents the size
of the returned data after task i is offloaded to the neighbor-
ing collaborative smart device for execution, and Cns

d repre-
sents the transmission rate of backhaul data from the
collaborative smart device to the local edge server.

In summary, the total energy consumption to complete
the task can be expressed by

E = Eo + Ed
ne + Ene + Ed

ns + Ens + Ed: ð14Þ

3.3. Cost Model. Each edge service provider completes vari-
ous tasks of different types submitted from end-users by
providing relevant resources. Each edge service provider
incurs expenses when performing tasks. The cost function
of the edge service provider can be defined as below:

Cesp = 〠
Γ

i=1
pci × Bo

i ×Ωið Þ + 〠
Γ

i=1
psi × Bo

i × ξið Þ + 〠
Γ

i=1
pmi × Bo

i × ζið Þ,

ð15Þ

where Γ represents the number of offloaded tasks; Ωi, ξi, and
ζi are coefficients; pci represents the price of CPU for the edge
server; psi represents the price of storage for the edge server;
and pmi represents the price of memory for the edge server.

When a large number of tasks are waiting to be executed
in the edge server, the waiting tasks can be offloaded to other
collaborative edge servers and another collaborative edge
device. In this case, the cost function of the cooperative ser-
vice provider can be defined as shown in

Cco = 〠
κ

i=1
pnei × Bo

i,ne ×ϒ i

� �
+ 〠

l

i=1
pnsi × Bo

i,ns ×Ψi

� �
: ð16Þ
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Here, κ represents the number of tasks offloaded to other
collaborative edge servers and l represents the number of
tasks offloaded to other collaborative edge devices. ϒ i = 1
represents that task i is executed on the collaborative edge
server; otherwise, ϒ i = 0, and Ψi = 1 represents that task i
is executed on the collaborative smart device; otherwise, Ψi
= 0. pnei represents the price of other collaborative edge
servers executing various types of resources, and pnsi repre-
sents the price of other collaborative edge devices executing
various types of resources.

3.4. User Satisfaction Model. In this paper, we introduce the
user satisfaction model to evaluate the satisfaction degree of
users. Based on the literature [25, 26], the satisfaction func-
tion can be defined as below:

Qi = β × log ψi 1−pi/bidið Þð Þ
α : ð17Þ

Here, α and β represent the correlation coefficient. ψi
represents the priority of the task i submitted by the user.
The larger the value of Qi, the more satisfied the user i is.
On the contrary, the more dissatisfied the user i is.

3.5. Problem Formulation. In urban IoT, many smart devices
submit tasks to various edge service providers and realize
their demand with payment. Due to the distance among
each edge service provider device, the energy consumption
of smart devices, and the quality of network communication,
many tasks cannot reach the system simultaneously. We
assume that each task can use multiple different resources,
such as CPU, memory, and storage. Edge service providers
have a large number of edge servers that can handle various
types of tasks. When the edge server resources are not avail-
able, the task can be offloaded to other collaborative edge
devices and collaborative smart devices collaboratively to
complete tasks more quickly to ensure user satisfaction.
CEC resource allocation is performed by the edge scheduler.

In the above description, it can be seen that the collabo-
rative service provider has idle resources and obtains corre-
sponding benefits by selling idle resources. In this paper,
the utility of the collaborative service provider is expressed
as

Uco = θc R
esp − Ccoð Þ − θeE

co − θtT
co: ð18Þ

Here, Resp represents that the cooperative service pro-
vider obtains revenue from the edge service provider, as
shown in equation (19). The coefficients θe, θt , and θc,
respectively, represent the weight coefficients of energy con-
sumption, delay, and cost in the utility function of the coop-
erative service provider, with values ranging from 0 to 1:

Resp = 〠
Γ

i=1
payespi × Bo

i

� �
: ð19Þ

Cco represents the cost of the collaborative service pro-
vider to perform the offloading task of the edge service pro-
vider, as shown in equation (16).

Eco represents the energy consumption of the collabora-
tive service provider’s offloading task of the edge service pro-
vider. Energy consumption includes the energy
consumption of the execution and the return result, as
shown in

Eco = 〠
Γ

i=1
Ens
i + Ene

ið Þ: ð20Þ

Tco represents the execution delay of the collaborative
service provider, as shown in

Tco = 〠
Γ

i=1
Tns
i + Tne

ið Þ: ð21Þ

Therefore, the goal of collaborative service providers is to
maximize their utility, and the utility optimization problem
of collaborative edge service providers can be defined as
shown in

max
j∈M

Uco
j ð22Þ

s:t:

