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Power prediction is important not only for the smooth and economic operation of a combined cycle power plant (CCPP) but also
to avoid technical issues such as power outages. In this work, we propose to utilize machine learning algorithms to predict the
hourly-based electrical power generated by a CCPP. For this, the generated power is considered a function of four fundamental
parameters which are relative humidity, atmospheric pressure, ambient temperature, and exhaust vacuum. The measurements
of these parameters and their yielded output power are used to train and test the machine learning models. The dataset for the
proposed research is gathered over a period of six years and taken from a standard and publicly available machine learning
repository. The utilized machine algorithms are K-nearest neighbors (KNN), gradient-boosted regression tree (GBRT), linear
regression (LR), artificial neural network (ANN), and deep neural network (DNN). We report state-of-the-art performance
where GBRT outperforms not only the utilized algorithms but also all the previous methods on the given CCPP dataset. It
achieves the minimum values of root mean square error (RMSE) of 2.58 and absolute error (AE) of 1.85.

1. Introduction

The accurate prediction of power generated by a plant helps
in reducing various related issues such as power outages,
economic, and technical difficulties [1, 2]. In particular, an
inaccurate prediction results in the rise of per unit cost of
electric power [3] due to the high fuel consumption. Hence,
in this paper, we aim at achieving a precise prediction of
electric power of a base load CCPP on full load conditions
thus ensuring decreased cost of per unit of electric power [4].

The power of thermodynamic power stations can be
calculated using complex mathematical models [5]. These
models involve a vast range of assumptions and parame-
ters to reflect the actual uncertainty of the system. How-
ever, these mathematical models are time consuming and
are based on a deterministic approach [5]. On the other

hand, supervised machine learning (ML) algorithms incor-
porate probabilistic approaches for power prediction
instead of mathematical modeling [6]. With the availability
of data, the prediction done with the ML approach is far
more convenient, scalable, and flexible thus preventing to
model the whole the system. It can also be observed in
other similar approaches, for instance, predicting ground-
water hardness vulnerability [7], estimating soil erosion
susceptibility [8], groundwater level prediction [9], and
groundwater potential prediction [10]. Our proposed ML
algorithms assess historical data of a power plant, operat-
ing under a variety of environmental conditions, in order
to provide optimized power forecasts in less time [11].
However, being probabilistic in nature, the predictions
made by ML algorithms involve errors. Due to this reason,
we propose to evaluate several algorithms for the task of
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power prediction of a CCPP. Furthermore, we also search
for the parameters of these algorithms where they give the
least error on the current dataset.

The generated electric power of a CCPP unexpectedly
fluctuates throughout the whole year due to several parame-
ters, such as ambient temperature, atmospheric pressure,
humidity, and exhaust vacuum [12]. Consequently, these
parameters directly and indirectly influence the output
power [13] of a CCPP. Therefore, power production can
be improved and fuel consumption can be reduced by opti-
mally controlling these parameters [14]. The primary focus
of this research is to analyze the influence of ambient param-
eters on output power prediction rather than controlling the
parameters. For this purpose, these environmental parame-
ters are used to predict the electric power through various
machine learning algorithms [4].

Nonetheless, various probabilistic approaches are previ-
ously used for CCPP power prediction including bagging
and regression ANN [4, 15]. However, their prediction error
is slightly high [16], due to which, this paper proposes the
machine learning algorithms for the prediction of electric
power of CCPP operated on full load using the previously
mentioned four parameters. Gradient-boosted regression
tree (GBRT), linear regression (LR), artificial neural network
(ANN), and K-nearest neighbor (KNN) are used to improve
the power prediction. The individual and cumulative effects
of each parameter are evaluated on output power prediction
using these four machine learning algorithms. These algo-
rithms are compared with the previous research work to find
improved results. The best performance among these four
machine learning models is analyzed by choosing the least
RMSE and AE values.

The rest of the paper is organized as follow: Section 2 out-
lines the related work. Section 3 introduces the proposed meth-
odology, and the results and discussion are briefly discussed in
Section 4. Finally, we conclude the paper in Section 5.

