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A joint processing of direction of arrival (DOA) and signal separation for planar array is proposed in this paper. Through sensor
array processing theory, the output data of a planar array can be reconstructed as a parallel factor (PARAFAC) model, which can
be decomposed with the trilinear alternating least square (TALS) algorithm. Aiming at the problem of slow speed on convergence
for the standard PARAFAC method, we introduce the propagator method (PM) to accelerate the convergence of the TALS
method and propose a novel method to jointly separate signals and estimate the corresponding DOAs. Given the initial angle
estimates with PM, the number of iterations of TALS can be reduced considerably. The experiments indicate that our method
can carry out signal separation and DOA estimation for typical modulated signals well and remain the same performance as
the standard PARAFAC method with lower computational complexity, which verifies that our algorithm is effective.

1. Introduction

Signal separation and direction of arrival (DOA) estimation
are significant themes in signal processing and have been
investigated in various engineering fields including wireless
communication, navigation, radar, and sonar [1–5]. As funda-
mental issues for signal processing, they have sparked consid-
erable attention of researchers for decades. These two
problems involve multiple signals and sensors which receive
a mixture of signals [6]. The goal of DOA estimation is to find
the source signal location, while the signal separation is aimed
at extracting desired source signals. Through the years, many
classical methods have been developed to solve these prob-
lems. For DOA estimation, subspace-based methods like
MUSIC and ESPRIT have been widely adopted [7, 8]. The
conventional nonparametric Fourier-based methods have also
been further developed [9], and the emerging sparse
reconstruction-based methods like orthogonal matching
pursuit (OMP) and sparse Bayesian inference (SBI) are intro-
duced into DOA estimation [10, 11]. For signal separation, the
researches focus primarily on blind source separation (BSS)
methods, where independent component analysis (ICA) and

Joint Approximative Diagonalization of Eigen matrix (JADE)
method are the most famous among these methods [12, 13]
and have been widely applied in the separation of speech
and medical signals.

Compared with conventional DOA methods, BSS
methods do not require much waveform prior information
and are capable of identifying the transmission parameters
based on the mixture signals, which has aroused an amount
of attention of researchers. Many researchers study to apply
blind separation algorithms into array signal model and
have made lots of works. A combined complex blind source
separation DOA estimation and signal recovery method was
proposed for uniform linear array (ULA) in [14], which
obtains better performance by exploiting BSS to estimate the
arraymanifold. In [15], a blindDOA estimationmethod based
on the JADE algorithm was proposed, which introduces
fourth-order cumulant and has great performance in multi-
path environment. In [16], the chaotic adaptive firework algo-
rithm was applied for solving the problem of radar emitter
mixed signal. In [17], a new EM-based method for broadband
DOA estimation and BSS was proposed, which reduces the
complexity of traditional methods. In [18], a method based
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on eigenvalue decomposition for DOA estimation and blind
separation of narrow-band independent signals was presented.
The above studies were discussed for ULA geometry and did
not involve more complex array structures like planar arrays
which are more practical in actual applications.

In recent years, tensor technique has taken off in the field
of data analysis and signal processing [19], in which trilinear
decomposition or the parallel factor (PARAFAC) technique
has been extensively investigated in radar and wireless com-
munication fields especially [20–24]. PARAFAC is a com-
mon model for low-rank decomposition of a tensor, whose
computation can be completed by alternating least squares
(ALS). Many models in array signal processing can be repre-
sented as trilinear models, which enables us to utilize the tri-
linear alternating least square (TALS) algorithm to achieve
parameter estimation and signal separation. The authors in
[25, 26] studied multiparameter estimation in bistatic
multiple-input multiple-output (MIMO) radar and pro-
posed a joint direction of departure (DOD) and direction
of arrival (DOA) estimation using the PARAFAC model.
In [27], the authors proposed a novel 2D-DOA estimation
for trilinear decomposition-based monostatic cross MIMO
radar. In [28], a joint DOA and carrier frequency estimation
of narrow-band sources was proposed using the unitary
PARAFAC method. These methods based on TALS can
separate source signals and obtain automatically paired
parameters without spectral peak search, but have relatively
high computational complexity. It can be seen that PAR-
AFAC has a great potential in DOA estimation and signal
separation, but its shortcoming is the standard PARAFAC
method has slow speed on convergence.