C1 : payespi ≥ pnsi ,
C2 : payespi ≥ pnei ,
C3 : Capmin

ns ≤ Capnsi ≤ Capmax
ns ,

C4 : Capmin
ne ≤ Capnei ≤ Capmax

ne ,

C5 : 0 ≤ 〠
M

j=1
〠
Γ

i=1
Ri,j ≤ Rmax,

C6 : 〠
M

j=1
〠
Γ

i=1
Ens
i,j ≤ Ebattery:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð23Þ

Here, Γ represents the number of offloading tasks andM
represents the number of edge service providers. T tolerate rep-
resents the user’s maximum tolerable waiting time, and
EBattery represents the maximum available battery of the col-
laborative edge service provider. Rmax represents the number
of maximum available resources. Capmin

ns and Capmax
ns repre-

sent the minimum and maximum processing capacity of
the smart device of the collaborative service provider,
respectively; Capmin

ne and Capmax
ne represent the minimum

and maximum processing capacity of the server of the col-
laborative service provider, respectively. C1 and C2 repre-
sent that the fee paid by the edge service provider must be
greater than or equal to the cost of the collaborative service
provider to ensure that the collaborative service provider
can provide services normally. payespi represents the fees paid
by the local edge service provider. C3 and C4 ensure that the
offloaded tasks do not exceed the processing capacity of the
collaborative service provider. C5 indicates that the
resources allocated by the collaboration service provider
are within the permitted range of available resources. C6
ensures that the energy consumption does not exceed the
allowable range of battery power when performing tasks
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on the smart devices allocated to the collaboration service
provider.

The edge service provider purchases the resources of the
collaborative service provider and still provides paid services
for one or more end-users under the condition of limited
resources. This paper expresses the utility function of the
edge service provider as shown in

Uesp = υc R
eu − Cespð Þ − υeE

esp − υtT
esp: ð24Þ

Here, Reu represents the service fee paid by the end-user
to complete the task, as shown in equation (25). υe, υt , and υc
represent the weight of energy consumption, delay, and cost
of the edge service provider:

Reu = 〠
Γ

i=1
bidi × Bo

ið Þ: ð25Þ

Cesp represents the cost of the edge service provider to
perform the offloading task, as shown in equation (15).

Eesp represents the energy consumption generated by the
edge service provider offloading the task to the cooperative
service provider, as shown in

Eesp = 〠
Γ

i=1
Et
i,ns + Et

i,ne
� �

: ð26Þ

Tesp represents the transmission delay of the edge service
provider, as shown in

Tesp = 〠
Γ

i=1
To
i,ns + Tns

i + Td
i,ns + To

i,ne + Tne
i + Td

i,ne

� �
: ð27Þ

Therefore, the goal of the edge service provider is to
maximize its utility, and the utility optimization problem
of the edge service provider can be defined as shown in

max
j∈N

Uesp
j ð28Þ

s:t: C1 : Reu ≥ Resp: ð29Þ

Here, N represents the number of end-users, and C1 rep-
resents that the revenue must be greater than or equal to the
system expenditure to ensure the normal operation of the
system.

End-users submit tasks that need to be processed to edge
service providers. Because they need to pay relevant fees,
they can obtain resources to perform the tasks. This paper
defines the utility function of the end-user as shown in

Ueu =Q − ρc × Reu − ρeE
eu − ρtT

eu: ð30Þ

Here, ρe, ρt , and ρc represent the weights of energy con-
sumption, delay, and cost of the end-user, respectively.

Eeu represents the energy consumption when the end-
user offloads tasks to the edge service provider, as shown in

Eeu = 〠
Γ

i=1
Eo
i : ð31Þ

Teu represents the time delay for the end-user to com-
plete the task, as shown in

Teu = 〠
Γ

i=1
Ti: ð32Þ

Therefore, the goal of each end-user is to minimize the
payment, energy consumption, and time delay and maxi-
mize user satisfaction. The utility optimization problem of
the end-user can be defined as shown in

max
j∈N

Ueu
j ð33Þ

s:t:

C1 : Reu ≤ Budget,
C2 : bid ≥ p,

C3 : 〠
Γ

i=1
Bo
i ≤ Btotal,

C4 : Bo
i ≥ 0,

C5 : Eeu ≤ Ebattery,
C6 : Teu < T tolerate:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð34Þ

Here, Γ represents the number of offloading tasks and N
represents the number of end-users. T tolerate represents the
maximum tolerable waiting time of the user. EBattery repre-
sents the maximum available battery power of the end-user,
and Btotal represents the upper limit of the executable task
size. C1 ensures that the total cost of the task does not exceed
the total budget. C2 guarantees that the edge service pro-
vider only provides the corresponding service when the
user’s payment is greater than or equal to the minimal price
of the edge service provider. If the cost value paid by the user
is less than the minimum price of the edge service provider,
the edge service provider refuses to provide the service. C3
and C4 ensure that the offloading tasks can be executed.
C5 represents that the energy consumption of transmission
must be within the allowable range of battery power. C6
ensures that the delay does not exceed the maximum tolera-
ble waiting time of the user.