2. Related Work

Pourbeik et al. [17] proposed the basic working of a com-
bined cycle power plant (CCPP). The main parts of the
power plant are gas turbine, steam turbine, heat recovery
steam generator (HRGS), and electric generator. In the gas
turbine, compressed high-pressure air combined with fuel
inside the combustion chamber, which makes hot pressur-
ized air to strike the turbine blades and shaft coupled with
electric generator for power generation. Due to the usage
of gas turbine, the temperature of residual exhaust air is still
high, and thus, it is used as an input of the heat recovery
steam generator (HRSG). After that, hot air converts water
into steam which rotates the steam turbine and power is
generated by using both gas and steam turbines. The overall
efficiency of CCPP is about 55 percent. Tfekci [4] presented
to forecast the hourly based electrical power of a combined
cycle power plant (CCPP) operated on base load for full load
conditions. The benefit of operating in full load is to escalate
the turnover of available hours. Several machine learning
regression algorithms used for increasing the performance
of predicting models and compared with their output results

in the form of RMSE to find the best results. Firstly, it
fetched the best subset that contained all input features. Sec-
ondly, it identified the best regression algorithm among the
other fifteen algorithms. As a result, the bagging algorithm
with the REPtree [4] algorithm to observed the best method
applied to the best subset with a minimum RMSE of 3.787
and absolute error (AE) of 2.818. Yeom and Kwak [18] pre-
sented the Takai-Sugeno-Kang- (TSK-) based extreme learn-
ing machine (ELM) for power estimation. This algorithm is
designed by an efficient approach to generate automatic
fuzzy if then rules. It has mainly two steps. Firstly, the initial
matrix of random partitions generated, and cluster centers
are calculated for random clustering. These centers are used
to decide the nearer part of fuzzy rules. Secondly, least
square estimate (LSE) used to estimating the linear parame-
ters of the TSK fuzzy type. The results depict that the TSK
ELM method showed less RMSE of 3.93 as compared to
ordinary ELM as shown in Table 1.

Lorencin et al. [16] proposed a genetic algorithm (GA)
approach to a multilayer perceptron (MLP) design in order
to predict of the CCPP electrical power output. A heuristic
algorithm to increase the regression performance of MLP
compared to those available in the literature. The GA was
applied by using crossover procedures and processes based
on mutation. These methods are implemented in 50 different
generations for the design of 20 different chromosomes. Using
Bland-Altman (BA) analysis, MLP configurations, which are
devised with GA implementation, are validated. Five hidden
layers of MLP, 25, 80, 65, 75, and 80 nodes using GA, respec-
tively, are built. K-fold cross-validation is performed to assess
average performance of the abovementionedMLP. The RMSE
value obtained with the abovementioned MLP is 4.305, which
is considerably less than the MLP provided in the existing lit-
erature, but still greater than numerous complicated algo-
rithms, such as K star and tree-based algorithms. Bandić
et al. [22] described the random forest algorithm for estimat-
ing the output power of a CCPP at full load. The analysis is
conducted between twofold where in the first fold all the fea-
tures are utilized, whereas in the second fold only three fea-
tures are used. Random forest, random tree, and adaptive
neurofussy inference system (ANFIS) algorithms are used for
power prediction. Performance evaluated by taking RMSE,
absolute error (AE), and correlation of predicted model. After
applying all algorithms, the best result is obtained by the ran-
dom forest. Results acquired on all features showed RMSE of
3.0271MW, where 90 percent of the data used for training
while the remaining 10 percent used for testing. Elfaki and
Ahmed [12] presented the regression artificial neural network
(ANN) to estimate the electric power of the CCPP. A total of
seven experiments are performed on the ANN model. Each
time the performance of the ANN model is different due to
random initial weights and bias. It perceived that the perfor-
mance improved by increasing the number of data records
of available features, and performance oscillates when new fea-
tures are added into the dataset. Consequently, higher number
of training records led to increased performance. After that,
correlations among features and then between features and
output parameters are calculated. Two training functions are
applied to the same datasets and performance is observed. In
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this study, Bayesian regularization showed better performance
than the Levenberg-Marquardt method. Moreover, the output
result is compared with original result, and it is almost the
same with a minimal value of standard deviation. The error
between the original and output results also the least. Şen
et al. [13] described the vital role of input features to estimate
the output power of CCPP. There are four input features used
in CCPP, namely, ambient temperature, pressure, humidity,
and vacuum. One main feature among all others is the ambi-
ent temperature, which causes significant variation in the per-
formance of CCPP. Depending on the environmental
conditions, the temperature also deviates between 8°C to
23°C. The efficiency of CCPP observed at 8°C is 42.7% and
generated power is 227.7MW. On the other hand, at 23°C
temperature, the observed efficiency of 43.3% and generated
power of 197.3MW are recorded. This happens when the inlet
air temperature of the gas turbine increases, which in turn
decreases the amount of oxygen in the air per unit volume.
Due to less amount of oxygen, the burning rate becomes lower
in the combustion chamber. It has a negative influence on the
output power of the gas turbine. Thus, combustion will be
higher when the amount of oxygen is high. Therefore, for
maximum power generation, a proper cooling system should
be installed on the inlet side, which could reduce the temper-
ature of air. Rashid et al. [23] proposed a novel approach of
swarm optimization-based feed-forward neural network that
used to design the predicting model. All input variables of
the plant are used as an input of the feed-forward neural net-
work. Particle swarm optimization (PSO) is a learning algo-
rithm. Performance is analyzed by using mean square error
(MSE). PSO trained feed-forward neural network which
depicted favorable results for power estimation. MSE of the
training dataset is observed to be 1.019e-04; on the other hand,
for the testing dataset, MSE is 0.0055. Burkov [24] presented
an accurate and reliable way of estimating the hourly electrical
power of a combined cycle power plant. For designing, the
local and global predictive models, many algorithms are used
in this paper, such as additive regression, K-means clustering,
feed-forward ANN, KNN, and conventional multivariate
regression. The model’s performance is analyzed by using a
mean relative error (MRE%) and mean absolute error
(MAE). Among all the mentioned algorithms, KNN results
are found more efficient and reliable, with a relative error of
less than 1. Han [25] proposed the computational intelligence
algorithm like tree architecture of fuzzy neural networks that