Motivated by the works mentioned above, in this paper,
under the basic framework of PARAFAC, we propose a
method of joint two-dimensional DOA estimation and sig-
nal separation for planar arrays. We first model the output
of a planar array as the PARAFAC model and then utilize
the propagator method (PM) to initialize the updated matri-
ces in the TALS method, which effectively simplifies the
complexity of the algorithm. Next, perform the TALS
algorithm until convergence. Finally, acquire the 2D-DOA
estimates and separated signals from the direction matrices
and the source matrix which is estimated by TALS. The
proposed method can achieve signal separation and DOA
estimation for typical modulated signals well and remains
the same performance as the standard PARAFAC method
but with lower complexity. The experimental results verify
the effectiveness of our algorithm.

We briefly summarize our main contributions as follows:

(1) We model the output of the uniform rectangular
array and reconstruct it into the PARAFAC model

(2) We propose the fast-PARAFAC decomposition
method for joint 2D-DOA estimation and signal sep-
aration, which utilizes PM to initialize the updated
matrices in TALS and accelerate convergence

(3) The proposed method has better performance of
DOA estimation than 2D-PM and 2D-ESPRIT and
can accurately separate the source signals with lower

complexity compared with the standard PARAFAC
approach

(4) The proposed method can obtain separated signals
and corresponding DOA estimates without an addi-
tional pairing procedure

The outline of this paper is given as follows. We discuss
the data model for uniform planar array and introduce the
PARAFAC model briefly in Section 2. In Section 3, the
proposed algorithm is described in detail. In Section 4, the
complexity analysis and advantages of the proposed method
are provided. The results of numerical simulations are given
in Section 5, and conclusions are drawn in Section 6.

1.1. Notation. Lower-case and upper-case boldface letters
denote vectors and matrices. ℂ denotes the sets of complex
numbers. The superscripts ð⋅ÞT , ð⋅Þ∗, and ð⋅ÞH represent the
transpose, complex conjugate, and conjugate transpose of a
vector or matrix, respectively. diag ð⋅Þ denotes a diagonal
matrix that consists of the elements of the matrix. ⊗ denotes
the Kronecker product. Dmð⋅Þ denotes a diagonal matrix
whose diagonal elements are defined with the m-th row of
the matrix. angleð⋅Þ denotes phase angle operator. k⋅k2 and
k⋅kF denote the ℓ2 and Frobenius norms. ð⋅Þ−1 and ð⋅Þ+ stand
for the inverse and pseudo-inverse of a matrix.

2. Data Model

Consider a uniform rectangular array (URA) containing N ×
M sensors as depicted in Figure 1, where N and M are the
numbers of elements along the x-axis and y-axis. The interele-
ment spacings along both the x-axis and y-axis of the array are
taken as half the wavelength of the waves, dx = dy = λ/2.

Assume that K uncorrelated far-field signals individually
impinge on the array from fðθk, ϕkÞjk = 1, 2,⋯, Kg, where
θk and ϕk are the corresponding elevation and azimuth
angles of the k-th signal (K <N ×M, θk ∈ ð0, 90°Þ, and ϕk
∈ ð0, 180°Þ). The output of the rectangular array can be
represented as follows [29]:

~X =AS +N, ð1Þ

where ~X ∈ℂNM×L is the output data with noise; L denotes
the number of snapshots; S = ½s1, s2,⋯, sK �T ∈ℂK×L is the
signal matrix of L snapshots; N ∈ℂNM×L is the additive white
Gaussian noise matrix. The array manifold matrix A ∈
ℂNM×K consists of the steering vectors and is given by [29]

A = ay υ1ð Þ ⊗ ax u1ð Þ, ay υ2ð Þ ⊗ ax u2ð Þ,⋯, ay υKð Þ ⊗ ax uKð Þ� �
,

ð2Þ

where uk = sin θk cos ϕk and υk = sin θk sin ϕk; axðukÞ and
ayðυkÞ are the steering vectors of the array, which can be rep-
resented as [30]
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ax ukð Þ = 1, exp −j2πdxuk
λ