Through the above analysis, the task offloaded by the
end-user can be regarded as multiple objects, and the
resources of the collaborative service provider can be
regarded as boxes, and then, the problem can be trans-
formed into the multiobjective maximum packing problem.
It can be proved that such problems are NP-hard problems.
This type of problem is more difficult to solve. Next, the
game theory is used to find an approximate solution to the
problem, and the validity of the solution is proved. This
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paper uses the entropy weight method [27] to calculate the
value of each parameter.

4. Proposed Mechanism

Different from the traditional edge computing task offload-
ing mechanism, this paper takes other collaborative edge
devices and other smart devices into consideration in the
design of the task offloading mechanism. In this paper, the
proposed task offloading mechanism has three types of par-
ticipants who affect each other: smart devices and edge ser-
vice providers and collaborative service providers. Their
respective behavior strategies determine their ultimate bene-
fits. For example, when a collaborative service provider pro-
vides services to an edge service provider, if the fee paid by
the edge service provider to the collaborative service pro-
vider is too low, the resources of collaborative service pro-
viders for providing collaborative services to the edge
service provider are correspondingly reduced. In this case,
the delay for edge service providers to provide services to
smart devices will increase, affecting the satisfaction and
benefits of customers.

Conversely, when the edge service provider pays too
much to the collaborative service provider without increas-
ing user fees, this leads to a significant reduction to the ben-
efits of the edge service provider. When the edge service
provider is overpriced for providing services to smart
devices, the smart devices will submit fewer tasks or not to
the edge service provider. It will reduce the revenue of the
edge service providers. On the contrary, when the price of
the edge service provider is too low, a large number of tasks
will be submitted to the edge service provider, which will
increase the expenses of the edge service provider or reduce
the actual income. It will increase the waiting time of smart
devices and affect the quality of service. We can see interest
relationships among smart devices, edge service providers,
and collaborative service providers from the above analysis.
Therefore, we propose a task offloading mechanism based
on a two-stage Stackelberg game model. By calculating the
equilibrium solution of the Stackelberg game, we can obtain
the optimal resource allocation scheme. This paper assumes
that the cooperative service providers are secure and reliable.

4.1. Game Model. In this paper, we propose a two-stage
Stackelberg game model. The specific description of this
model is given as below.

Stage 1: the collaborative service provider submits the
number of its remaining resources and the corresponding
price to the edge scheduler. The edge scheduler, as the leader
of the game, submits the relevant price strategy to the collab-
orative service provider according to the actual condition. As
a follower of the game, the cooperative service provider
decides its resource allocation strategy according to the
leader’s strategy. Algorithm 1 is used to solve the resource
allocation problem of the edge scheduler.

Stage 2: we regard the interaction between the edge ser-
vice provider and each smart device as a repeated Stackel-
berg game with multiple participants. On the one hand, as
long-term participants, edge service providers obtain profits

by processing various tasks of smart devices. On the other
hand, as short-term participants, smart devices complete
the tasks by paying fees to edge service providers. Algo-
rithm 2 is used to solve the problem of the task offloading
strategy of users. In each round of the Stackelberg game,
the edge service provider, as the leader, first chooses its bid-
ding strategy. Then, the smart devices, as followers, can
decide their bidding strategy based on the edge service pro-
vider devices and their prediction for the next round of the
game. The edge scheduler is responsible for executing the
bidding strategy of end-users and edge service providers
and allocating resources according to the final price. When
there are multiple edge service devices in the vicinity of a
smart device, each smart device will choose single or multi-
ple edge service providers to submit tasks for execution
based on the price of each edge service provider. The bidding
strategy of the edge service provider is shown in Algorithm 3.
The processing diagram of this game model is shown in
Figure 2.

4.2. Game Equilibrium Analysis. According to the proposed
game model, end-users, edge service providers, and collabo-
rative service providers can maximize their respective bene-
fits. In this section, we will analyze the equilibrium of the
two-stage Stackelberg game model.

Theorem 1. The two-stage Stackelberg game proposed in this
paper has a Nash equilibrium among end-users, edge service
providers, and collaborative service providers.

The detailed certification process is given in the
appendix.

5. Numerical Results and Discussion

5.1. Experimental Parameter Setting. In order to simulate the
collaborative edge computing scenario of the urban IoT, we
set up an experimental environment. The specific configura-
tion is as follows: Within the range of 1 × 1 (km2), there are
one cloud server, one edge server, two collaborative edge
servers, and twenty collaborative smart devices. Collabora-
tive smart devices are all smartphones. It can be extended
to more edge devices and more edge servers, with similar
results.

