
Research Article
An Efficient Improved OGWSBI Algorithm for Accurate Off-Grid
DOA Estimation of Coherent Signals

Xiangjun Xu ,1 Mingwei Shen ,1 Di Wu,2 and Daiyin Zhu2

1College of Computer and Information Engineering, Hohai University, Nanjing, China
2Key Laboratory of Radar Imaging and Microwave Photonics & Ministry of Education, Nanjing University of Aeronautics
and Astronautics, Nanjing, China

Correspondence should be addressed to Mingwei Shen; smw_hhu1981@163.com

Received 11 March 2021; Revised 6 April 2021; Accepted 28 July 2021; Published 16 September 2021

Academic Editor: Zhipeng Cai

Copyright © 2021 Xiangjun Xu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The performance of the weighted sparse Bayesian inference (OGWSBI) algorithm for off-grid coherent DOA estimation is not
satisfactory due to the inaccurate weighting information. To increase the estimation accuracy and efficiency, an improved
OGWSBI algorithm based on a higher-order off-grid model and unitary transformation for off-grid coherent DOA estimation is
proposed in this paper. Firstly, to reduce the approximate error of the first-order off-grid model, the steering vector is
reformulated by the second-order Taylor expansion. Then, the received data is transformed from complex value to real value
and the coherent signals are decorrelated via utilizing unitary transformation, which can increase the computational efficiency
and restore the rank of the covariance matrix. Finally, in the real field, the steering vector higher-order approximation model
and weighted sparse Bayesian inference are combined together to realize the estimation of DOA. Extensive simulation results
indicate that under the condition of coherent signals and low SNR, the estimation accuracy of the proposed algorithm is about
50% higher than that of the OGWSBI algorithm, and the calculation time is reduced by about 60%.

1. Introduction

Direction-of-arrival (DOA) estimation is a basic problem in
array signal processing and one of the crucial tasks in radar,
sonar, and other fields [1, 2]. During the development of
DOA estimation technology, a host of methods have been
proposed. The classical DOA estimation algorithms based
on subspace technique, such as MUSIC algorithm [3] and
ESPRIT algorithm [4], have been widely applied and
improved. Since these subspace-based algorithms all rely on
accurate representation of the signal subspace and noise sub-
space, their estimation performance will be seriously reduced
in low SNR and coherent signals.

In recent years, the compressed sensing (CS) signal
processing method [5, 6] has captured the growing attention
of scholars thus leading to its wide application in various
fields. In view of the sparsity of the array model, scholars
apply the CS theory to DOA estimation and proposed a sea
of sparsity-driven methods [7–9], the most successful of
which is L1-SVD [10]. Compared with subspace DOA esti-

mation algorithms, the sparse representation methods
exhibit many advantages, e.g., improved robustness to noise,
limited number of snapshots, and correlation of signals [11].
However, these methods employ a fixed sampling grid and
can achieve outstanding performance only if all the true
DOAs are exactly lying on the sampling grid points. Never-
theless, in practice, this assumption is virtually impossible.
Usually, we use an off-grid gap to represent the gap between
the true DOA and its nearest grid point.

To tackle the estimation error caused by an off-grid gap,
recently, scholars have done a lot of research on the off-grid
DOA estimation and proposed a number of improved algo-
rithms [12–15]. The most representative one is the off-grid
sparse Bayesian inference (OGSBI) algorithm proposed by
Yang et al. [16], which achieves high-precision DOA estima-
tion under coarse grid conditions. On the basis of the OGSBI
algorithm, Zhang et al. proposed the weighted sparse Bayes-
ian inference (OGWSBI) algorithm [17]. By utilizing the
hyperprior of the source signals obtained from the weighted
vector, OGWSBI has better performance than OGSBI in
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terms of DOA estimation precision and convergence. How-
ever, the weighted vector is constructed by the MUSIC algo-
rithm. Therefore, on the conditions of coherent signals, the
estimation accuracy of the OGWSBI will be seriously reduced
due to the inaccurate weighting information.

