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The keystroke dynamic authentication (KDA) technique was proposed in the literature to develop a more effective authentication
technique than traditional methods. KDA analyzes the rhythmic typing of the owner on a keypad or keyboard as a source of
verification. In this study, we extend the findings of the system by analyzing the existing literature and validating its
effectiveness in Arabic. In particular, we examined the effectiveness of the KDA system in Arabic for touchscreen-based digital
devices using two KDA classes: fixed and free text. To this end, a KDA system was developed and applied to a selected device
operating on the Android platform, and various classification methods were used to assess the similarity between log-in and
enrolment sessions. The developed system was experimentally evaluated. The results showed that using Arabic KDA on
touchscreen devices is possible and can enhance security. It attains a higher accuracy with average equal error rates of 0.0%
and 0.08% by using the free text and fixed text classes, respectively, implying that free text is more secure than fixed text.

1. Introduction

The rapid progress engendered by mobile devices has expo-
nentially accelerated the use of smartphones and other digital
devices [1, 2]—owing to the power of networking, mobility
sensing, and mobile device computing. According to a cyber-
security statistics report [3], malware variants in mobile
crypto-jacking increased from eight in 2017 to a staggering
27 in the first five months of 2018. In March 2020, the new
Android malware samples per month were 482,579 [4].
Among them, Trojans are the most popular form of malware
affecting Android devices, as reported by the AV-Test [5].
This increment in malware variants demands robust security
mechanisms for mitigating the enhanced risk.

Security measures suffer from severe security and usabil-
ity limitations. Many authentication methods have been
used for mobile security, such as personal identification
numbers, face recognition, and fingerprint scanning [6].
Although these mechanisms ensure security, they can be eas-
ily compromised [7]. For example, passwords can be shoul-
der-surfed, leaked, or guessed, or other password-defying
channels can be used to break-in. Also, passwords can be

shared with friends and written to remember [8, 9]. Simi-
larly, fingerprint authentication is equally susceptible to
being spoofed by imitating the fingertip structure, often gen-
erated using a concealed fingerprint [10]. The mobile system
sometimes fails to recognize the fingertip, requiring multiple
attempts. Similar to passwords and fingerprint recognition,
facial recognition can be spoofed using a video, photo, or
3D mask to forge the faces of the mobile users [11]. Besides
being vulnerable to illegitimate use, these authentication sys-
tems require additional hardware to support their services,
ultimately adding to the cost of the device.

To investigate security in a mobile environment, this
work considers the technology of keystroke dynamics
authentication (KDA) in terms of its efficiency for ensuring
the required security. In particular, biometric security
authentication is divided into two characteristics: physiolog-
ical and behavioral. Although the fingerprint, face, veins,
and iris are all physiological characteristics unique to each
user, behavioral characteristics include studying certain
behavior-based patterns.

KDA relies on behavior-based authentication character-
istics, specifically, the manner and rhythm of users when

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 9963129, 15 pages
https://doi.org/10.1155/2021/9963129

https://orcid.org/0000-0001-7735-9781
https://orcid.org/0000-0001-5565-3103
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9963129


typing characters. Every user has a unique behavioral pat-
tern based on typing strength, the interval between charac-
ters, finger position, and angle of usage. The classification
of keystroke dynamics is accomplished based on the target
input of keystrokes in the form of either fixed or free
text—the fixed text class refers to predefined text that must
be entered every time the user wishes to sign in to the devi-
ce/system. Alternatively, the free text class does not involve
the predefined text requirement and bypasses the memoriza-
tion requirement for users. Thus, this study considers both
free text and fixed text classes of KDA to become the first
study to adopt this approach.

Considering the challenges faced by traditional
authentication methods, the dynamic behavioral tech-
niques of biometrics have been calibrated and found
harder to forge. That is, keystroke dynamics, when applied
on keyboards, reveal only timing information or the
elapsed time between releasing and pressing a key and
the duration for which the key was held down. Based
on this, behavioral authentication systems offer several
advantages in countering the deficiencies of traditional
authentication. First, generating the same pattern of
movement is more challenging to imitate. Even when
the movement pattern is imitated; differences in body
structure, such as finger shape, height, and orientation
on the touchscreen, can differ, leading to changes in the
movement patterns. Furthermore, the built-in physical
sensors in digital devices can easily detect these minor dif-
ferences and consequently block access. Further, every
user has a unique way of inputting data into a device;
any unauthorized user can copy a password; however, it
is not easy to imitate the touch style, type, and pattern
of the authentic user.

Keystroke dynamics has produced substantial research,
with the focus being increasingly placed on the keypad area
of smartphones. Recently conducted research has reported
an error equal rate (EER) of 0% [12].

These promising results are attributed to tools already
embedded in keypads, such as the accelerometer, gyroscope,
and other sensors, which facilitate accurate pattern informa-
tion compared to a fixed keyboard. In general, there are dif-
ferences between the data collected by physical keyboards
and touchscreen keyboards [13]. In addition to classical tim-
ing features, keystroke dynamics on touchscreen keypads
enable additional features for authentication, such as pres-
sure on the screen during typing and the area of keys cov-
ered by the fingers [14, 15].