The task size varies from 0 to 9G. The bandwidth
between the edge and the cloud is 1Gbps. The bandwidth
between the edge and the collaborative edge is 54Mbps.
The bandwidth between the edge and the smart device is
40Mbps. The CPU processing capacity of the cloud data
center is 10G cycles/s, and the CPU processing capacity of
the edge server is 6G cycles/s. For the edge server, its idle
power is 135W. Its peak power is 495W. The number of
cores is 22. For the cloud computing server, the idle power
is 150W. The peak power is 750W, and the number of cores
is 64 [28]. The prices of different resources of the edge ser-
vice provider are as below: 3 for CPU resources, 0.1 for stor-
age resources, and 0.05 for memory resources. The prices of
different resources for cloud resource providers are 24 for
CPU resources, 0.82 for storage resources, and 0.67 for

9Wireless Communications and Mobile Computing



memory resources. The power of task upload is 1.3W, and
the power of task return is 1.2W.

The available resources of the system are key indicators
that will affect the performance of the system. In the exper-
iment, we use the percentage of unoccupied resources to
indicate the availability of resources. The percentage of
unoccupied resources is set to 10%, 30%, 50%, 70%, and
90%, respectively. When the percentage of unoccupied is
10%, the system is extremely busy. The number of devices
that can be serviced by the collaboration service provider is
minimal. The system is idle when the percentage of unoccu-
pied is 90%. The collaboration service provider can provide
more services.

We compare three offloading modes with our model.
The details are as follows:

(i) Edge Execution. Task offloaded to edge server for
execution

(ii) Edge and Cloud Collaborative Execution. Task off-
loaded to edge and cloud for collaborative execution

(iii) Cloud Execution. Task offloaded to cloud server for
execution

(iv) Our Model. Task offloading to other collaborative
edge servers on the adjacent edges and (or) other
smart devices for execution

5.2. Experimental Results and Analysis

5.2.1. Experiment 1: The Performance of the Proposed
Mechanism. When the task size submitted by users varies
from 1 to 9G and the fee paid by the local edge service pro-
vider to the collaborative service provider varies from 5 to
30, Figure 3 shows the optimal utility determined by the
local edge service provider under the Stackelberg equilib-
rium condition. We can observe that with the increase of

Input:
Bi, location information for collaborative service provider, the number of the collaboration service provider, the set C ′ is a subset of
the cooperative offloading service provider strategy set C
Output:
The optimal strategy set S of the edge scheduler
1: A weighted directed graph G can be generated according to the location of the collaborative service provider
2: While true do
3: Calculate the delay, energy consumption, and cost of offloading tasks
4: Using dynamic programming to solve the equilibrium solution S of the subgame on the cooperative offloading service provider
strategy set C ′
5: Solve the optimal corresponding strategy ℂ of the cooperative offloading service provider to the subgame equilibrium solution S

6: If ℂ ∈C ′ then
7: Return S

8: Else
9: C ′ ← C ′∪ fℂg
10: End If

Algorithm 1: Edge scheduler resource allocation algorithm.

Input:
Number of end-users N , Resource requirements of each end-user Ri, Each end-user pays the resource price bidi, The size of the end-
user offloading task Bo

i , End-user's budget Budget
Output:
End-user task offloading strategy
1: For i = 1; i < =N do
2: if bidi × Bo

i <=Budget then
3: if the resources of local edge service provider j meet the needs of end-user i then
4: The task of end-user i is offloaded to the local edge service provider j for execution;
5: beak;
6: endif
7: else if the resources of local edge service provider j do not meet the needs of end user i then
8: Calculate the size of the remaining unfinished tasks of the end-user i on the local edge service provider j;
9: Calculate the remaining budget of the end-user i;
10: endif
11: endif
12: endfor

Algorithm 2: End-user task offloading algorithm.
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Input:
Number of edge service providers M,Number of tasks submitted by end-users Γ,end-user bids fbid1, bid2,⋯,bidmg, Bids of edge ser-
vice providers fp1, p2,⋯,pNg, Resource requirements of each end-user R, the available resources RES, Small changes in the price of
local edge service providers Δpk
Output:
The optimal bidding strategy set S of the local edge service provider
1: For i = 0 ; i < =M do
2: For j = 0 ; j < = Γ do
3: if bidj < pi and R > RES then
4: Denial of service;
5: else
6: Submit the task to the waiting queue;
7: endif
8: endfor
9: endfor
10: Sort the tasks in the waiting queue in descending order of the end user's bid
11: For i = 1 ; i < =M do
12: For k = 1 ; k < = L do
13: Calculate the energy consumption, cost, and time delay of the task
14: if Uesp