In this paper, we propose an improved algorithm of
OGWSBI that applies to coherent signal cases. The proposed
algorithm is termed as improved off-grid weighted sparse
Bayesian inference (IOGWSBI). We apply a unitary transfor-
mation of the received data to achieve decoherence and
increase computational efficiency. In addition, to further
improve the estimation accuracy, we expand the steering
vector from first-order approximation to second-order
approximation. Simulation results show that compared with
the OGWSBI algorithm, the proposed algorithm has obvious
improvements in accuracy and efficiency.

2. Performance Analysis of OGWSBI

OGWSBI is an improved off-grid DOA estimation algorithm
from a Bayesian perspective based on OGSBI, which has an
outstanding performance in terms of off-grid DOA estima-
tion. Nevertheless, on the one hand, the estimation accuracy
of OGWSBI will be degraded due to the absence of higher-
order Taylor expansion terms of the steering vector. As shown
in Figure 1, the OGWSBI algorithm can obtain higher estima-
tion accuracy under the higher-order approximationmodel of
the steering vector when the incoherent angles are 62.4° and
68.5° , the number of snapshot is 100, and SNR = 20dB.

First-order denotes first-order Taylor expansion of the
steering vector based on OGWSBI, and second-order denotes
second-order Taylor expansion of the steering vector based
on OGWSBI.

On the other hand, since the MUSIC estimator has “high
resolution” and “universal adaptability,” OGWSBI exploits
these abilities of MUSIC to construct a weighted vector to
provide a priori information of spatial distribution for algo-

rithm iteration. Therefore, OGWSBI can improve the estima-
tion accuracy and convergence speed when the source signals
are incoherent. However, when the source signals are coher-
ent, the signal subspace and the noise subspace cannot be
correctly represented, resulting in a rapid decrease in the per-
formance of the MUSIC algorithm, and the weighting coeffi-
cient cannot be represented correctly. Thus, the performance
of the OGWSBI algorithm decreases rapidly. Figure 2 is the
angle profile of the OGWSBI algorithm under incoherent
and coherent conditions when the incident angles are 72.6°

and 94.5°, the number of snapshot is 100, and SNR = 10dB.
As shown in Figure 2, when the signals are incoherent,

OGWSBI can accurately estimate the source angle. How-
ever, when the signals are coherent, the estimation
accuracy decreases rapidly, and the source angle cannot
be effectively estimated.

According to the above performance analysis, the estima-
tion accuracy and convergence speed of the OGWSBI algo-
rithm can be improved effectively through the higher-order
off-grid approximation model and unitary transformation.
Therefore, in what follows next, these two aspects are care-
fully expatiated.

3. Principle of IOGWSBI

3.1. Second-Order Taylor Expansion of the Off-Grid Model.
Suppose that K narrowband far-field sources whose angles
are θ1, θ2,⋯θK impinging on a uniform linear array (ULA)
constituted byM omnidirectional receiving sensors. The sig-
nal wavelength is λ, and the distance between adjacent array
elements is d = λ/2. Assuming there are L snapshots, then
array output data can be expressed as

Y =AS +N, ð1Þ

where Y = ½Yð1Þ,⋯, YðLÞ� ∈ℂM×L is the vector of the
received data, N = ½Nð1Þ,⋯,NðLÞ� ∈ℂM×L is the measure-
ment noise, S ∈ℂN×L, N denotes the grid number, and A
= ½aðθ1Þ,⋯, aðθNÞ� ∈ℂM×N is the overcomplete basis matrix.

In order to tackle the problem of estimation error caused
by an off-grid gap, the off-grid model is introduced for the

DOA estimation. Let bθ = fbθ1,⋯, bθNg be a fixed sampling
set which uniformly covers the entire DOA range ½0, π�. We
define the true direction θk ∈ fθ1,⋯, θKg and the nearest

grid point bθnk
∈ fbθ1,⋯, bθNg. The steering vector aðθKÞ is

approximated by employing linearization:

a θkð Þ ≈ a bθnk� �
+ b bθnk

� �
θk − bθnk� �

+ 0:5 ∗ c bθnk� �
θk − θ∧nk

� �2,
ð2Þ

where bðbθnk
Þ = a’ðbθnk

Þ, cðbθnk
Þ = a′′ðbθnkÞ, the true overcom-

plete basis matrix can be redefined as

Φ βð Þ =A + B diag βð Þ + 0:5 ∗C ∗ diag β∧2

:

� �
, ð3Þ

with A = ½aðbθ1Þ,⋯, aðbθNÞ�, B = ½bðbθ1Þ,⋯, bðbθNÞ�, C = ½c
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Figure 1: OGWSBI estimated incoherent signal angle profile.
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ðbθ1Þ,⋯, cðbθNÞ�, the off-grid sparse representation of (1)
can be redefined as

Y =Φ βð ÞS +N: ð4Þ

Equation (4) is an off-grid DOA estimation model
based on the second-order Taylor expansion of the
steering vector. Through this model, the signal fitting
error is reduced compared with the first-order Taylor
expansion model of the steering vector, thereby improv-
ing the estimation accuracy. This model is suitable for
scenarios with high estimation accuracy, such as cruise
missiles and vehicle positioning.

3.2. Unitary Transformation of the Estimation Model. When
the source signals are coherent, it will cause the rank defi-
ciency of the source covariance matrix and the divergence
of the signal feature vector from the noise subspace. The key
to processing the DOA estimation of coherent signals is to
restore the rank of the covariance to be consistent with the
number of signal sources. This processing method is called
decorrelation. Among them, the unitary transformation of
the estimation model is one of the decorrelation algorithms.

If the matrix A ∈ℂM×N is centrohermitian [18], the
specific expression of the unitary transformation is

Ar =UH
MAUN , ð5Þ

where Ar denotes the real value (RV) matrix, and U is the
unitary matrix. When M is even, we have

UM = 1ffiffiffi
2

p
I jI
J −jJ

" #
, ð6Þ

with the size of I and J being M/2 ×M/2. I is the identity

matrix, J is the switching matrix whose counter-diagonal is
1, and the other elements are 0. When M is odd, we have

UM = 1ffiffiffi
2

p
I 0 jI
0

ffiffiffi
2

p
0

J 0 −jJ

2664
3775: ð7Þ

Here, I and J are matrices that have the dimension of
ðM − 1Þ/2.

According to (5), the unitary transformation takes
advantage of the characteristics of the centrohermitian
matrix to transform, so it is necessary to construct an aug-
mented matrix to transform the received data of the array
into the centrohermitian matrix. If receiving signal Y ∈
ℂM×L, then, the augmented matrix is constructed as

Yaug = Y⋮JMY∗JL½ �, ð8Þ

with Yaug ∈ℂM×2L. The received signal in the real field Y′ can
be obtained by (5).

Then, the corresponding transformation of the overcom-
plete basis matrix can be expressed as

A = UMa bθ1
� �

,UMa bθ2� �
⋯,UMa bθN

� �h i
,

B = UMb bθ1� �
,UMb bθ2� �

⋯,UMb bθN

� �h i
,

C = UMc bθ1� �
,UMc bθ2� �

⋯,UMc bθN

� �h i
:

ð9Þ

If covariance matrix R = E½yaugðtÞyHaugðtÞ�, then covari-
ance matrix Rf b under the forward/backward spatial smooth-
ing algorithm satisfies

Rf b =
1
2 R + JMR∗JMð Þ = 1

2LYaugYaug
H : ð10Þ

According to (5), the received signal Yaug is subjected to

unitary transformation: Y′ =UH
MYaugU2L. Then, the covari-

ance matrix of the received signal after unitary transforma-
tion is expressed as

R′ = 1
2LY

′ Y′
� �H

= 1
2LU

H
MYaugU2L UH

MYaugU2L
� �H

= 1
2LU

H
MYaugU2LU2L

HYaug
HUM = 1

2LU
H
MYaugYaug

HUM:

ð11Þ

According to (10) and (11), the covariance matrix R′ can
be expressed as

R′ =UH
MRf bUM: ð12Þ

From (12) and the forward and backward smoothing
algorithm, it can be seen that the unitary transformation of
the estimation model can be used for decorrelation
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Figure 2: Incoherent and coherent signal angle profile.