are used for power prediction. It has a benefit of selecting
the minimum rules by opting neurons as nodes and significant
inputs as leaves. There are two primary optimization method
genetic algorithm (GA) and random signal-based learning
(RSA) for prediction. GA optimized the binary structure of
the networks by opting for the leaves and nodes as binary.
RSA further refines the binary connection in the interval.
70% of data is used for training and 30% used for testing. Per-
formance is accessed by using RMSE. The result of GA for
testing data depicts RMSE of 3.31. Most recently, the so-
called transparent open-box machine learning algorithm is
used by [21] to achieve an RMSE of 2.89% on the dataset.
However, some of the records from the UCI CCPP dataset
are removed to achieve this reduced RMSE.

3. Proposed Methodology for Power
Prediction of Combined Cycle Power Plants
Using Machine Learning (ML) Algorithms

This section explains the methodology of power prediction
using machine learning algorithms. The main steps in this
research are feature extraction of the collected data from
sensors, performance evaluation of the ML algorithms, and
performance parameter calculation. The prime goal is to find
the algorithm that predicts the power of a CCPP with least
error. For this purpose, four ML algorithms are evaluated
which are gradient-boosted regression tree (GBRT), K
-nearest neighbor (KNN), linear regression (LR), and artifi-
cial neural networks (ANN). The prediction is done by tak-
ing four parameters related to the CCPP, which are ambient
inlet air temperature, atmospheric pressure, relative humid-
ity, and vacuum (gas turbine exhaust pressure) are used.
Results are predicted using Rapid Miner [26] which is a
machine learning and data mining software suite. Figure 1
depicts the proposed architecture for the prediction of CCPP
power using ML algorithms.

3.1. Dataset. Table 2 depicts a part of the whole dataset
where the complete dataset comprises of 9568 records gath-
ered from an operational CCPP over a period of 6 years.
This dataset is taken from the UCI machine learning repos-
itory [4, 19].

3.2. Feature Extraction. The features acquired from the sen-
sors data are measurements per unit time, mean, variance,
standard deviation cross-correlation, autocorrelation, maxi-
mum value, and minimum value.

3.2.1. Measurements per Unit Time. The hourly based data
(averaged) is obtained from various sensors installed outside
the plant which record ambient variables every second. The
values of these variables are used without being normalized.

3.2.2. Mean Value. There are four features and the mean
value of each feature is given in the dataset of CCPP. Total
number of samples is 9568.

μ = 1
N

� �
〠
N

i=0
xi, ð1Þ

Table 1: Achieved results in the literature on the current dataset.

Sr. no Algorithm RMSE AE

1 KNN [19](2012) N/A 3.51

2 Bagging with REPTree [4] (2014) 4.23 3.22

3 C-CRF [20] (2016) 3.97 2.97

4 TSK-ELM [18] (2018) 3.93 N/A

5 Regression ANN [12] (2018) 4.32 N/A

6 MLP with GA [16] (2019) 4.30 N/A

7 TOB Matching [21] (2020) 2.89 N/A
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where N represents the total number of samples of one
feature and x is the sensor output at ith sample [27].

3.2.3. Variance. It is used to measure the spread of data
points among themselves and from the mean. Consequently,
it is calculated as the average of the squared distances from
each point to the mean.