� �
,⋯, exp −j2π N − 1ð Þdxuk

λ

� �� �T
,

ay υkð Þ = 1, exp
−j2πdyυk

λ

� �
,⋯, exp

−j2π M − 1ð Þdyυk
λ

� �� �T
:

ð3Þ

More compactly, (2) can be also written as

A =

AxD1 Ay

� 	
AxD2 Ay

� 	
⋮

AxDM Ay

� 	

2666664

3777775, ð4Þ

where Ax = ½axðu1Þ, axðu2Þ,⋯, axðuKÞ� and Ay = ½ayðυ1Þ, ay
ðυ2Þ,⋯, ayðυKÞ�.

Before further describing the data model, we need to
introduce the definition of the tensor outer product and
the parallel factor (PARAFAC) model [22].

Definition 1 (Outer product [19]). The outer product of
three vectors, a ∈ℂM×1, b ∈ℂN×1, and c ∈ℂL×1, denoted by
ða ∘ b ∘ cÞ, is a M ×N × L tensor whose elements are defined
by ða ∘ b ∘ cÞm,n,l = ambncl.

Definition 2 (PARAFAC [19]). The PARAFAC model is also
known as the trilinear decomposition model. A canonical
PARAFAC decomposition of a three-order tensor X ∈
ℂM×N×L can be expressed as

X = 〠
F

f=1
af ∘ bf ∘ cf , ð5Þ

where af , bf , and cf stand for the f -th columns of matrices

A ∈ℂM×F , B ∈ℂN×F , and C ∈ℂL×F . For a 3-way tensor X,
define its sliced matrices Xm ∈ℂN×L, Xn ∈ℂL×M , and Xl ∈

ℂM×N with the element Xmðn,lÞ =Xnðl,mÞ =Xlðm,nÞ =Xm,n,l.

Then, Xm = BDmðAÞCT can be viewed as “slicing” the 3-D
array in a series of “slabs” (2-D arrays) and similarly for
others [21].

Based on the PARAFAC model, the noiseless received
data for URA can be written as [22]

Xm =AxDm Ay

� 	
S: ð6Þ

Due to the symmetry of the PARAFAC model, the other
two slice matrices can be obtained.

Yn = STDn Axð ÞAT
y , ð7Þ

Zl =AyDl ST
� 	

AT
x : ð8Þ

Define X, Y, and Z as the results of the concatenation of
matrices Xm, Yn, and Zl, respectively, and then, the noise-
free received signal matrices X, Y, and Z can be represented
as follows:

X =

X1

X2

⋮

XM

2666664

3777775 =

AxD1 Ay

� 	
AxD2 Ay

� 	
⋮

AxDM Ay

� 	

2666664

3777775S,

Y =

Y1

Y2

⋮

YN

2666664

3777775 =

STD1 Axð Þ
STD2 Axð Þ

⋮

STDN Axð Þ

2666664

3777775AT
y ,

Z =

Z1

Z2

⋮

ZL

2666664

3777775 =

AyD1 ST
� 	

AyD2 ST
� 	

⋮

AyDL ST
� 	

2666664

3777775AT
x :

ð9Þ

Note that in this paper, we assume that there is no
mutual coupling across the sensors. In fact, mutual coupling
will degrade the performance of the algorithms. The recent
researches in the presence of mutual coupling can be found
in [31].

3. The Proposed Algorithm

We show how to perform signal separation and DOA esti-
mation using our proposed algorithm in this section. The
standard PARAFAC suffers from expensive computation
cost due to slow convergence. To handle this problem, we
introduce the propagator method (PM) to accelerate TALS
by providing the initial angle estimates. Then, alternately
update the LS estimates of S, Ay, and Ax until they converge.

Source

…

O

x

y

z

𝜃

𝜑

dy

d x

M

Figure 1: Geometry of URA with N ×M sensors. The circle
represents a signal source at far field, and the solid points
represent the sensors.
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Finally, obtain the separated signals and the corresponding
DOA estimates.