Although Arabic has been analyzed using physical key-
boards in [16–18], revealing an efficient performance, it
has not been analyzed in touchscreen keyboards. Therefore,
this study analyzes the effectiveness of touch KDA for
Arabic.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes the meth-
odology, including data collection, feature extraction, and
classification methods for user verification. Section 4 pre-
sents the experimental results, which are further outlined
and discussed in Section 5. Finally, Section 6 presents the
conclusion with suggestions for future research.

2. Related Works

This section is divided into three parts. First, the literature
on the use of KDA systems as a verification tool in
touchscreen-based digital devices is reviewed. Second, the
application of Arabic in KDA was explored. Finally, studies
that have applied the KDA system to other languages are
discussed.

2.1. Use of KDA in Touchscreen-Based Digital Devices. This
section discusses KDA studies in terms of classes, types of
features, and classification methods.

2.1.1. KDA Studies Based on the Classes. To reiterate, key-
stroke dynamics can be categorized into two classes: free text
and fixed text. The free text has the potential to verify the
authenticity of users in the log-in process alongside the
capacity to continuously monitor users after log-in based
on their typing pattern [19]. In contrast, the fixed text is pri-
marily employed to protect valid users from various threats
in the log-in process. Based on these characteristics, hard-
keyboard-based free KDA has been actively studied
[20–23]. Conversely, the utilization of free KDA on smart-
phone devices has received relatively little research attention.

As shown in Tables 1 and 2, the performance of the free
KDA is slightly lower than that of the fixed KDA. This low
performance has several limitations. First, its keystroke fea-
ture is limited, and the number of keystrokes might not be
sufficient, as shown in [24]. Draffin et al. [25] failed to pro-
vide adequate information because they only used the time
feature. In Gascon et al. [26], the worst performance of non-
identifiable users, which can hardly be distinguished from
others, managed to have a 58% true positive rate (TPR)
and 35% false positive rate (FPR). This is unreasonable for
practical authentication systems. The study by Kim and
Kang [12] was the only one to use free text, and it managed
to obtain good results, scoring 0.07% EER and 0% EER in
English and Korean, respectively. Conversely, the fixed text
has become a saturated research area, yielding interesting
results, such as 0.01% EER in Buriro et al. [27].

2.1.2. KDA Studies Based on the Feature Type. In 2009, the
earliest research was conducted to analyze KDA as a verifica-
tion tool in touchscreen devices. This research was per-
formed by Saevanee and Bhattarakosol [28] and focused on
finger pressure on the touchscreen as a biometric source
for keystroke dynamics analysis, using laptops as a base.
With the release of Android 1.6, many new features were
added to digital devices, such as fingertip size, device orien-
tation, and device angle, which broadened the application of
the technique. In 2010, a further advancement occurred after
Android 2.3, which included a rotation vector, a gyroscope, a
linear accelerometer, and gravity, giving new life to studies
being conducted in this area. Notably, a study by Zheng
et al. [29] researched using KDA on mobile touchscreens
specifically. In addition to examining common
touchscreen-based features, they studied the efficiency of
KDA using accelerometer sensors. Kambourakis et al. [30]
used Android devices and proposed two new features to
evaluate keystroke dynamics: speed and distance features.
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Roh et al. [31] also used accelerometer sensors but added
four additional features: keystamps, gyroscope sensor, touch
size, and touch coordinates. Research on several other fea-
tures, such as motion data and time interval, was conducted
by Lee et al. [32], who evaluated keystroke dynamics features
using both motion and motionless data to determine which
feature yielded more accuracy—motion data yielded more
precise results.

2.1.3. KDA Studies Based on the Classification Methods. Sev-
eral techniques and methods have been proposed to catego-
rize the typing behavior of users, such as machine learning
techniques, distance-based matrices, and statistical mecha-
nisms, which have been rarely implemented.

Many studies have employed distance matrices, such as
the Manhattan, Euclidean, and Bhattacharya distances. For
example, Lee et al. [32] and Coakley et al. [33] implemented
Euclidean and Manhattan distance matrices, which resulted
in the Manhattan distance producing better accuracy in both
studies.

Some researchers have implemented data preprocessing
through scaling [7] and standardization before applying dis-
tance matrices. Such preprocessing techniques might be cru-
cial for calculating the similarities between features.
Although these techniques have generated satisfactory
results in some studies, other studies have deemed the results
unacceptable.

Likewise, Lee et al. [32] applied the Manhattan and
Euclidean distances with two different scaling techniques:
standard and MinMax scaling. The best results were
obtained by applying the Manhattan distance with standard
scaling. Similarly, Roh et al. [31] used the Manhattan and
Euclidean distances with mean, absolute deviation, and stan-
dard deviation. Their results suggested that preprocessing
might not always be useful since they demonstrated that
although the outcome generated by preprocessing was good
for the average EER, it was worse for the best EER.