i ðpk+ΔpkÞ ≤Uesp
i ðpkÞ and Uesp

i ðpk−ΔpkÞ ≤Uesp
i ðpkÞ then

15: S⟵S ∪ fpkg
16: else if Uesp

i ðpk+ΔpkÞ >Uesp
i ðpkÞ and Uesp

i ðpk−ΔpkÞ ≤Uesp
i ðpkÞ then

17: S⟵S ∪ fpk+Δpkg
18: else if Uesp

i ðpk+ΔpkÞ ≤Uesp
i ðpkÞ and Uesp

i ðpk−ΔpkÞ >Uesp
i ðpkÞ then

19: S⟵S ∪ fpk−Δpkg
20: else if Uesp

i ðpk+ΔpkÞ >Uesp
i ðpkÞ and Uesp

i ðpk−ΔpkÞ >Uesp
i ðpkÞ then

21: S⟵S ∪max fpk−Δpk, pk+Δpkg
22: endif
23: endfor
24: endfor
25: Return S

Algorithm 3: Bidding strategies of the edge service provider.

Collaborative service provider Edge schedulerEnd user

4.Submit the size and price of the offloading task

5.Provide service prices for various resources

6.Pay the fee and offload the task at the price a�er 
the bidding ends 

1.Publish the number of available resources and the prices 
of various resources 

2.Submit the price for purchasing the required resources

3.Determine the amount and price of resources allocated
 to edge scheduler 

7.Allocate resources according to the resource allocation
algorithm 

8.Return execution results a�er providing related services

9. Return execution results a�er providing related 
services 

Stage 2 Stage 1

Figure 2: The sequence diagram of the game model.
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the number of tasks, the utility value of the local edge service
increases correspondingly. To motivate the collaborative ser-
vice provider to complete the tasks of the local edge pro-
vider, the utility value of the local edge service provider is
reduced when the payment to the collaborative service pro-
vider is increased. The user’s bid is fixed at 50 in this
experiment.

When the task size varies from 1 to 9G and the fee paid
by the user varies from 10 to 50, Figure 4 shows the optimal
utility determined by the end-user under the Stackelberg
equilibrium condition. We can observe that with the
increase of the number of tasks submitted by users, the time
and energy consumption of the task execution increase cor-
respondingly. To ensure user satisfaction, the utility value of
end-users decreases. With the increase of the fee paid by

users, users’ expenses increase. It will directly lead to the
decrease of utility value.

When the task size varies from 1 to 9G and the fee paid
by the user varies from 10 to 50, Figure 5 shows the end-
user’s optimal utility under the Stackelberg equilibrium con-
dition. The priority of the task ranges from 0.1 to 1. The
higher the priority value of the task submitted by the end-
user, the more priority the task is executed. Due to space
limitations, only ψ = 0:5 and ψ = 0:75 are shown, and other
cases are similar to them. Figure 5(a) shows the result with
ψ = 0:75, and Figure 5(b) shows the result with ψ = 0:5. It
can be observed that with the increase of the number of
tasks, the task priority is higher, and the user’s utility value
is greater. High-priority tasks are executed first. Moreover,
high-priority tasks can get far more resources than low-
priority tasks.

Figure 6 shows the optimal utility determined by the col-
laborative service provider under Stackelberg equilibrium
when the collaborative service provider’s task size varies
from 1 to 9G and the payment of the local edge service pro-
vider varies from 5 to 30. It can be observed that with the
increase of the number of tasks processed by the collabora-
tive service provider, tasks will be assigned to different col-
laborative service providers to execute in parallel; the
corresponding execution time and energy consumption will
be less than that of the sequential execution. Correspond-
ingly, the utility of collaborative service providers will
become greater and greater. When the number of tasks per-
formed does not change, with the increase of payment of the
local edge service provider, the revenue of the collaborative
service provider and the utility value increase
correspondingly.

When the proportion of unoccupied resources in the
system varies from 10% to 90%, and the payment of the local
edge service provider to the collaborative service provider
varies from 5 to 30, Figure 7 shows the optimal utility of
the local edge service provider under the Stackelberg
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equilibrium condition. The task size is fixed at 9G in this
experiment. We can observe that with the increase of the
unoccupied resources of the system, the system has more
resources to process tasks submitted by end-users. Mean-
while, the utility value of the local edge service increases.
To encourage collaborative service providers to complete
the tasks of local edge providers, the utility value of local
edge service providers decreases with the increase of fees
paid to collaborative service providers. It can be explained
as follows: with the increase of the fee provided by the local
edge service providers, the profit value of local edge service
providers decreases. We can observe that when the resource

utilization rate is below 50%, the utility of the local edge ser-
vice provider does not change much. When the system
resource utilization rate is above 50%, the utility of the local
edge service provider is greatly affected.