3.2.4. Standard Deviation. It finds the spread in the sensors
data around the mean value.

σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
n

i=0
xi − μð Þ2

s
, ð2Þ

where N gives the total number of records, x represents
the current sensor output, and μ shows the mean value of
a particular feature [27]. Table 3 shows the extracted feature
details of the dataset.

3.2.5. Correlation. Correlation is a relationship of one fea-
ture with another feature. Table 4 shows that increase or
decrease in the values of one feature tends to be paired
with relative increment or decrement in the values of
another.

Cor x, yð Þ = Cov x, yð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xð ÞVar yð Þp

 !
: ð3Þ

3.3. Algorithms. In this paper, four ML algorithms are
evaluated for power prediction, which are gradient-
boosted regression tree, K-nearest neighbor, artificial neu-
ral network, and linear regression. A brief explanation of
each algorithm is given in the following.

3.3.1. Linear Regression (LR). Linear regression [28, 29] is
used to predict the dependent variable (CCPP's power in this
case) (y) based on the four independent variable (x1, x2, x3,
and x4). Figure 2 shows the flow chart of the LR algorithm
while its mathematical model [24] is given below.

θ0, θ1 ⋯ θ4 are the five initial weights where they are
assigned values between 0.5 and 2.5:

hθ xð Þ = 〠
m

i=0
θixið Þ, ð4Þ

where hΘðxÞ is the predicted value.

J θ0, θ1ð Þ = 1
2m〠

m

i=0
hθ xi
� �

− yi
� �2, ð5Þ

where JðθÞ is the cost function. It should be minimized in
order to achieve maximum prediction accuracy. yi is the
actual value.

temp θj
� �

= θj − α
∂
∂θj

J θ0, θ1ð Þ, ð6Þ

Sensors data

• Air Temperature
• Ambient pressure
• Relative humidity
• Exhaust vacuum

Results

Root mean square error
(RMSE)

Absolute error
(AE)

Data collection

• 6 years CCPP data

• 9598 data records

Data splitting

•90% training - 10% test

•80% training - 20% test

Trained model

Training data

Test data for
power prediction

Predicted hourly CCPP power

Time series
Sensor data

Figure 1: Proposed architecture of the prediction of CCPP power using ML algorithm.

Table 2: Input and output attributes of CCPP, where the
temperature is measured in celcius, vaccum is measure in cm-Hg,
pressure is measured in millibars, humidity is in percentage, and
the unit of predicted power is megawatts.

Temperature Vacuum Pressure Humidity Predicted power

14.96 41.76 1024.07 73.17 463.26

25.18 62.96 1020.04 59.08 444.37

5.11 39.4 1012.16 92.14 488.56

20.86 57.32 1010.24 76.64 446.48

10.82 37.5 1009.23 96.62 473.9

26.27 59.44 1012.23 58.77 443.67

15.89 43.96 1014.02 75.24 467.35

9.48 44.71 1019.12 66.43 478.42

14.64 45 1021.78 41.25 475.98

11.74 43.56 1015.14 70.72 477.5
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temp θj
� �

= θj −
α

2m〠
m

i=0
hθ xi
� �

− yi
� �2

xij: ð7Þ

Equation (6) shows the gradient descent function where
m gives the total number of sample in the dataset, α denotes
the learning rate whose value ranges between 0 and 0.5. For
every value of J repeat, the abovementioned equation until
convergence is obtained [30].

3.3.2. Gradient-Boosted Regression Tree. In gradient-boosted
regression [31–33] (x1, x2, x3, and x4) are used as input
parameters of CCPP and (y) as the output power. Figure 3
represents the tree structure of gradient-boosted regression.
Learning rate α value is set as 0.1, and numbers of trees
are varied for power prediction. In each tree, the depth is
20. For power prediction of CCPP, the “quantile function”

is used as a distribution function. α is learning rate used to
scale the tree and gradually improve the tree performance;
its value is between 0 and 1. This whole process is continued
until ri approaches to a minimum or stable value [30].

3.3.3. Artificial Neural Network. The ANN [34–36] is found
to be a very useful Algorithm in machine learning [36].
ANN is an information management model that is similar to
the function of biological nerves of the human brain. In
Figure 4, there are 4 input parameters and one output which
is the produced electric power by the CCPP. In this scenario,
the ANN has two hidden layers where each layer comprises
of 100 neurons. The learning rate α is 0.01. The Momentum
value is set as 0.9 where in ANN, the momentum simply adds
a fraction of the previous weight update to the current one.
This prevents local maxima and provides smoothly optimized
results. Following are the steps required to train the ANN.