Machine learning techniques have been proposed in var-
ious studies, as shown in Table 1. Random forest, k-nearest
neighbor (KNN), and multilayer perceptron (MLP) classi-
fiers are the most frequently used machine learning tech-
niques. In Sen and Muralidharan [34], MLP obtained a
better accuracy rate than decision trees, naïve Bayes, and
KNN. Random forest was considered better than MLP in
Salem et al. [35], in which the EER score was 0.45%. In Kam-
bourakis et al. [30], there are three renowned classifiers:
MLP, KNN, and random forest. Eventually, MLP was
rejected because it was incapable of running with memory
restrictions when the classifiers were provided with an
upper bound of 512MB of memory. Moreover, KNN
was used in Ehatisham-Ul-Haq et al. [36] in addition to
three classifiers: support vector machine (SVM), decision
trees, and Bayes net—the Bayes net and SVM classifiers
delivered better results.

de Mendizabal-Vazquez et al. [37] used Euclidean dis-
tance alongside the MLP classifier, with MLP delivering bet-
ter performance when the sample was increased and when
the correct identification rate was 90%. However, the Euclid-
ean distance performed well despite operating with a smaller
sample, reaching an EER of 20%.

Based on the preprocessing using machine learning tech-
niques, three preprocessed sample groups were created by
De et al. [37]: (1) a linear discriminant analysis (LDA)
group, (2) a principal component analysis (PCA) group,
and (3) an original data group. The best results were
obtained for the PCA group. It was also argued that a con-
siderable reduction in data size due to PCA eased the imple-
mentation of these methods on mobile devices, which tend
to have strong limitations because of their processing capac-
ity and battery life.

2.2. KDA Using Other Languages. All previous keystroke
dynamics studies conducted on touchscreen-based devices
included only English as the input language, excluding one

Table 1: Recent studies of the free KDA for touchscreen devices.

Study Year
Number

of
subjects

Methodology Features Classifier
FAR,

FRR, or
EER

[25] 2013 13 15 keys
Time, pressure,

gyroscope, coordination,
and size

MLP

14%
FAR,
2.2%
FRR

[26] 2014 315
Predefined free

text (150
keystrokes)

Time, accelerometer,
gyroscope, and oriented

sensor
SVM

92%
FAR, 1%
FRR

[24] 2015 35
Predefined free
text (3,000
keystrokes)

Time
Statistical method, KNN, Gaussian estimation, Parzen
window kernel estimation, and support vector data

description (SVDD)

8.99%
EER

[12] 2020 50
10 samples of
200 keystrokes

each

Time, acceleration, and
coordination

TT, R, TTPR, TTMR, Kolmogorov-Smirnov statistic, and
Cramér-von Mises criterion (CM)

0% EER

Our
study

2021 45 200 keystrokes
Time, acceleration,

gyroscope, pressure and
coordination

ANN, KNN, SVM, Euclidean distance, Manhattan
distance, and random forest

0% EER
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study that included both Korean and English [12]. This
demonstrates a lack of language variation in such systems.
However, some experiments have considered other lan-
guages in fixed keyboard environments. The first study con-
ducted using another input language was in Gunetti et al.
[38], which used Italian. This study demonstrated that
KDA works in languages other than English and produces
accurate results. Two features were examined in this study:
the digraph latency and keystroke duration. The
researchers compared the samples typed using English
and Italian, providing evidence that keystroke dynamics
are useful even when the typing samples are written in dif-
ferent languages. Japanese was also checked for accuracy
by Samura and Nishimura [39], who employed the key-
stroke timing for every single letter and combinations of
two letters composed of consonant and vowel pairs in

the text. This experiment was performed on 112 partici-
pants divided into three groups, depending on their typing
skills. The findings included a recognition accuracy of
nearly 100% in the group that could write more than
900 letters in five min.

For generalising the KDA scheme to other language, a
study in [12] conducted an experiment using two languages:
Korean language, which is the native language of the partic-
ipants, and the English language. Their results showed that
the accuracy was higher when the native language was used.
Likewise, studies in [2–4] compared between two languages
(Arabic and English) with the Arabic native speakers using
fixed keyboard, and the accuracy was higher using Arabic
language. Thus, we aim in this paper to analyze the effective-
ness of touch KDA for Arabic language with the Arabic
native speakers.

Table 2: Recent studies of the fixed KDA for touchscreen devices.