3Wireless Communications and Mobile Computing



processing, that is, when the signal sources are coherent sig-
nals, the rank of the covariance matrix is restored to the
number of sources, thus rank ðR′Þ = K .

As shown in Figure 3, two angles of 62° and 82° unequal
power coherent signals are incidents on a uniform linear
array with 8 elements, the distance between the elements is
half a wavelength, and the MUSIC algorithm is used for
DOA estimation. It can be found that without decorrelation
processing, the signal subspace and noise subspace cannot
be correctly represented, resulting in false peaks or underes-
timation. The estimation performance of the MUSIC
algorithm drops rapidly. However, after the unitary transfor-
mation is used for decorrelation processing, with the restora-
tion of the covariance matrix rank, the signal subspace and
the noise subspace are correctly represented, so the MUSIC
algorithm can recover the incident angle of the signal with
high accuracy.

In addition, the unitary transformation can further
improve the computational efficiency of the algorithm.
Therefore, the unitary transformation processing of the esti-
mation model not only can perform decorrelation processing
but can also reduce the calculation time.

3.3. Weighted Sparse Bayesian Formulation. The OGWSBI
algorithm bases on a weighted vector constructed via the
MUSIC algorithm. To reduce the complexity of the
algorithm and obtain the signal subspace Us and the noise
subspaceUe, the algorithm utilizes a singular value decompo-
sition approach, and the column dimension of Y′ and S are
reduced from L to K . The inverted MUSIC space spectrum
formula is expressed as [17]

wn = aH bθn� �
UeUe

Ha bθn

� �
n = 1, 2,⋯N , ð13Þ

where w = ½w1,⋯,wN �T denotes the weighted vector. How-
ever, weighting only requires the “discrimination” between
different signals, that is, where there is a signal, a small
weighting coefficient is used, and where there is no signal, a
large weighting coefficient is used. Therefore, the normaliza-
tion of (13) can be expressed as

w = w
min wð Þ : ð14Þ

Further, we assume that the noise follows a circular
Gaussian distribution with mean zero, variance σ2IM , and
α0 = σ−2 which represent the noise precision. This leads us
to the expression:

p Y′ ∣ S, α0, β
� �

=
YK
t=1

CN y′ tð Þ ∣Φ βð Þs tð Þ, α−10 I
� �

: ð15Þ

Based on the statistical assumption of incident signal S, we
assume it follows a two-stage hierarchical prior with indepen-
dent snapshots denoted as pðS ; ρÞ = Ð

pðS ∣ αÞpðα ; ρÞdα, ρ
> 0, α ∈RN , Λ = diag ðαÞ, and

p S ∣ αð Þ =
YK
t=1

CN s tð Þ ∣ 0,Λð Þ,

p α ; ρð Þ =
YN
n=1

Γ αn ∣ 1,wnρð Þ,
ð16Þ

where α denotes the variance of signal.
According to D.MacKay’s research, the posterior proba-

bility distribution pðS, α0, α, β ∣ Y′Þ cannot be solved directly.
However, another form of posterior probability distribution
of S can be expressed as

p S ∣ Y′, α0, α, β
� �

=
YK
t=1

CN s tð Þ ∣ μ tð Þ, Σð Þ, ð17Þ

with μðtÞ = α0ΣΦHy′ðtÞ, t = 1,⋯, K , Σ = ðα0ΦHΦ +Λ−1Þ−1,
μðtÞ is the signal mean, and Σ is the signal covariance matrix.
The update formula of α0, α can be written as

αn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 + 4wnρ μn

�� ��2
2 + Σnn

� �� �r
− K

� 	
2wnρ

, n = 1, 2,⋯,N ,

α0 =
MK + b − 1

Y′ −Φμ
�� ��2

F
+ α−10 ∑N

n=1γn

� �
+ c

� � ,

ð18Þ

where Y′ = Y′/
ffiffiffiffi
K

p
, μ = μ/

ffiffiffiffi
K

p
, ρ = ρ/K , γn = 1 − α−1n Σnn,

b⟶ 0, c⟶ 0.
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Figure 3: MUSIC estimated coherent signal angle profile.
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According to [16], for β, its estimate maximizes Eflog p
ðY′ ∣ S, α0, βÞpðβÞg and minimizes

where the specific solution of β can be referenced to [19].
Different from the OGSBI algorithm, Yang et al. gave the spe-
cific solution process of the β under the steering vector
higher-order approximate model.