Figure 8 shows the end-user’s optimal utility under the
Stackelberg equilibrium condition when the proportion of
unoccupied resources in the system varies from 10% to
90%, and the fee of the end-user varies from 10 to 50. It
can be observed that with the increase of unoccupied
resources of the system, the system can use more resources
to handle the tasks submitted by end-users. Moreover, the
execution time and energy consumption of users are
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reduced. Therefore, the utility value of end-users is reduced
to ensure user satisfaction. To encourage the local edge ser-
vice provider to complete the task, the end-user increases
their payment under the condition of constant system utili-
zation. When the utility value is less than 20, with the
increase of the fee, the end-user’s change is more significant.
It indicates that the user expense has a greater impact on the
utility value in this case. When the utility value is greater
than 20 and less than 50, the change of the end-user’s utility
value is small. It indicates that the impact of the user expense
on the utility value is small in this case.

Figure 9 shows the optimal utility of the user under the
Stackelberg equilibrium condition when the proportion of
unoccupied resources in the system varies from 10% to

90%, and the user expense varies from 10 to 50. The priority
of the task ranges from 0.1 to 1. The higher the priority value
of the task submitted by the end-user, the more priority the
task is executed. Due to space limitations, only ψ = 0:5 and
ψ = 0:75 are shown, and other cases are similar to them.
Figure 9(a) shows the result with ψ = 0:75. Figure 9(b) shows
the result with ψ = 0:5. It can be observed that with the
increase of the unoccupied resources of the system, the sys-
tem can use more resources to process tasks. Meanwhile, the
execution time and energy consumption of users are
reduced. Therefore, the utility value of the user is reduced.
Besides, with the increase of the priority of the task, the util-
ity value of the user increases. The reason is that with the
increase of the task priority, the waiting delay of the task
decreases. More resources can be obtained for high-priority
tasks.

Figure 10 shows the optimal utility determined by the
collaborative service provider under Stackelberg equilibrium
conditions when the proportion of unoccupied resources in
the system varies from 10% to 90% and the payment of the
local edge service provider varies from 5 to 30. It can be
observed that with the increase of the unused resources of
the system, the collaborative service provider has more
resources to process the tasks submitted by the end-user.
Therefore, the utility value of the collaborative service pro-
vider increases. It can be observed that when the remaining
available resources are in the range of 10% to 30%, the
improvement of the utility for the collaboration service pro-
vider is slower. The reason is that available resources are
limited and the demand for a large number of tasks cannot
be met in this case. With the increase of the number of avail-
able resources in the range of 30% to 70%, it can be found
that the speed of processing tasks increases due to the
increase of available resources. The execution time of the
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task decreases. The revenue of the collaboration service pro-
vider increases significantly. When a large number of devices
are in idle condition, the task execution time decreases
slowly. The growth of the utility value for the collaborative
service provider slows down.

5.2.2. Experiment 2: The Performance Comparison of Task
Offloading Mechanisms with Different Task Sizes. We assign
the task size for task offloading mechanisms from 0 to 9G to
evaluate how it affects the energy consumption and delay in

the system. Figures 11 and 12, respectively, show the com-
parison results of the energy consumption and delay of com-
puting offloading in different collaborative service modes
under different task scales. The unused rate of resources is
fixed at 90% in this experiment.

Figure 11 shows the comparison results of the energy
consumption under different task sizes. It can be seen from
Figure 11 that with the increase of the task number, energy
consumption increases. By comparing the model proposed
in this paper with cloud execution, edge execution, and
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Figure 9: End-user utility under different priorities and different resource utilization rates.
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edge-cloud collaborative execution, we observe that the
energy consumption of the model proposed in this paper is
less than that of the other models. When the task size is
small (less than 1G), the difference in energy consumption
between the proposed model and the reference model is
small. However, when the task size is large (larger than 9),
the difference in energy consumption between the proposed
model and the reference model is huge. All offloading to the
cloud is 1501.875 J, while the energy consumption of the col-
laboration method proposed in this paper is 146.278 J. In
terms of energy consumption, it can be seen that the model

proposed in this paper has good results. As the number of
tasks increases, the performance improved significantly.

Figure 12 shows the comparison results of the delay
under different task sizes. It can be seen from Figure 12 that
with the increase of the number of tasks, the delay for tasks
to be executed also increases. Compared to cloud execution,
edge execution, and edge-cloud collaborative execution
methods, the proposed model has better delay performance.
When the task load is small (1G), the difference of the delay
for different methods is not significant, the longest value is
1.1 s, and the lowest is 0.153 s. However, when the task vol-
ume is large (9G), the delay for all offloading tasks is 9.9 s,
while the delay caused by the collaboration method pro-
posed in this paper is 1.382 s. In terms of delay, it can be seen
that the model proposed in this paper has good results. As
the number of tasks increases, the model proposed in this
paper also has better performance.