Study Year
Number

of
subjects

Methodology Features Classifier
FAR,

FRR, or
EER

[14] 2013 152 17-digit passphrase 10 times
Time, pressure, size, and

coordination
K-means

4.59%
FRR
4.19%
FAR

[32] 2018 22 6-digit PIN
Accelerometer, gravity, rotation,

pressure, time, size, and
coordination

Euclidean and Manhattan
distances

7.89%
EER

[29] 2014 80 4-digit PIN/8-digit PIN
Time, acceleration, pressure, and

size
Nearest neighbor distance

3.65%
EER

[31] 2016 15 4-digit PIN
Flight time, acceleration, pressure,

and size

SVR, scaled Euclidean, scaled
Manhattan, KNN, and random

forest

8.71%
EER

[30] 2014 20
10 alphanumeric characters
and 47 characters including

spaces

Hold time, intertime, distance, and
speed

Random forest, KNN, and MLP
12.5%
EER

[27] 2015 12 4-digit PIN
Time, accelerometer, gravity,
magnetometer, gyroscope, and

orientation

Binary classifiers, Bayes net, and
random forest

0.01%
FAR
0.01%
FRR

[7] 2019 104 4-digit PIN
Flight time, acceleration, pressure,

and size

SVR, scaled Euclidean, scaled
Manhattan, KNN, and random

forest

8.71%
EER

[6] 2016 150
4-digit PIN
16-digit PIN

Time and size
Gaussian estimation, z-score, and

standard deviation drift
6.26%
EER

[35] 2019 7
Static, 8 characters (complex

passwords)
Time, pressure, size, and

coordination
MLP, decision trees, and random

forest
0.45%
EER

[36] 2017 10
10 different password

templates
Time, accelerometer, gyroscope,

and magnetometer

Decision tree, KNN, SVM, and
Bayesian network/Bayes net

classifier

99.18%
accuracy

[33] 2016 52 10-digit PIN
Time, pressure, screen location,
accelerometer, and gyroscope

Euclidean distance and
Manhattan distance

4.3%
EER

[34] 2014 10 4-digit PIN Time and pressure
Decision tree, naïve Bayes, KNN,

and MLP

14.1%
FAR
14%
FRR

[37] 2014 80 4-digit PIN
Time, accelerometer, gyroscope,

pressure, and finger size
Euclidean distance and MLP

20%
EER
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2.3. KDA Using Arabic. The first study to consider Arabic in
the analysis of the accuracy of keystroke dynamics was per-
formed by Alsultan et al. [16], who used the key pairing
approach via an Arabic alphabet keyboard. This study classi-
fied every character pair based on its relationship and key-
board location. Five keystroke features were extracted from
each key pair. Their findings were extended by Alsuhibany
et al. [17], who combined three features: keystroke duration,
keystroke latency, and di-graph duration through Euclidean
distance classification. This study yielded accurate results
retched to 0.1 EER. Moreover, Alsuhibany et al. [18] further
broadened this research by applying Bhattacharya and
Euclidean distance measures, and the results showed that
the Bhattacharyya distance was more accurate for both Ara-
bic and English inputs.

Tables 1 and 2 provide a comparison of the most recent
studies on keystroke dynamics for a touchscreen environ-
ment. As shown in Table 1, our study is compared with
other studies that applied the free text technique [12,
24–26]. The comparison is based on many factors, such as
EER, the number of keystrokes used, features, and classifiers.
In particular, a study in [12], that achieved the best results
compared with other studies, is comparable with our study.
Although the best accuracy rate was the same (0.0 EER)
reached by both studies, the number of keystrokes in our
study was noticeably less, which increased the usability of
our system.

3. Methodology

This section explains the typical touch dynamics biometric
authentication system and its components. Figure 1 indi-
cates that the system operation largely consists of several
functional blocks (architectural components), each perform-
ing a well-defined function. These components and their
respective operations are described as follows.

3.1. Data Collection. For the data collection, a touch-stroke
authentication system was implemented using an Android
application, which records raw data when a user touches a
key. Moreover, when a user writes text and touches the sub-
mission button, a user profile is generated and stored in the
local database of the device. This profile comprises five fea-
tures: time stamps, acceleration, gyroscope, pressure, and
coordination. Using an Android device (i.e., Huawei Nova
3i), data from 45 participants were collected. Most partici-
pants were in the same age bracket (19-25) and owned
Android touch-technology smartphones.

It is important to note that all collected data was used for
the pompous of this experiment and will be kept stored on
the principal investigator drive with no names and an
indemnifier of the participants.

3.2. Feature Extraction. This section describes the features
used in the study. Specifically, touchscreen devices are
designed to capture more features than traditional key-
boards. Therefore, the features used in our study were
selected because of their efficient performance in the state-
of-the-art for activity recognition. To rephrase, the existing

research [27, 31, 36] has well-established the excellent per-
formance of these features for behavioral authentication.

3.2.1. Timing Features. The timing features of keystroke
dynamics were attained from two keyboard actions: depres-
sion and release. Depression is the timestamp recorded
when a key is held down (D), whereas Release is the time-
stamp recorded when the key is released (U). Timing fea-
tures were obtained by capturing the time stamps for every
event, as shown in Figure 2. Furthermore, very basic and
consecutive events can exist in the following combinations:

(i) Keystroke Duration or Hold Time (Down-Up). The
key is pressed until it is released. Figure 3 shows
the hold times for four randomly selected partici-
pants. The difference between users’ behaviors when
pressing the buttons can be seen, and the average
hold time is, in most cases, more constant between
users

(ii) Keystroke Latencies/Flight Time. This is also identi-
fied as Down-Down (DD) or Press-Press (PP)—the
time between two consecutive key presses

(iii) Di-Graph Duration. This is the elapsed time
between the release of the first key and the depres-
sion of the second key. It is known as the Up-
Down (UD). Figure 4 shows the digraph duration
for four users. Although there exists little difference
between users, the rhythm of the digraph is less
constant between users, as well as between the
actions of individual users

3.2.2. Nontiming Features. Four nontiming features were
used in our experiment: coordination, pressure, accelerome-
ter, and gyroscope sensors.