Note that in practice, we need to estimate the number of
sources from the received signal first. In this study, we
assume that the number of sources is known in advance.

3.1. Initialization with Propagator Method. By exploiting the
property of rotational invariance, the propagator method
can achieve the angle estimation with relatively low com-
plexity [32, 33].

First, compute the data covariance matrix R̂ using the
received signal data in (1) and partition it as follows [33]:

R̂ = Ĝ, Ĥ
� �

, ð10Þ

where Ĝ ∈ℂMN×K is the first column to the K-th column of
R̂ and Ĥ ∈ℂMN×ðMN−KÞ stands for the remaining columns.

Then, we can estimate the propagator P by

P̂ = G∧HG
� 	−1G∧HH, ð11Þ

Define [33]

P̂c =
IK
P∧H

" #
=

Ax

AxΦy

⋮

AxΦM−1
y

2666664

3777775A−1
x , ð12Þ

where Φy = diag fexp ð−j2πdyυ1/λÞ,⋯, exp ð−j2πdyυK /λÞg
and IK denotes a K-order identity matrix.

The estimates bυk0 of υk can be obtained by partitioning
the matrix P̂c and eigenvalue decomposition.

After reconstructing the matrix P̂c, another matrix P̂cs
can be obtained by

P̂cs =

Ay

AyΦx

⋮

AyΦN−1
x

2666664

3777775A−1
x , ð13Þ

whereΦx = diag fexp ð−j2πdxu1/λÞ,⋯, exp ð−j2πdxuK /λÞg.
The estimates ûk0 of uk can also be obtained by a
similar method.

3.2. Trilinear Alternating Least Square. Trilinear alternating
least square (TALS) is the most common method for trilin-
ear model decomposition [21, 22]. The standard TALS algo-
rithm utilizes random matrices as the initial load matrices,
which usually converges slowly. In this part, the initial esti-
mates ûk0 and bυk0 provided by PM are used to construct
the matrices A∧x

ð0Þ and A∧y
ð0Þ as initial matrices.

Recall that we assume noise is additive Gaussian noise,
and it is reasonable to employ the least square principle to
estimate S, Ax, and Ay . The estimation of the matrix S can

be conducted by minimizing the following quadratic cost
function [21]:

min
S∧ nð Þ

~X1

~X2

⋮
~XM

2666664

3777775 −

A∧x
n−1ð ÞD1 A∧y

n−1ð Þ

 �

A∧x
n−1ð ÞD2 A∧y

n−1ð Þ

 �
⋮

A∧x
n−1ð ÞDM A∧y

n−1ð Þ

 �

2666666664

3777777775
S∧ nð Þ

��������������

��������������
F

,

ð14Þ

where ~Xm denotes the data matrix Xm with noise, m = 1, 2,
⋯,M; A∧x

ðn−1Þ and A∧y
ðn−1Þ denote the estimates of Ax

and Ay obtained from (n − 1)-th iteration.
Then, the LS estimate of S can be obtained as [21]

S∧ nð Þ =

A∧x
n−1ð ÞD1 A∧y

n−1ð Þ

 �

A∧x
n−1ð ÞD2 A∧y

n−1ð Þ

 �
⋮

A∧x
n−1ð ÞDM A∧y

n−1ð Þ

 �

2666666664

3777777775

+
~X1

~X2

⋮
~XM

2666664

3777775: ð15Þ

The LS fitting for Ay is similar to S.

min
A∧y

nð Þ

~Y1

~Y2

⋮
~YN

2666664

3777775 −

S∧T nð ÞD1 A∧x
n−1ð Þ


 �
S∧T nð ÞD2 A∧x

n−1ð Þ

 �
⋮

S∧T nð ÞDN A∧x
n−1ð Þ


 �

2666666664

3777777775
A∧T nð Þ

y

��������������

��������������
F

,

ð16Þ

where ~Yn denotes the data matrix Yn with noise, n = 1, 2,
⋯,N ; S∧ðnÞ denotes the estimate of S according to (15).