(1) Initialize the weights arbitrarily:

w = 1
total hidden layers ð8Þ

(2) Calculate the sum of inputs and weights products:

V =wxi + b ð9Þ

(3) Analyze the activation (Sigmoid) function response:

hθ =
1

1 + e−V
ð10Þ

(4) Take the input from the training data of (input,
actual output) and enter it to the neural network.

Table 3: Feature characteristics of CCPP dataset with 9568 data records.

Features Units Type Min Max Mean Variance Std

Temperature Celcius Input 1.81 37.11 19.65 55.54 7.45

Pressure Millibars Input 992.89 1033.30 1013.40 35.27 5.93

Humidity Percent Input 25.56 100 73.30 213.17 14.6

Vacuum cm-Hg Input 25.36 81.56 54.30 161.49 12.70

Power MW Output 420.26 495.76 454.36 291.28 17.06

Table 4: Correlation matrix among input and output features.

Temperature Vacuum Pressure Humidity Output power

Temperature 1 0.84 -0.50 -0.54 -0.98

Vacuum 0.84 1 -0.41 -0.31 -0.87

Pressure -0.50 -0.41 1 -0.10 0.51

Humidity -0.54 -0.31 -0.10 1 0.39

Output power -0.98 -0.87 0.51 0.39 1

Start with
random weights

Hypothesis

Cost / error function

Weights
update

No

Converge

Yes

Minimize
J (θ0, θ1,…)

Put (θ0, θ1,…) in
gradient descent function

Figure 2: Flow chart of linear regression.
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After that, calculate the error:

ei = di − yi ð11Þ

(5) Calculate the weight updates according to the follow-
ing delta rule:

Δwij = αeixi ð12Þ

(6) Adjust the weights as

wij⟵wij oldð Þ + Δwij ð13Þ

(7) Repeat steps 2–5 until the error is in an acceptable
range [34]

3.3.4. K-Nearest Neighbor. KNN [36–39] stores all available
scenarios and predict the numerical value based on a simi-

larity measure such as the Euclidean distance [39] which is
calculated between two points p and q as

Dist =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i

qi − pð Þ2
s

: ð14Þ

For KNN, in the first step, find the K neighbor values
which are near to the new feature whose value is anony-
mous. This nearness is found in terms of Euclidean distance
between new data point and every data point present in the
training set. For optimal results, K must be selected as an
odd number [39]. Figure 5 depicts an example of 3-nearest
neighbors where a new test sample will be labeled according
to the label of the 3 nearest samples having shortest distance
from the new sample [40].

3.4. Performance Metrics. For performance evaluation of the
models, root mean square error (RMSE) and absolute error
(AE) are used.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

1 Y − �Y
� �2
N

 !vuut ,

AE = 1
N
〠
N

1
Y − �Y
�� ��,

ð15Þ

where Y and �Y are the actual and predicted output values
of the CCPP plant, N is the total number of records [41].

4. Result Analysis

This section outlines the detailed results by discussing the
influence of various parameters of the utilized algorithms
on the predicted power. The experiments are performed in
a systematic manner as outlined in the following:

(1) As a first step, we show the effect of feature selection
on the predicted power achieved by each algorithm.
For this, the default parameters of each algorithm
are used as set in the Rapid Miner software [26]. This
is helpful to find the features that have a significant
effect of the generated power. In addition to that, a
reduced features set will also make the rest of the
analysis convenient and efficient by reducing the
time taken in training a machine learning model

(2) The effect of the most crucial parameters of the
respective algorithms on the predicted power is pre-
sented in terms of both RMSE and AE. Furthermore,
for the training and testing of each algorithm, the
dataset is split randomly into 90-10 and 80-20 where
the larger number represents the percentage of data-
set used for training the algorithm while the smaller
is the percentage of the dataset used to test the
trained algorithm. In the subsequent discussion we
use 9 : 1 and 8 : 2 for the respective splits

Start
{Xi,yi}

Initialize model with F (X) /
constant /average of yi

Find residual value
ri = (actual - predicted)

Construct tree based on
{Xi,ri}

Calculate new predicted value
Ŷi = F (x)+α (r1)+… αi (ri)

Tree ≤ tree (i)
Yes

No

Stop
output (Ŷi)

Figure 3: Flow chart of GBRT.
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(3) With the best values of the parameters for each algo-
rithm, the actual and predicted powers for randomly
selected samples from the dataset are shown

(4) Finally, the best results achieved by all the algorithms
in terms of RMSE and AE are discussed along with
the best results reported by the previous works on
the same dataset

4.1. Effect of Features Selection on Predicted Power. In order
to examine the effect of each of the input features, i.e., tem-
perature (TEMP), vacuum (VAC), pressure (PRE), and
humidity (HUM), on the predicted power, the experiments
are performed by making their 15 combinations. Each of
these combinations are then used to train and test each of
the five algorithms for power prediction. Since, the dataset
is randomly split between the training and test sets, the
experiments for each of the combinations are performed
10 times. The average RMSE and AE over all the 10 runs
achieved by each of the algorithms are presented in Table 5.