The coordinate values are extracted for the horizontal
and vertical axes at the time of the key press on the touchsc-
reen device. These coordinate values are 2-raw data, one for
the x-axis and another for the y-axis for each action. Figure 5
shows a scatter plot of five users who pressed one key when
each user had different Cx and Cy coordinates.

The pressure force is returned when the user presses a
key on the touchscreen. The returned pressure measure-
ments are an abstract unit, ranging from 0 (no pressure) to
1 (normal pressure). However, higher than one values can
also occur depending on the calibration of the input device.
In essence, the pressure values are 1-raw data, which is the
pressure force for each action. The accelerometer calculates
the accelerometer (m/s2) of the three axes, lateral x-, longitu-
dinal y-, and vertical z-axis, as shown in Figure 6(a), by con-
sidering gravity values. Figure 7 shows the visualization of
the values of the three axes of acceleration for two randomly
chosen participants. The gyroscope measures the rate of
rotation (rad/s) of a device using three axes: x − axis (pitch),
y-axis (roll), and z-axis (yaw), as shown in Figure 6(b). The
accelerometer and gyroscope numbers are uneven by sam-
ples and must be reshaped as regular forms. Lee et al. [2]
used five formulae for the grouped data: average value
(mean), root mean square, the sum of positive values, the
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sum of negative values, and standard deviation. Since the
error rate was improved when the “mean” formula of
motion data was added, we employ the mean formula in
our study.

3.3. Preprocessing. Each user has a distinct pattern when typ-
ing on a keyboard. However, a user may unintentionally
deviate from his or her specific range of data by mistakenly
performing an action that does not match the usual pattern.
Therefore, outlier data for each participant were detected
using an interquartile range. Then, these data were removed
before feeding the classifiers to improve classification perfor-
mance. For features that include more than one dimension,
such as acceleration, gyroscope, and coordination, we
remove the common value of outliers between these dimen-
sions. For example, the record will be deleted if the three
dimensions of acceleration have common outlier values.

Figure 8 graphically illustrates the boxplot for each fea-
ture and the removed outlier values.

3.4. Classification. After extracting the users’ typing features
and creating their profile templates, a classification process
was undertaken to determine the similarities and differences
between the users’ templates. In particular, the standardized
classifiers were used, including artificial neural network
(ANN), KNN, SVM, Euclidean distance, Manhattan dis-
tance, and random forest, which were written using Python.
Each of these classifiers is explained as follows.

An ANN is a series of algorithms that determine rela-
tionships within a dataset through a process that operates
similarly to a human brain. Although there are several
ANNs, our study utilized MLP owing to its high perfor-
mance confirmed by recent studies [34].

Moreover, KNN estimates how likely a data point is to
be a member of one group based on data points of which
groups are nearest to it. SVM is a supervised machine
learning algorithm used for both classification and regres-
sion. It aims to find a hyperplane in an N-dimensional
space, where N is the number of features that distinctly
classify the data points. Random forest unsystematically
creates and merges multiple decision trees into one “for-
est.” The goal is not to rely on a single learning model
but instead on a collection of decision models for improv-
ing accuracy. The Euclidean distance involves calculating
the distance between two n-dimensional vectors pðp1, p2,
⋯, pnÞ and qðq1, q2,⋯, qnÞ in a straight line. Its formula
is given by Equation (1):

d p, qð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〠
n

i=1
qi − pið Þ2:

s

ð1Þ

The Manhattan distance calculates the distance
between two n-dimensional vectors, pðp1, p2,⋯, pnÞ and q
ðq1, q2,⋯, qnÞ, by subtracting the values and then sum-
ming their absolute values, as shown in Equation (2).

d p, qð Þ = 〠
n

i=1
qi − pij j: ð2Þ

Feature extraction

Time

Pressure

Coordinates

Acceleration

Gyroscope

Enrolment
process User

profile

Decision
score Decision

maker
Target user?

Impostor?

Authentication
process

Classifier

Figure 1: Typical touch dynamic biometric authentication system.
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Figure 2: Timing features of KDA.
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4. Evaluation

A controlled laboratory experiment was conducted in which
the participants were asked to use the developed application.
The following sections present the setup and procedure of
the experiment.

4.1. Experimental Setup. This experiment involved various
subjects as normal users. In the following section, the design
of the experiment is provided, along with a description of the
participants, the materials involved, and the systems in the
experiment.