Finally, the termination condition of the iteration is that
kαi+1 − αik2/kαik2 < τ or the maximum number of iterations
imax is reached, where i denotes the number of iterations and
τ is the predefined tolerance parameter. The specific algo-
rithm flow chart is shown in Figure 4.

4. Simulation Results

In order to further analyze the performance of the unitary
transformation and the higher-order approximation of the
steering vector, in the following simulations, we first put
together the unitary transformation and the OGWSBI algo-
rithm to obtain a RV-OGWSBI algorithm. Thereafter, the
performance of the OGSBI, OGWSBI, and RV-OGWSBI
algorithms are compared by simulations. Then, the steering
vector is expanded from the first-order approximation to
the second-order approximation, and the performance of
the IOGWSBI and RV-OGWSBI algorithms is simulated
and analyzed.

In the following simulations, a uniform linear array of
M = 8 sensors with d = λ/2 and 100 Monte Carlo trials are
simulated. The grid interval is set to be r = 20, and two coher-
ent signals are simulated with directions 64.8° and 86.5°. We
initialize α = ð1/MKÞ∑K

t=1jAHðY′Þtj, α0 = 1. We set ρ = 0:01,
c = d = 10−4, τ = 10−3, and the maximum number of the iter-
ations to be 2000.

4.1. Performance Analysis of RV-OGWSBI

4.1.1. DOA Estimation Spatial Spectrum. In the first experi-
ment, the number of snapshots and SNR are fixed at L =
100 and 10dB. The following simulation compares the
DOA estimation spatial spectrum of the three algorithms of
OGSBI, OGWSBI, and RV-OGWSBI.

Figure 5 shows the spatial spectrum comparison of the
OGSBI, OGWSBI, and RV-OGWSBI algorithm proposed
in this paper in a Monte Carlo experiment. From the obser-
vation of Figure 5, we can see that RV-OGWSBI has better
performance than OGSBI and OGWSBI in the case of coher-
ent signals. The estimated angles are given in Table 1.

4.1.2. RMSE of DOA Estimation. The next two experiments
verify the performance improvement of the proposed algo-
rithm (RV-OGWSBI) in terms of the root-mean-square error
(RMSE) of DOA estimation. Figure 6 shows the RMSE of
DOA estimation versus SNR based on 100 snapshots.
Figure 7 shows the RMSE of DOA estimation versus number
of snapshots, with SNR fixed at 10 dB. Based on these two
simulations, it is shown that the RV-OGWSBI can get better
performance than OGWSBI, since the decoherence of signals
as well as the correct weighting cofficient. In addition, it is
also observed that RV-OGWSBI outperforms OGSBI under
the same simulation condition.

4.1.3. Computational Time. Regarding the computational
complexity of the iteration process, OGWSBI and RV-
OGWSBI have a computational complexity of order Oðmax
ðMN2ÞÞ. However, in the case of coherent sources, due to
the accurate weighted prior information, the number of iter-
ations of RV-OGWSBI is much smaller than that of
OGWSBI. In addition, by utilizing a unitary transformation
to obtain a real-value response of the complex-valued matrix,
it increases the computational efficiency. Therefore, the RV-
OGWSBI algorithm is noted to be more efficient than the
OGWSBI algorithm.

Figure 8 shows the total CPU time versus SNR based on
100 snapshots. As can be seen from the figure, the computa-
tional time of all algorithms decreases with the increase of
SNR. Under the same conditions, the computational effi-
ciency of RV-OGWSBI is about 65% higher than that of
OGWSBI. Another observation is that the running time of
RV-OGWSBI is also lower than that of OGSBI.