Then, the LS estimate of Ay can be represented as

ÂT nð Þ
y =

S∧T nð ÞD1 A∧x
n−1ð Þ


 �
S∧T nð ÞD2 A∧x

n−1ð Þ

 �
⋮

S∧T nð ÞDN A∧x
n−1ð Þ


 �

2666666664

3777777775

+
~Y1

~Y2

⋮
~YN

2666664

3777775: ð17Þ
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Similarly, the LS fitting for Ax is

min
A∧x

nð Þ

~Z1

~Z2

⋮
~ZL

2666664

3777775 −

A∧y
nð ÞD1 S∧T nð Þ


 �
A∧y

nð ÞD2 S∧T nð Þ

 �
⋮

A∧y
nð ÞDL S∧T nð Þ


 �

2666666664

3777777775
A∧T nð Þ

x

��������������

��������������
F

, ð18Þ

where ~Zl denotes the data matrix Zl with noise, l = 1, 2,⋯, L,
and A∧y

ðnÞ is the estimate of Ây according to (17).
The estimate of Ax can be expressed as

A∧T nð Þ
x =

A∧y
nð ÞD1 S∧T nð Þ


 �
A∧y

nð ÞD2 S∧T nð Þ

 �
⋮

A∧y
nð ÞDL S∧T nð Þ


 �

2666666664

3777777775

+
~Z1

~Z2

⋮
~ZL

2666664

3777775: ð19Þ

According to (15), (17), and (19), we can repeatedly
update the estimates of S, Ay , and Ax until convergence.
Because of the utilization of PM, the proposed algorithm fast
converges to the final estimates of S, Ax, and Ay, noted as Ŝf ,
Âf x, and Âf y . At this point, the task of signal separation is
complete. The last part is to perform DOA estimation.

It is worth noting that the TALS algorithm outlined
above contains only the simplest steps. Some techniques,
like line search [34, 35], can be coupling with the basic
TALS algorithm, which may improve the rate of conver-
gence further. There is no universally accepted most effi-
cient TALS algorithm for all of the problems. We use the
basic implementation of TALS for our issues and compare
the complexity of our method with line search schemes
[34, 35] in Section 5.

3.3. DOA Estimation. First, we normalize the column vectors
of Âf x and Âf y and make the first element of the column to
equal one. Then, compute the phase vector rx by

rx = −angle axkð Þ = 0, 2πdx
λ

,⋯, 2π N − 1ð Þdx
λ

� �T
uk, = Bxuk,

ð20Þ

where axk denotes the k-th column vector of Âf x after
normalization.

According to LS criterion, calculate the estimates of
uk by

ûk = B+
x rx: ð21Þ

In a similar way, we can also get the estimates bυk of
υk by the following expressions:

bυk = B+
y ry, ð22Þ

where ry is another phase vector defined as

ry = −angle ayk
� 	

= 0,
2πdy
λ

,⋯,
2π M − 1ð Þdy

λ

� �T
υk, = Byυk,

ð23Þ

where ayk denotes the k-th column vector of Âf y after
normalization.

Finally, the estimates of θk and ϕk can be calculated by

bθk = arcsin ûk + jbυkj jð Þ, ð24Þ

bϕk = angle ûk + jbυkð Þ, ð25Þ
where j⋅j denotes the modulus of the complex number andbθk and bϕk are the estimates of the elevation and azimuth
angles of the k-th signal.

Note that there are the same permutation effects for the
estimationof Ŝf , Âf x, and Âf y during theTALSdecomposition,

so the final estimates, bθk and bϕk, are automatically paired.

3.4. The Procedure of the Proposed Algorithm. We summa-
rize the major steps of our algorithm as follows:

Step 1. Exploit the propagator method to calculate the initial
estimates ûk0 and bυk0 of uk, υk.
Step 2. According to the PARAFAC models (6)–(8), reshape
the received signal data to acquire the data matrices ~X, ~Y,
and ~Z.

Step 3. Construct the direction matrices Âx and Ây with ûk0
and bυk0 and use them as initial matrices.