4.1.1. Experimental Design. The experiment was conducted
in a controlled laboratory so that distributions made no
interference, and the desired data could be collected without
any biases. The experiment was divided into two sessions. In

each session, the participants were required to enter one of
the two keystroke authentication techniques, namely, fixed
text or free text. Each session lasted 15 minutes, and there
was a 10-minute break between sessions.

4.1.2. Participants. We recruited 45 participants, and the
experiment was conducted for three weeks. The participants
had varying typing skills and were between 19 and 25 years
of age. All the participants were undergraduate students
from different disciplines, and they were all native speakers.
Most participants had a technical background. As demon-
strated by Lee et al. [32], FAR is reduced in the case of the
opposite gender for legitimate users. Therefore, to obtain
adequate results, all participants in our experiment were
women.

4.1.3. Materials. The stimulus material provided to the par-
ticipants comprised two texts: a sign-up text and a log-in
text. When the fixed text class was used, each participant
entered the required phrase at least ten times for the sign-
up phase and once for the log-in phase. One sample com-
prised 20 characters, as suggested by Lee et al. [32]. This
study demonstrated that accuracy was the same in the first
20 actions. Subsequently, when the number of user actions
was increased from 20 to 40, the user’s input waiting time
doubled with minor improvements in accuracy. In contrast,
the sign-up text in the free text condition was 200 characters,
whereas it was 198 characters in the log-in session. Although
many studies have preferred to use a short free text [23, 40],
it might not be enough to use only short texts to analyze key-
strokes as they may not provide sufficient information for
discriminating among users. Other studies [41, 42] have pre-
ferred a long free text. Huang et al. [41] argued that the ref-
erence profiles required 10,000 keystrokes, whereas a testing
sample requires 1,000 keystrokes to produce satisfactory
authentication performance. However, users might not find
it convenient to enter longer texts. Therefore, an
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intermediate value was selected to determine the lengths of
the characters. Table 3 shows the keystroke data collected
during each session.

4.1.4. System. The proposed system was implemented on a
Java Android application installed on an Android device. It
was designed for users with varying technical experience.
The application comprises the main page on which users
can select one of the two keystroke biometric classes: free
and fixed texts. Both classes are similar in terms of circum-
stance, which is as follows: after the user has selected the
required technique, the page for entering the user’s email
address will be displayed. This page includes a text box in
which the email address can be typed along with a button
to check the validity of the email address. When the correct
email address is entered, the sign-up page is shown, which
has the required text to enter and the textbox to enter this
text, as shown in Figure 9. When the user presses the submit
button, the written text is matched with the required text;
data features and the email address will be saved locally in
the database. In contrast, when the text fails to match, an
error page will be displayed, after which the user can make
another attempt. After the sign-up phase, the user is directed
to the log-in page.

Android does not have any mechanism to monitor the
keyboard for security purposes, such as implementing a key-

logger [30]. Thus, it was essential to design and implement a
custom keyboard, which could be easily installed on each
device used to authenticate users. This keyboard was devel-
oped for all touchscreen Android mobile devices.

4.1.5. Evaluation Metrics. Three metrics were used to evalu-
ate the accuracy of the biometric authentication system: false
rejection rate (FRR), false acceptance rate (FAR), and EER.
FAR is the percentage ratio of the number of acceptances
of an imposter user as a legitimate user. A low FAR indicates
that fewer illegitimate users were falsely accepted, thereby
indicating increased security.

FRR is the percentage ratio of rejecting a legitimate user
by considering him/her to be an imposter. A low FRR indi-
cates that fewer legitimate users were falsely rejected, thereby
indicating the increased usability of the method.

EER is a single-number performance metric used to
measure and compare the accuracy of various biometric sys-
tems. This metric is obtained by placing a graph, one for
FAR and one for FRR, against a matching threshold, and
then taking the interception point of the two graphs. The
EER formula is given by Equation (3).

EER = FAR + FRR
2 : ð3Þ

Usually, a low FRR and a low FAR result in a lower EER.
A lower EER indicates a good performance using a biometric
authentication method. However, because FAR and FRR are
negatively correlated, it is impractical to lower both metrics.

4.2. Experimental Procedure. This section explains how the
experiment was conducted—instructions for the partici-
pants, the experimental process, and the data collection
procedure.

4.2.1. Instructions to Participants. The participants were ini-
tially instructed to type the provided text as normal. All par-
ticipants were required to switch off their phones (or set
them to silent) and avoid chatting with friends. This was
done to prevent any interruption during typing. All partici-
pants were asked to sit while holding the smartphone in
their hands, as this position yielded more accuracy, as stated
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in [31]. Before beginning the experiment, the participants
were given some time to test the system by discarding the
first trial. During typing, the participants were told that they
could use the backspace or spacebar keys when needed.
Lastly, a confirmation message was shown, indicating that
the experiment has ended.