Columns 12 and 13 of the table are used to rank the fea-
ture combinations from worst to best. Column 12 is the
average of all RMSE values achieved by all the five algo-
rithms for a given feature combination. For instance, the
mean RMSE for HUM (16.53, row 1, column 12) is calcu-
lated as the average of RMSEs achieved by LR (15.66), GBRT
(17.31), KNN (18.19), ANN (15.86), and DNN (15.64). The
average AE for each of the combinations is calculated in a
similar manner. It should be noted that the features combi-
nations are ranked in a descending manner with respect to
their average RMSE and AE (columns 12 and 13). For

instance, the highest RMSE and AE averaged over all the five
algorithms is for humidity (HUM). It is noticeable that the
presence of TEMP has a significant effect on the perfor-
mance of all the algorithms.

Similarly, using the rest of the three features, i.e., HUM,
VAC, and PRE without TEMP give high RMSE and AE
values regardless of the utilized algorithm. The least RMSE
of 2.63 is achieved by GBRT on the combination of
TEMP-VAC-PRE whose mean RMSE and AE values are sec-
ond best (column 12 and 13, second to last row). Hence, it
can safely be concluded that the usage of only these three
features is enough to perform the rest of the analysis. How-
ever, the complete set of the input features achieves the least
RMSE and AE (column 12 and 13, last row) due to which
dropping just a single feature in the name of achieving effi-
ciency is not technically convincing. Therefore, in the subse-
quent experiments, all the four features are used.

4.2. Performance Evaluation of ML Algorithms Based on
their Important Parameters

4.2.1. K-Nearest Neighbor (KNN). The most important
parameter of the K-nearest neighbor algorithm is the value
of K as explained in Section 3.3.4. We empirically select
the values of K from the set of odd number ranging from
3 to 17. For training and testing, the algorithm uses two
phases where in the first phase, we use 90% of the dataset
as training data and 10% as test data. Similarly, in phase
two, 80% is used for training and 20% of the data is used
as the test set. Figure 6 shows the effect of various values
of K for both the settings. The minimum RMSE value of
3.28 is achieved at K = 5 for 9 : 1 split, while at the same of
K , the least RMSE of 3.51 is achieved when the algorithm
evaluated on 8 : 2 split.

Similarly, Figure 6 shows the absolute error (AE) at var-
ious values of K for both the settings of data split. The min-
imum value of AE is found to be 2.374 at K = 3 for 9 : 1,
while at the same value of K , the least AE of 2.49 is achieved
at 8 : 2.

4.2.2. Gradient-Boosted Regression Tree (GBRT). The GBRT
algorithm is used to predict the output power where the
RMSE values are analyzed by varying the number of trees
from 50 to 400, as shown in Figure 7. For 9 : 1 split, the min-
imum RMSE value of 2.581 is achieved for 550 trees. How-
ever, there is no significant drop of RMSE from 2.61
achieved at 200 trees to 2.581 achieved at 550 trees. Hence,

Temperature

Pressure

Humidity

Vacuum

Input layer Hidden layer Output layer

Power
prediction

100100

333

4

222

111

Figure 4: Structure of artificial neural network (ANN) [34].

Distance

New sample

Figure 5: An example of 3-nearest neighbors [40].
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on the current dataset, for 9 : 1 split, 200 trees are advised for
GBRT in order to optimize the usage of computational
resources. Furthermore, for 8 : 2 split, the RMSE values are

higher than those of 9 : 1. Figure 7 shows a similar trend in
the values of AE for various values of trees and for both
the settings of dataset split. The least AE for 9 : 1 split is

Table 5: Effect of feature selection on RMSE and AE for all the algorithms. The table is horizontally partitioned to emphasize on the
combinations with and without the temperature (TEMP).

