
Research Article
Fast Policy Interpretation and Dynamic Conflict Resolution for
Blockchain-Based IoT System

Yaozheng Fang , Zhaolong Jian , Zongming Jin , Xueshuo Xie , Ye Lu , and Tao Li

College of Computer Science, Nankai University, China

Correspondence should be addressed to Xueshuo Xie; xueshuoxie@mail.nankai.edu.cn

Received 9 March 2021; Revised 29 April 2021; Accepted 28 June 2021; Published 9 July 2021

Academic Editor: Chi-Hua Chen

Copyright © 2021 Yaozheng Fang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Although the blockchain-based Internet of Things (BC-IoT) has been applied in many fields, it still faces many security attacks due
to lacking policy-based security management (PbSM). Previous PbSM is usually time-consuming, which is difficult to integrate into
BC-IoT directly. The high-latency policy conflict resolving in traditional PbSM cannot meet the BC-IoT’s low-latency requirement.
Moreover, the conflict resolution rate is low as the PbSM usually neglects the runtime information. Therefore, it is challenging that
achieving an efficient PbSM for BC-IoT and overcomes both time and resource consumption. To address the problem, we propose a
novel PbSM for BC-IoT named FPICR to realize fast policy interpretation and dynamic conflict resolution efficiently. We first
present policy templates based on system log to interpret policy in high speed in BC-IoT. Benefiting from matching the
characteristics of the system processing, FPICR supports interpreting a policy into the smart contract directly without complex
content parsing. We then propose a weighted directed policy graph (WDPG) to evaluate the importance of the deployed policies
more accurately. To improve the policy conflict resolution rate, we implement the resolution algorithm through reconstructing
the WDPG. Taking the traits of these properties, FPICR thus can also remove the redundant data to compress storage space by
the WDPG. Experiment results highlight that FPICR outperforms the baseline in all measure metrics. Especially, compared with
the state-of-the-art method, the speedup of interpretation in FPICR is about up to 2:1 × . The conflict resolution rate in FPICR
can be improved by 6.2% on average and achieve up to 96.1%.

1. Introduction

Internet of Things (IoT) has been widely used in many fields
such as smart cities [1], industrial control [2, 3], online gam-
ing [4], and distributed computing system [5, 6]. However,
massive IoT devices and networks face various real threats
[7], in consequence, the security of IoT is becoming more
and more important. Blockchain has many advantages such
as decentralization, trustworthiness, anonymity, and immu-
tability. Owing to these merits, blockchain has become a
major solution to a lot of domains, such as supply chain,
healthcare, and transportation [8]. The success stories in
these domains inspire researchers in IoT to apply blockchain
by using smart contract to address the problems of single-
point failure and data security in IoT system. Therefore,
blockchain-based IoT system (BC-IoT) has been a research
hotspot [9, 10], and a proposal called smart contract-based

access control [11] falls into this category and already dem-
onstrates the benefits of adopting blockchain for IoT system.

Although the new features of BC-IoT can help protect
against the security risks to a certain extent, BC-IoT still faces
some real attacks such as DDoS, on-off attack, and Parity
Wallet attack [12–15], due to lacking policy-based security
management (or short, PbSM). In fact, the attacks can be
defended by deploying security policies in policy-based secu-
rity management (PbSM). Unfortunately, traditional PbSM
methods are so time-consuming and resource-intensive.
These shortcomings make it difficult to integrate these PbSM
methods into the BC-IoT system directly and freely. For
example, traditional PbSM methods resolve policy conflict
through comparing static priorities, the time-consuming
process thus cannot meet the requirements of low latency
in the BC-IoT system. And neglecting run-time information
in the traditional PbSM methods leads to the rate of policy

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 9968743, 14 pages
https://doi.org/10.1155/2021/9968743

https://orcid.org/0000-0003-3244-0812
https://orcid.org/0000-0003-1543-3207
https://orcid.org/0000-0003-1286-6306
https://orcid.org/0000-0002-8245-8415
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0000-0003-1697-8022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9968743

conflict resolution degradation. Besides, the policies in PbSM
also bring high storage cost, which is not a reasonable choice
for the resource-constrained devices in BC-IoT. Therefore,
traditional PbSM methods are inefficient for BC-IoT.