Step 4. According to (15), (17), and (19), update the esti-
mates of S, Ay, and Ax alternately from the data matrices
~X, ~Y, and ~Z until convergence.

Step 5. According to (20)-(25), calculate the DOA estimates

of separated signals, bθk and bϕk.

4. Performance Analysis

4.1. Complexity Analysis. Since complex multiplication
requires the most computation time and resources, we
use the time of complex multiplication to evaluate the
complexity of the algorithm. The algorithm proposed in
this paper adopts PM for initial estimation, whose com-
plexity is Oð5K3 + 2K2L + 3K2NðM − 1Þ + 3K2MðN − 1Þ +
ðNM − KÞKLÞ. The complexity of the TALS method is
related to the number of iterations and the complexity of a
single iteration, and the complexity of each iteration is easily
obtained as Oð3K3 + 3NMKL + 2K2ðNM +NL +MLÞÞ. The
number of iterations is affected by many factors such as array
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size, iteration accuracy, and signal type. Define the number of
iterations is T, and the total computational complexity is OðT
ð3K3 + 3NMKL + 2K2ðNM +NL +MLÞÞÞ. Therefore, the
complexity of the proposed method is Oð5K3 + 2K2L + 3K2N
ðM − 1Þ + 3K2MðN − 1Þ + ðNM − KÞKL + Tð3K3 + 3NMKL
+ 2K2ðNM +NL +MLÞÞ. Due to PM initialization, the itera-
tions of the proposed method are greatly reduced compared
with the standard PARAFAC method, which we can see in
the next section.

4.2. Advantages. The advantages of the proposed algorithm
are as follows:

(1) The proposed method has lower computational cost
than the standard PARAFAC method due to intro-
ducing PM

(2) The proposed method outperforms 2D-ESPRIT and
2D-PM in the aspect of angle estimation perfor-
mance for planar array

(3) The proposed method can obtain separated signals
and corresponding DOA estimation without an
additional pairing procedure

5. Simulation Results

In this section, we employ a URA equipped with 8 × 8
sensors to illustrate the improvement of the performance
of 2D DOA estimation and signal separation of the proposed
algorithm.

Suppose there are K = 3 typical modulated signals
impinging on the array simultaneously, which are single-
frequency signal s1ðtÞ = cos ð2π × 5 × 106tÞ, linear frequency
modulated signal s2ðtÞ = cos ðπ × 1012t2 + 2π × 2 × 106tÞ,

and amplitude modulated signal s3ðtÞ = cos ð2π × 3 × 105tÞ
sin ð2π × 5 × 106tÞ. The DOAs of the signals are ðθ1, ϕ1Þ =
ð10°, 15°Þðθ2, ϕ2Þ = ð20°, 25°Þ, and ðθ3, ϕ3Þ = ð30°, 35°Þ, and
the sampling frequency is 100MHz. The noiseless source
signal waveforms are demonstrated in Figure 2.

To assess the performance of DOA estimation, root
mean square error (RMSE) is used,

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
CK

〠
C

c=1
〠
K

k=1
α∧k,c − αkð Þ2

vuut , ð26Þ
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Figure 2: The source signal waveform. (L = 800).
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where C is the total number of Monte-Carlo trials, αk is the
true value of the elevation or azimuth angle of k-th signal,
and bαk,c is the estimate of the angle αk in the c-th trial. For
each simulation, we set C = 1000. The signal to noise ratio
is defined by SNR = 10 log10ðkXk2F/kNk2FÞ, where X is noise-

less received data matrix and N is zero-mean white Gaussian
noise matrix.

Besides, to qualify the performance of signal separation,
the average similar coefficient between the source signal
and the separated signal is adopted,
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Figure 5: RMSE performance of different algorithms versus SNR (L = 800).
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Figure 7: Separated signals by the proposed algorithm (L = 800,
SNR = 5 dB). Red line denotes the separated signal, and black line
denotes the estimation error.
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�� ��2
2
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where sk is the k-th source signal and ŝk,c is the correspond-
ing estimate in the c-th trial.