4.2.2. Procedure. The procedure was implemented in two
distinct phases to authenticate users using KDA on mobile
phones. The first phase of enrolment is also known as profile
building. In this phase, the typing rhythm was collected in
different trials to select the most similar profiles for the typ-
ing behavior of the user. For the second phase, the user was
required to enter the log-in text, which was matched and
compared with the stored text. Each time, the authenticated
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Table 3: Experimental settings of collected keystroke data.

Session#
Technique

type
Number of training

samples
Number of testing

samples
Number of actions in sign-up

phase
Number of actions in log-in

phase

First session Free text 1 1 200 198

Second
session

Fixed text 10 1 200 20

Figure 9: Interfaces of an Android-based keystroke collector.
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user was required to enroll with the system for comparison
with the profile stored in the database. A flowchart is shown
in Figure 10.

4.2.3. Collected Data. For every successful attempt, a user
profile was created, which included data for time keystrokes,
accelerometers, gyroscopes, pressures, and coordinates.
Table 4 shows all 13 features for each class; however, the
number of dimensions is different. In particular, in a fixed
text class, every sample comprises 20 sets of 13 features.
Hence, by subtracting three values from DD, PP, and UD
features, a single sample comprises 257 fields. Conversely,
in the free text class, whenever a participant touched a par-
ticular key on the keyboard, it was presented as 13 features,
where each feature appears in a single dimension in DB.
Subsequently, the mean, maximum, and minimum for each
feature are stored in another table.

5. Results

All participants successfully completed their tasks in three
weeks. The level of accuracy obtained in the research indi-
cates that this approach can improve the performance of
touch-based systems when typing in Arabic. Specifically,
the combination of the five features, namely, time, accelera-
tion, coordination, pressure, and gyroscope, by applying a
random forest classifier yields 0.0% EER using a free text
database and 0.086% EER using a fixed text database, as
shown in Figures 11 and 12. Although we have compared
between our results and prior studies’ results in Table 1,
Table 5 compares between our approach and the result of
[12]. This shows clearly that our approach is more usable
due to the less number of keystrokes, though the accuracy
rate of both studies was the same (0.0 EER).

This section presents the results, first with machine
learning methods and then with distance-based metrics.

5.1. Machine Learning Methods. It is evident from Figures 11
and 12 that the free text class has a low FAR in comparison
to the fixed text class. For example, the KNN classifier scored
the FAR of 0% with the free class using a combination of fea-
tures. However, in the fixed text class, the FAR was 0.34%.
Notably, applying the coordination feature in the fixed text
database yielded a better FRR than that in the free text data-
base. In the fixed text classifier, the best result obtained was
0.18% FRR, whereas in the free text classifier, the FRR
reached 0.6% using SVM.

5.2. Distance-Based Metrics. This experiment utilized two pop-
ular distance matrices: Manhattan and Euclidean distances. As
suggested by Alsuhibany et al. [18], the standard deviation of
the user’s profile was utilized to set a threshold for the Euclidean
distance. Therefore, we used this threshold for both Euclidean
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Figure 10: Flowchart of the proposed system.

Table 4: Features and dimensions for each KDA class.

Feature set Description
Number of dimensions

1 sample (20 characters)
(fixed text)

(Free
text)

Time

Hold time 20 1

Flight time
(DD)

19 1

Flight time
(PP)

19 1

Di-graph
duration

19 1

Coordination
At

TouchDown
40 2

Pressure
At

TouchDown
20 1

Acceleration
At

TouchDown
60 3

Gyroscope
At

TouchDown
60 3

# of features 13 13

# of dimensions 257 13
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and Manhattan distances. To enhance the performance of the
Manhattan distance, the threshold was changed to the summa-
tion of the standard deviations of the two users’ profiles, which

tends to engage in the process of authentication. This result is
shown in Table 6, where it is evident that the performance of
the Manhattan distance using the free text class has been
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Table 5: A comparison of our system result and the result of [12].

Study Methodology Features Classifier EER

[12]
10 samples of 200
keystrokes each

Time, acceleration, and coordination
TT, R, TTPR, TTMR, Kolmogorov-Smirnov statistic, and

Cramér-von Mises criterion (CM)
0.0
EER

Our
study

200 keystrokes
Time, acceleration, gyroscope,
pressure, and coordination

ANN, KNN, SVM, Euclidean distance, Manhattan distance,
and random forest

0.0
EER
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significantly increased using the second threshold. In fact, the
results of the fixed text class remain unchanged even after set-
ting the new threshold. The results of the two text classes were
acceptable, as shown in Figures 13 and 14.

6. Discussion

This section interprets the results obtained using machine
learning methods and distance-based metrics.

Table 6: Difference between two thresholds using the Manhattan distance in the free text class.

Time Coordination Pressure Acceleration Gyroscope
Combination
of features

FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR

First threshold 10 15 80 5 30 0 10 40 0 90 30 35

Second threshold 0 15 80 0 10 0 25 0 15 10 10 15
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6.1. Machine Learning Methods. This section compares the
results based on three distinct points: the keystroke dynamic
class, method of classification, and features. That is, a low
FAR indicates a higher level of security. In this case, since
the free text has a low FAR, it indicates that the free text is
more secure than the fixed text. This may be attributed to
the size of the text, which was provided in the log-in phase
of the free text technique because it was longer than that in
the fixed text technique. Consequently, it will be challenging
for an intruder to imitate the typing pattern of the user for a
longer text.