5.2.3. Experiment 3: The Performance Comparison of Task
Offloading Mechanisms with Different Resource Usage. We
assign the resource usage for task offloading mechanisms
from 10% to 90% to evaluate how it affects the energy con-
sumption and delay in the system. Figures 13 and 14, respec-
tively, show the comparison results of the energy
consumption and delay of computing offloading in different
collaborative service modes under different resource usage.
The task size is fixed at 9G in this experiment.

Figure 13 shows the comparison results of the energy
consumption under different resource usage. It can be seen
from Figure 13 that with the increase of the percentage of
unoccupied resources for collaboration service providers,
more tasks will be executed. The energy consumption will
increase correspondingly. By comparing the model proposed
in this paper with cloud execution, edge execution, and edge
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and collaborative cloud execution, it is found that the energy
consumption of the model proposed in this paper is less
than that of the other models when the unoccupied percent-
age of resources of the collaborative service provider is more
than 50%. The energy consumption of the model proposed
in this paper is higher than edge execution when the
resource utilization rate is less than 50%. This result shows

that when the collaborative service provider does not have
free resources to complete all offloading tasks, many tasks
are offloaded to the collaborative service providers and gen-
erate more energy than that executed at the edge.

Figure 14 shows that with the increase of the number of
unoccupied resources for the collaboration service provider,
more free resources are obtained, and more tasks are

9.9 9.9 9.9 9.9 9.9

5.7 5.75.471

5.471

1.5

0
10% 30%

Percentage of unoccupied resources (%)

50% 70% 90%

1

3

4

5

6

D
el

ay

7

8

9

10

11

1.5

5.7 5.7

1.5 1.5 1.5 1.382
1.727

2.303

5.7

Cloud execution
Edge and cloud collaborative execution
Edge execution
Our model

Figure 14: Comparison of delay for different resource occupancies of collaborative service providers.

40

30

20

10

0

–10

Co
lla

bo
ra

tiv
e s

er
vi

ce
 p

ro
vi

de
r u

til
ity

–20

–30

1G 6G

7G

8G

9G

2G

3G

4G

5G

ACCO Random MTMS Our model

(a) The utility of the collaborative service provider utility when payesp = 30

0

–10

–20

–30

–40

–40

Co
lla

bo
ra

tiv
e s

er
vi

ce
 p

ro
vi

de
r u

til
ity

–60

–70

–80

Our model MTMS Random ACCO

1G 6G

7G

8G

9G

2G

3G

4G

5G

(b) The utility of the collaborative service provider utility when payesp = 10

Figure 15: Comparison of collaborative service provider utility for different task sizes.

17Wireless Communications and Mobile Computing



executed. The latency of the model proposed in this paper is
less than that of the other models. Compared to cloud execu-
tion, edge execution, and edge-cloud collaborative execution,
when the percentage of unoccupied resources of the collabo-
rative service provider is less than 70%, the latency of the
proposed model is higher than that of the edge execution.
It means that the collaborative service provider does not
have free resources to complete all the offloading tasks.

The offloading of many tasks to the collaborative service
provider will not be processed. Therefore, there will be a
larger delay compared to the execution at the edge.

5.2.4. Experiment 4: Comparison of the Proposed Mechanism,
ACCO, MTMS, and Random. Experiment 1 shows that the
proposed mechanism is affected by the change of its vari-
ables. Experiments 2 and 3 merely show that the
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performance comparisons of task offloading mechanisms are
affected by the task size and resource usage. To prove the
good performance of the proposed mechanism, we make a
comparison of it with ACCO presented in [13], MTMS pre-
sented in [20], and the random allocation mechanism.

Figure 15(a) shows the utility of collaborative service
providers for different task sizes when the edge service pro-
vider pays 30. It can be seen from the experimental results
that the performance of the proposed scheme is better than
the other three mechanisms because the edge scheduler in
this mechanism obtains resources and services from edge
servers and edge devices. The difference is that MTMS first
divides the task into subtasks and then allocates the subtasks
from the edge server where other resources are idle. When
other edge servers are far away or resources are limited,
there will be transmission or waiting-related delay, cost,
and energy consumption. ACCO offloads the task to the
remote cloud. As the size of the task increases, the user’s
energy consumption and time delay will increase, which will
inevitably lead to a decrease in the utility value while the
payment fee remains unchanged. Figure 15(b) shows the
utility of collaborative service providers for different task
sizes when the edge service provider pays 10. It can be seen
from the experimental results that as the size of the task
increases, when the edge service provider’s pay is low, the
utility function value of each mechanism has declined, and
the decline rate of the scheme proposed in this paper is lower
than that of the other three mechanisms. This shows that the
delay and energy consumption of the proposed scheme in
this paper are smaller than other schemes. However, the util-
ity value of each mechanism is negative, indicating that the
payment of edge service providers cannot meet the require-
ments of encouraging cooperative service providers to pro-
vide services.