5.1. Convergence Analysis. In Figure 3, we give the result of
the mean CPU time and mean number of iterations based
on our algorithm and other PARAFAC algorithm, where L
= 800. PARAFAC and PM-PARAFAC denote the standard
PARAFAC without modification and our algorithm, respec-
tively. Besides, we also compare our method with line search
schemes as “LS-PARAFAC” [34] and “ELSCS-PARAFAC”
[35]. Owing to the initialization with PM, the mean CPU
time and the mean number of iterations required are
reduced considerably. The standard PARAFAC requires
153.2 iterations on average, while the proposed algorithm
requires 10.8 iterations, which means that the proposed algo-
rithm is ten times faster than the standardPARAFAC. It canalso
be seen that LS-PARAFAC and ELSCS-PARAFAC are faster
than the standard PARAFAC but slower than our algorithm.

Define the sum of squared residuals SSR =∑N
n=1∑

M
m=1

∑L
l=1½~Xn,m,l −∑K

k=1A∧xðn, kÞA∧yðm, kÞS∧ðk, lÞ�2 and DSSR =
jSSRi − SSRi−1j/SSRi−1, where SSRi is the SSR after the i-th
iteration. Figure 4 shows typical curves of the evolution
of DSSR, where SNR = 10 and L = 800. We can also
observe that the proposed method has faster convergence
in Figure 4.

As mentioned in Section 4, the complexity of the TALS
method is related to many factors, like the scale of the array,
the signal-to-noise ratio, and the types of signals. Although a

slight change in configures can cause a significant difference
in the execution time, the proposed method can always
reduce the computational cost compared with the standard
TALS method.

5.2. Comparison of Performance. To verify the improve-
ment of the proposed algorithm, the proposed method
is compared with 2D-PM, 2D-ESPRIT, and the standard
PARAFAC method. Note that the original 2D-PM and
2D-ESPRIT do not have the capability of signal separa-
tion, so we use their results of DOA estimation to con-
struct the matrix A in (1) and compute the LS estimate
of S by Ŝ =A+ ~X.

As shown in Figure 5, it is evident that our method
has the same angle estimation performance as the stan-
dard PARAFAC method, which surpasses 2D-ESPRIT
and 2D-PM.

Figure 6 shows the performance of signal separation of
different algorithms with different SNR. From Figure 6,
the signal separation performance of our algorithm, stan-
dard PARAFAC method, and 2D-ESPRIT are approxi-
mately the same with different SNR, while the 2D-PM
algorithm has a slightly weaker signal separation perfor-
mance with low SNR. Figure 7 is the separated signal dia-
gram by the proposed algorithm. From Figure 7, it can be
seen that the error between the source signal and the sep-
arated signal is very small, which is consistent with the
high average similarity coefficient observed in Figure 6.

Figure 8 illustrates the DOA estimation performance as a
function of SNR with different numbers of snapshots. It is
seen from Figure 8 that when the number of snapshots L
increases, angle estimation performance can be improved.
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Figure 8: RMSE performance with different values of L versus SNR.
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Figure 9 presents the performance of signal separation as
a function of SNR with different numbers of snapshots. As
seen from Figure 9, the average similar coefficients with dif-
ferent numbers of snapshots are close and increase with
increasing of SNR.

6. Conclusions

In this paper, a joint processing of direction of arrival estima-
tion and signal separation for planar array based on the fast-
PARAFACmodel is proposed. Wemodel the output of planar
array as the PARAFAC model and combine PM with the
TALS method for DOA estimation and signal separation.
The angle estimates by PM are used for the initialization of
the TALS method. Then, the TALS method is used to separate
the source signal and accurately estimate DOA. The proposed
method not only inherits the advantages of the TALS method
in signal separation but also takes advantage of the low com-
plexity of the PM algorithm, which greatly reduces the total
iterations of the standard PARAFAC algorithm. The results
show that, as compared with the conventional DOA estima-
tion approaches such as the 2D-PM and 2D-ESPRIT algo-
rithm, the proposed method has better performance in signal
separation and DOA estimation for planar array.
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