The obtained results are consistent with Alsultan and
Warwick [43]—the free text ensures more safety and secu-
rity than the fixed text from many threats, such as spyware,
shoulder surfing, and social engineering. Hence, it can be
concluded that as more keystrokes are input in the log-in
phase, a more robust authentication model will be achieved.
However, from the perspective of system users, inputting
considerable keystrokes may be inconvenient.

In contrast, a lower FRR indicates increased usability.
Since coordination achieved better FRR through fixed text,
it ensures enhanced usability for the fixed text category,
implying that every user has a particular coordinate for each
button, as shown in Figure 5. Thus, this feature is rendered
more convenient in the fixed text class.

Therefore, to determine the most appropriate machine
learning method for the classification engine of the proposed
system, the study undertook several preliminary classifica-
tion experiments, which included four popular classifiers:
SVM, MLP, k-NN, and random forest. As suggested by
Kambourakis et al. [30], k-NN and random forest classifiers
were most crucial in performance on mobile devices. This
refers to the fact that a user will select not only the most
effective algorithm in classification but also the one that
promptly executes commands over the handheld device or
smartphone, despite limited memory and CPU. In addition
to the increased performance of the random forest classifier,
it yielded higher accuracy as it outperformed the other three
classifiers with the most features. In contrast, in addition to

the less effective result produced by MLP, in Kambourakis
et al. [30], the MLP classifier was excluded because it could
not run on limited memory capacity. Thus, it can be inferred
that random forest is the best option for the KDA system
because it can run on low-memory devices.

Furthermore, Figure 11 (free text) clearly indicates that
the combination of all features delivers the best results using
all four classifiers. When each feature is used independently,
time is the best feature, followed by acceleration. Figure 15
depicts the average of the hold-time, UP time, and DD time
using the free text class, implying that the time features are
unique for each person, except for a few users who can be
distinguished by their other features. Figure 12 (fixed text)
implies that combining all the features provides better
results in two classifiers: random forest and MLP. In con-
trast, the coordination feature was the highlight feature in
the case of SVM and KNN classifiers.

In general, it was observed that the combination of dif-
ferent features delivered highly accurate results in both fixed
and free texts. Additionally, time was a crucial feature in the
free text technique, whereas coordination was more effective
in the fixed text technique.

6.2. Distance-Based Metrics. Two parameters that influence
the accuracy of distance-based metrics are the number of
keystrokes used in the testing phase and the threshold. In
the fixed text technique, the classification is intended to
determine whether a user is legitimate by computing the dis-
tance between the mean point of reference samples and the
one sample used in the log-in phase, comprising merely 20
letters. Conversely, in the free text technique, the distance
computes the difference between the mean point of the
sign-up data and the mean point of the log-in data, compris-
ing 198 letters. This is an explanation for the higher results
obtained using the free text class. Therefore, it is suggested
to increase the number of samples entered by the user in
the log-in phase in the fixed text class to three samples
[31]. When the threshold was altered in the Manhattan dis-
tance, there was an increase in performance using the free
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text. Hence, notably, the new threshold for the Manhattan
distance, the Manhattan distance outperformed the Euclid-
ean distance.

7. Conclusion and Future Works

This research extended the previous studies on KDA that
used Arabic with conventional keyboards by investigating
KDA in Arabic on soft keyboards. Currently, touchscreen
devices are embedded with sensors that can improve the per-
formance of the system. This study extracted five features to
determine the keystroke patterns of the users: accelerometer,
time, touch coordinates, touch pressure, and gyroscope sen-
sor. The performance of the features was assessed using six
methods of validation: SVM, KNN, Euclidean distance,
Manhattan distance, random forest, and neural network.
The system was analyzed through two keystroke dynamic
classes: free text and fixed text, for determining the most
effective approach. Subsequently, the results of both tech-
niques were compared.

The results indicate that a verification system using Ara-
bic is possible with touchscreen devices and can enhance
security. It exhibits a higher rate of accuracy using the free
text class, with an average EER of 0.0%, whereas an average
EER of 0.08% can be obtained by using the fixed text class
when combining the features and the random forest classi-
fier. Among both KDA classes, the free text class had a lower
FAR throughout the entire study, irrespective of the feature
set used, thereby implying that the free text is more secure
than the fixed text.

To improve our results, the experiments will be carried
out on a tablet device to investigate whether the size of the
screen has any impact on authentication accuracy. More-
over, additional classifiers, which were not a part of this
study, can be included, and advanced scenarios, features,
and methodologies can be considered in the future. Lastly,
the number and diversity of the participants should be
increased in the future experiments to better assess the asso-
ciated outcomes with this particular behavioral trait.
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