It is challenging to achieve an effective and efficient PbSM
in the BC-IoT system. First, it is difficult to make full use of
policy language expression to interpret policy quickly and
accurately, according to the characteristic of smart contract.
It should be noted that reducing interpretation latency by
removing complex analysis should meanwhile ensure the
accuracy of interpretation. Second, it is troublesome to find
out the crucial information from larger-scale storage in BC-
IoT system than other common systems. Because each node
in BC-IoT executes the smart contract when it is invoked
and generates additional data, it is hard for PbSM to take
advantage of such system runtime information to resolve
policy conflict dynamically. Third, it is also difficult to iden-
tify which is the redundant part in the policy storage space,
since the dependencies on each other among various smart
contracts are so complex, and removing the redundancy
should not negatively impact on the conflict resolution algo-
rithm. To meet the abovementioned challenges, in this paper,
we propose a novel PbSM method named FPICR, which
focuses on realizing fast policy interpretation and high con-
flict resolution rate with lower storage cost in the BC-IoT sys-
tem. First, we present a new policy interpretation method
through utilizing system logs to describe system states. This
interpretation meshes with the running characteristics of
smart contract, policies thus in FPICR can be interpreted in
a short time. Second, we propose a dynamic policy conflict
resolution algorithm to improve resolution rate, which can
exploit runtime state information such as policy weight, to
provide more accurate decisions rather than the presetting.
Third, we design a weighted directed graph structure that
can help determine the importance of the dependency
between each policy and facilitate to remove the redundancy
conveniently. Our innovations and major contributions in
FPICR are highlighted as follows:

(i) We present a novel policy interpretation method
based on system log. This method can interpret a
policy into a smart contract through simple notation
parsing rather than complex semantic and lexical
analysis. The speedup of the log-based interpretation
achieving is about up to 2:1 × compared with
XACML-based interpretation

(ii) We propose a weighted decision algorithm to resolve
policy conflict by utilizing the policy execution times
and other important information of system runtime.
Such an algorithm can evaluate the importance of
the security policies in fine-grained. This algorithm
facilitates FPICR to increase the rate of conflict reso-
lution up to 96:1%, which is higher than the tradi-
tional method by 6:2%

(iii) We design a weighted directed policy graph to store
the dependencies among security policies. This pol-
icy graph can remove the redundant parts to reduce
the ledger size in BC-IoT. Compared with the tradi-

tional method, the degradation of storage can be
achieved by about 17%

2. Background and Motivation

In this section, we introduce the minimal background about
policy-based security management (PbSM) in BC-IoT,
followed by the discussion on the related work. Lastly, we
conclude the challenges of achieving effective and efficient
PbSM in BC-IoT.

2.1. Traditional PbSM. Traditional PbSM methods are ineffi-
cient for BC-IoT. In particular, the reasons in detail are as fol-
lows. They usually consist of four parts, policy
administration point (PAP), policy decision point (PDP),
policy information point (PIP), and policy enforcement
point (PEP). PAP is responsible to describe policies by vari-
ous high-level policy languages. Therefore, in order to make
sense in the BC-IoT system, a policy should be first inter-
preted from high-level policy language to the codes by fol-
lowing the rules of smart contract. This process often
suffers from high latency due to complex syntax and lexical
analysis. Massive policies may cause policy conflict, and
PDP provides the algorithms to solve policy conflicts. PIP
can also help tune policy by retrieving system runtime-
related information. However, the resolution results of exist-
ing algorithms in PbSM do not always work, since most of
these algorithms utilize the limited static priority and policy
comparison, they cannot make full use of the rich informa-
tion of system runtime to address the conflicts dynamically.
Once there are lots of conflicts to be resolved, they have to
be handled manually. Consequently, traditional PbSM
methods are so time-consuming and heavy labor works. Fur-
thermore, because PIP stores the whole security policies
which can generate lots of redundant smart contracts on
blockchain, traditional PbSM will bring high storage cost if
be integrated into the BC-IoT system directly. This heavy
burden on storage will limit the ability of BC-IoT devices
greatly. PEP is responsible for the execution and enforcement
of policies. The first three time-consuming and resource-
intensive parts in traditional PbSM also leads to the low effi-
ciency of PEP, since PEP has to wait for the results of the
preprocessing.