Features combinations
LR GBRT KNN ANN DNN

Mean RMSE and AE for
combinations

RMSE AE RMSE AE RMSE AE RMSE AE RMSE AE
RMSE-

FEATURES
AE-

FEATURES

HUM 15.66 13.15 17.31 13.95 18.19 14.72 15.86 13.69 15.64 13.15 16.53 13.73

PRE 14.39 11.67 15.41 11.62 16.5 12.93 15.55 13.24 14.15 11.42 15.2 12.18

PRE-HUM 13.12 10.63 13.72 10.4 14.19 1.01 13.92 11.7 12.82 10.21 13.55 8.79

VAC 8.43 6.56 5.72 3.99 6.16 4.41 7.78 6.05 7.64 6.02 7.15 5.41

VAC-HUM 8.15 6.39 4.63 3.39 7.48 5.5 7.55 5.93 7.36 5.76 7.03 5.39

VAC-PRE 7.85 6.14 4.45 3.11 6.05 4.24 7.1 5.49 6.93 5.29 6.48 4.85

VAC-PRE-HUM 7.52 5.85 4.15 2.86 5.75 4.08 6.72 5.21 6.35 4.79 6.1 4.56

TEMP 5.07 4.11 5.1 4.03 5.51 4.41 4.89 3.91 4.7 3.75 5.05 4.04

TEMP-PRE 5.01 4.09 4.9 3.71 5.15 3.93 4.67 3.77 4.53 3.63 4.85 3.83

TEMP-HUM 4.43 3.55 4.45 3.5 4.69 3.74 4.39 3.43 4.12 3.25 4.42 3.49

TEMP-PRE-HUM 4.43 3.55 4.01 3.01 4.2 3.12 4.31 3.39 4.06 3.16 4.2 3.25

TEMP-VAC 4.7 3.77 2.9 2.22 4.12 3.09 4.41 3.52 4.2 3.35 4.07 3.19

TEMP-VAC-HUM 4.27 3.4 2.82 2.11 3.79 2.86 4.19 3.33 3.84 3.01 3.78 2.94

TEMP-VAC-PRE 4.63 3.7 2.63 1.96 3.57 2.53 4.16 3.32 3.88 2.96 3.77 2.89

TEMP-VAC-PRE-
HUM

4.26 3.4 2.64 1.93 3.32 2.37 4.16 3.34 3.61 2.82 3.6 2.77
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Figure 6: RMSE and AE values achieved by KNN for various values of K on both 9 : 1 and 8 : 2 splits
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Figure 7: RMSE and AE values achieved by GBRT for various number of trees on both 9 : 1 and 8 : 2 splits.

4.027

4.168

4.022
4.035

4.047
4.063 4.067 4.058

4.042
4.061

4.088 4.088 4.088
4.102 4.098 4.097 4.09 4.085

4

4.1

4.2

50 100 150 200 250 300 350 400 450

RM
SE

Number of training cycles

ANN AE

ANN RMSE

Number of training cycles

3.214

3.345

3.198 3.191 3.191 3.202 3.199 3.187
3.17

3.234
3.256 3.251 3.24 3.238 3.233 3.234 3.227 3.222

3.1

3.15

3.2

3.25

3.3

3.35

50 100 150 200 250 300 350 400 450

A
E

9:1 data split
8:2 data split

Figure 8: RMSE and AE values achieved by ANN on various number of training cycles for both 9 : 1 and 8 : 2 splits.
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achieved at 550 trees; however, after 250 trees, the drop is
not significant and hence recommended for efficient usage
of computational resources on the current dataset. Similarly,
the AE values for 8 : 2 split are higher than those of 9 : 1 split.

4.2.3. Artificial Neural Network (ANN). The ANN algorithm
of Rapid Miner is used for power prediction on the current
dataset. We evaluate the number of training cycles while
keeping all other parameters to the default values such as
those of the hidden layers and the number of activation
functions per layer. Figure 8 shows the achieved RMSE
values for various numbers of training cycles for both 9 : 1
and 8 : 2 splits. The least RMSE value of 4.022 is achieved
when the training is performed for 150 cycles with 9 : 1 data-
set split. For the 8 : 2 split, the minimum RMSE of 4.085 is
achieved at 550 training cycles; however the second best
RMSE of 4.088 is achieved on 100 training cycles which is
comparably acceptable than 4.085 achieved at 550cycles.

In Figure 8, the value of AE are depicted for various
training cycles for power prediction. The minimum value
of absolute error (AE) at 9 : 1 is observed as 3.15 at 500 train-
ing cycles. Using 8 : 2 data split, the minimum AE is 3.222 at
500 training cycles.