4.2. Performance Analysis of IOGWSBI. In order to further
improve the estimation accuracy of the algorithm, the appli-
cation scenarios of the algorithm are further expanded. Based
on the proposed algorithm RV-OGWSBI, the first-order
Taylor expansion of the steering vector is extended to the
second-order Taylor expansion, so as to reduce the modeling
error caused by mismatch. The comparative simulation anal-
ysis is shown as follows.

4.2.1. RMSE of DOA Estimation. Figure 9 shows the RMSE of
DOA estimation versus SNR based on 100 snapshots.
Figure 10 shows the RMSE of DOA estimation versus num-
ber of snapshots, with SNR fixed at 10 dB. Based on these

E
1
T
〠
K

t=1
y′ tð Þ − A + B diag βð Þ + 0:5C diag β∧2

:

� �� �
s tð Þ

��� ���2
2

( )

= 1
K
〠
K

t=1
y′ tð Þ − A + B diag βð Þ + 0:5C diag β∧2

:

� �� �
u tð Þ

��� ���2
2

+ Tr A + B diag βð Þ + 0:5C diag β∧2

:

� �� �
Σ A + B diag βð Þ + 0:5C diag β∧2

:

� �� �H

 �

,

ð19Þ
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two simulations, the RMSE of the two algorithms gradually
decreases as the SNR and the number of snapshots increase.
However, the IOGWSBI algorithm improves the off-grid
model and reduces the fitting error of the signal. Therefore,
it is also observed that IOGWSBI has better performance
compared with RV-OGWSBI under the same simulation
condition. In addition, the estimation accuracy of the

Initial hyperparameter 𝛼0, 𝛼, 𝛽

Y

Construct weighted vector 𝜔
by (13), (14)

Input Y, A, B, C

Unitary transformation to Y
by (5), (8)

Calculate mean matrix 𝜇(t) and
covariance matrix 𝛴

Update 𝛼0, 𝛼, 𝛽 by (18), (19)

|| 𝛼i+1  – 𝛼i ||2 / ||𝛼i ||2 < 𝜏
or i = imax

N
i = i+1

Output 𝛽

OGWSBI algorithm
based on second-

order off-grid model

Unitary
transformation real
-value conversion
and decoherence

processing

Add second-order
terms to steering

vector

Figure 4: Flow chart of the proposed algorithm.
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Figure 5: Comparison of the spatial spectrum.

Table 1: Estimated angles.

θ1 θ2
True signals 64.8° 86.5°

OGSBI 64.76° 87°

OGWSBI 65° 87°

RV-OGWSBI 64.77° 86.38°
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IOGWSBI algorithm is about 50% higher than that of the
OGWSBI algorithm.

4.2.2. Computational Time. Figure 11 shows the total CPU
time versus SNR based on 100 snapshots. As can be seen
from Figure 11, when the SNR varies from 0 to 20 dB, the
computational time of the two algorithms decreases continu-
ously with the increase of the SNR. Due to the higher-order
approximation of the steering vector, the computational effi-
ciency of IOGWSBI is lower than that of RV-OGWSBI.
However, compared to OGWSBI, the computational effi-
ciency of IOGWSBI is still increased by 60%. Therefore,

under the condition of coherent sources, the IOGWSBI algo-
rithm maintains an efficient and high-precision off-grid
DOA estimation performance, which is more suitable for
scenarios with higher accuracy requirements.

5. Conclusion

OGWSBI presents enormous advantages in off-grid DOA
estimation when the signals are incoherent when compared
with OGSBI. This is due to OGWSBI weighted vector exploi-
tation which provides priori information of the spatial distri-
bution to improve the efficiency and estimation accuracy of
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the algorithm. However, the problem is that the algorithm
can not estimate coherent signals effectively which thus lead
to a reduction of its practical application. Therefore, our
proposed algorithm devises a unitary transformation mecha-
nism and real value conversion to attain signal decoherence,
improve estimation accuracy, and reduce computational
time. Furthermore, in order to further improve the estimation
accuracy, a higher-order approximationmodel of the steering
vector is constructed. Simulation experiments conducted
verify the accuracy and efficiency of the proposed algorithm.
In addition, the practical application scenarios of theweighted
sparse Bayesian algorithm have been broadened.
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