Figure 16(a) shows the utility function value for different
available resource percentages of collaborative service pro-

viders when the edge service provider pays 30. The experi-
mental results show that with the increase of the scale of
available resources, when the pay of edge service providers
is high, only the utility value of the ACCO mechanism
decreases, and other utility function values increase. This
shows that when the available resources are only 10% to
30%, a large number of tasks are waiting to be executed,
resulting in increased delay and energy consumption. How-
ever, the ACCO mechanism offloads tasks to the remote
cloud. Because the processing capacity of the cloud data cen-
ter is higher than that of other devices, the processing time
and energy consumption are lower than other mechanisms.
Therefore, the ACCO mechanism will be superior to other
mechanisms. However, when the idle resources are higher
than 30%, the energy consumption and cost of execution
in the cloud are higher than other mechanisms due to factors
such as distance, energy consumption, and cost. Therefore,
other utility value increases, and the utility value of the
ACCO mechanism decreases. Figure 16(b) shows the utility
function value for different available resource percentages of
collaborative service providers when the edge service pro-
vider pays 10. It can be seen from the experimental results
that as the scale of available resources increases when the
edge service provider’s pay is low, the changing trend of
the utility function value of each mechanism is similar to
the result in Figure 16(a). However, the utility value of each
mechanism is negative, indicating that the payment of edge
service providers cannot meet the requirements of encourag-
ing cooperative service providers to provide services.

5.2.5. Experiment 5: Running Time Comparison. Figure 17
shows the execution time of each mechanism under the dif-
ferent number of tasks. It can be seen from the figure that as
the number of tasks increases, the execution time of each
mechanism increases. Random runs the shortest, and
MTMS runs the longest. This is because available resources
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are randomly selected in the random mechanism, and the
task will be offloaded as long as the execution conditions
are met, while other methods need to consider the influenc-
ing factors such as energy consumption, delay, and cost and
other influencing factors to make a comprehensive decision,
so the execution time of other mechanisms is higher than
random. However, it can be seen from previous experiments
that although the execution time of the model proposed in
this paper is not as good as the random mechanism, it is bet-
ter than the random mechanism in other performances.

6. Conclusion

In order to reduce the time and energy consumption of task
processing, tasks on edge servers with limited resources are
offloaded to collaborative edge servers and edge devices for
execution. Based on the collaboration task offloading mech-
anism, this paper proposed a two-stage Stackelberg game
model to solve the interactive problem of the participants
in the task offloading mechanism. The new proposal ensures
the maximization of interests for all participants. Experi-
ments and simulations verify the effectiveness of our
method.

Appendix

Lemma 1. The set of cooperative service providers’ strategies
can maximize their profits, and the optimal strategy is
unique.

Proof. According to equations (22) and (23), the first-order
and second-order partial derivatives of the size of the off-
loading tasks from the local edge service provider to the col-
laborative service provider can be written as equations (35)
and (36). Because the first derivative is greater than zero,
the second derivative is equal to zero. Therefore, the func-
tion is incremental, there will be a maximum point, and
there will only be one. The conclusion is established:
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☐

Lemma 2. The set of end-user’s strategies can maximize their
profits, and the optimal strategy is unique.

Proof. According to equations (33) and (34), the first-order
and second-order partial derivatives of the bid of the end-
user are shown in
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The second derivative is less than 0. Therefore, Ueu
i is a

convex function. Since the function is increasing and con-
vex, there is only one maximum point in the function.
Therefore, the conclusion is established.☐

Lemma 3. The edge service provider’s strategy set can maxi-
mize the benefits, and the optimal strategy is unique.

Proof. In stage 2, the income of edge service providers can be
expressed by
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Since the second derivative is equal to zero, the first
derivative is less than zero. Therefore, the function Uesp

i is
decreasing. The function has a maximum point, and there
is only one. The conclusion is established.

In stage 1, the income of edge service providers can be
expressed by
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For the first derivative and second partial derivative of
the function for the payment of the edge service provider,
the solutions shown in equations (42) and (43) can be
obtained:

∂Uesp
i

∂payespi

< 0, ð42Þ
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i
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2 = 0: ð43Þ

Since the second derivative is equal to zero, the first
derivative is less than zero. Therefore, the function Uesp

i is
decreasing. The function has a maximum point, and there
is only one. The conclusion can be established.☐

In summary, the edge service provider’s strategy set can
maximize the benefits, and the optimal strategy is unique.
According to Lemmas 1–3, Theorem 1 is proved.
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