4.2.4. Deep Neural Network (DNN). We also use the deep
neural network algorithm provided in the Rapid Miner suite
which is a variant of the neural network. The default param-
eters are used while the number of training epochs are varied
to observe the effect on the achieved RMSE and AE. Conse-

quently, for 9 : 1 data split, the least RMSE of 3.441 is
achieved on 450 epochs. However, the second best RMSE
of 3.445 is obtained on 300 epochs and hence recommended
for on the current dataset. For the data split of 8 : 2, all the
RMSE values are higher than 9 : 1 split. Nontheless, the least
achieved RMSE of 3.592 for 8 : 2 split is achieved on 500
epochs. The values of RMSE for both the data splits on var-
ious epochs are shown in Figure 9.
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Figure 9: RMSE and AE values achieved by DNN on various training Epochs for both 9 : 1 and 8 : 2 splits.

Table 6: Comparison of results achieved by each of the algorithms
on both the dataset splits. GBRT outperforms the rest of the
algorithms by achieving the least RMSE and AE such that the
number of trees is 100.

(a)

RMSE
Data splits KNN GBRT NN DL LR

Training data 90% 3.323 2.641 4.168 3.616 4.263

Training data 80% 3.534 2.851 4.088 3.823 4.347

(b)

AE
KNN GBRT NN DL LR

Training data 90% 2.374 1.931 3.345 2.826 3.402

Training data 80% 2.499 2.052 3.256 2.928 3.469
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Similarly, in Figure 9, AE is shown for both the settings
of data split and all the empirically selected values of epochs.
The minimum value of AE, using 9 : 1 split, is found to be
2.625 on 450 training epochs. At 8 : 2 split, the minimum
AE value is 2.694 achieved on 500 training epochs. To sum-
marize, we show a comparison of all the five algorithms in
Table 6 in terms of RMSE and AE for both the settings of
data split. The results achieved by each of the algorithms
on the current dataset are shown where the value of K in
KNN is 3, the number of trees for GBRT is 100, number of
training cycles for ANN is 100, and the number of training
epochs for DNN is also 100. It can clearly be observed that
GBRT outperforms the rest of the algorithms by achieving
the least RMSE and AE on the current dataset.

4.2.5. Comparison of Actual and Predicted Powers for each
ML Algorithm. In order to demonstrate the prediction results
achieved by each algorithm, we randomly select 20 samples
from the test dataset such that the actual power value is known
for each of them. We then provide the input features of these
20 samples to the trained models of each of the algorithms for

power prediction. It should be noted that the models are
trained with the best parameters of the respective algorithms
as found in the previous section. The actual power values
along with the predicted values achieved by each algorithm
are shown in Figure 10. The samples where the absolute differ-
ence of the actual and predicted power values are greater than
2MW are highlighted and shown for each algorithm. It can be
observed that GBRT achieves power predictions closer to the
actual values and the samples where the difference is greater
than 2MW are comparatively less than other algorithms.
Hence, it can be concluded that GBRT gives better power pre-
dictions than other algorithms.

4.2.6. Performance Comparison with the Literature. Table 7
shows our results in comparison on the previous methods
proposed for CCPP power prediction on the same dataset.
We clearly achieve superior performance from all those
methods using GBRT where the number of tree is 450 and
the size of the training set is 90% of the whole dataset. The
achieved RMSE and AE values are 2.58 and 3.51, respec-
tively. Similarly, our achieved RMSE and AE values on
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Figure 10: Actual vs. predicted power for 20 random samples of the dataset using five ML algorithms.
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KNN and DNN are also better than those methods. Hence,
at the moment, we can convincingly say that on the current
dataset our results are the best.

5. Conclusion and Future Work

We perform power prediction of a CCPP on hourly basis
using machine learning paradigm. In this regard, we use a
publicly available dataset that is collected over a period of
6 years such that the power plant is operating on full load.
The dataset measures output power as a function of four
input parameters which are temperature, humidity, pressure,
and vacuum. We evaluate five machine learning algorithms,
namely, K-Nearest Neighbors, Linear Regression, Gradient-
boosted Regression Tree, Artificial Neural Network, and
Deep Neural Network of the Rapid Miner software suite.
Keeping the default parameters, we evaluate the most crucial
parameters of each algorithm to find the best of them that
achieves minimum RMSE and AE. We also evaluate the
effect of training set size and number of features on the
achieved results. Consequently, GBRT outperforms the rest
of the algorithm by achieving the least RMSE and AE with
450 trees while training on 90% of the dataset. Interestingly,
it also exceeds in performance from all the previously pro-
posed methods on the same datasetby achieving the least
RMSE and AE.

In future, the output power can be controlled by chang-
ing the value of the parameters. Moreover, by incorporating
these parameters as well as increasing the number of input
parameters, the power prediction of different types of power
plants can be done by using more advance machine learning
algorithms.

Data Availability

The data that support the findings of this study are all briefly
introduced, and all information is available in the
manuscript.
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