2.2. Related Work. FPICR is closely related to three aspects:
policy interpretation, conflict resolution, and the smart con-
tract as explained as follows.

The typical policy interpretation focuses on two main
scenarios: network management and security management
according to the application field’s requirements [16]. Varad-
harajan et al. [17] propose a policy expression language based
on the routing syntax, in order to realize the network pack-
ages routing. Lara and Ramamurthy propose an understand-
able language in OpenSec [18] which could realize the
automatic reaction to the network events. Moreover, an
expressive language is presented by Gember et al. in [19] to
control data traffic flow, so as to protect the privacy informa-
tion of devices. In the papers [20], a standard firewall rule is
given to create a blacklist. Furthermore, in the paper [21], the

2 Wireless Communications and Mobile Computing

authors describe the security policy relying on the BNF nota-
tion. Besides, the access control rule languages are mostly
based on the XACML [20], P3P [22], and so on. However,
these methods for policy interpretation usually utilize a
time-consuming two-step process to realize interpreting pol-
icies from the high-level expression to the executable
program.

Resolving policy conflict in traditional methods often
take advantage of the most commonly used priority mech-
anism [23, 24], and this method is applied to deal with
conflicts in many current architectures [25–29]. However,
rationally assign priority to each policy is almost impossi-
ble. It is even challenging for a well-trained administrator
in this field. There are also other methods for conflict res-
olution, such as several rules combining algorithms to sup-
port conflict resolution strategies in [30], the conflict
matrix in [31], the policy conflict analysis for QoS in
[32], and the context-aware conflict resolution in [33].
Moreover, there are several conflict resolution strategies
provided in XACML (i.e., permit-overrides and deny-
unless-permit). Nevertheless, differing from FPICR, these
works cannot make use of system running information
to resolve the conflicts dynamically.

Defending attacks in blockchain system by smart con-
tracts is an effective method [34]. Zhang et al. [11] propose
a smart contract-based framework to implement distributed
access control, but they neglect using the possible dependen-
cies between policies. To manage the endpoint devices in IoT
system, Novo [35] presents a decentralized security manage-
ment technique, which can utilize devices by defining opera-
tions in smart contracts. Besides, Alphand et al. [36] design
IoT chain as the security management architecture, which
allows the access token to be stored in the smart contract to
ensure data correctness. In order to protect private data,
Kosba et al. [37] provide a framework for building public
and private smart contracts. They focus on the smart
contract-based access control implementation, but lead to
undesirable results due to lacking policy enforcement, espe-
cially conflict resolution.

2.3. Challenges and Goals. The PbSM needs to be more effec-
tive and efficient to meet the requirements of real applica-
tions. Improving the performance of PbSM can be realized
through fast interpretation and resolving policy conflicts effi-
ciently. We identify three fundamental challenges and our
goals as follows.

First, it is difficult to realize fast policy interpretation
without missing the accuracy of interpretation results. Policy
interpretation needs complex and time-consuming analysis,
removing the analysis may miss important information.
Besides, policy interpretation in BC-IoT should consider
the characteristics of smart contract (e.g., GAS).

Second, resolving policy conflicts according to system
runtime information is nearly impossible in BC-IoT as dis-
covering the crucial information from large-scale data in
BC-IoT is challenging. BC-IoT has larger-scale data than
the traditional systems because BC-IoT generates additional
data related to blockchain and smart contract (e.g., blocks
and encryption information). As a result, resolving policy

conflicts dynamically is harder than the traditional PbSM
systems.

Third, security policies have complex dependencies,
which is important to the resolution of policy conflicts. It
needs a larger storage space to store the dependency informa-
tion, so the policy storage space in BC-IoT has many redun-
dant parts. It is difficult to remove the redundant parts and
the policy dependencies without negatively impacting on
the resolution of policy conflicts.

3. System Overview

FPICR is designed to achieve fast interpretation and dynamic
policy conflict resolution for general BC-IoT. FPICR consists
of two key components (see Figure 1), log-based policy inter-
pretation and policy graph reconstruction. The overall pro-
cess in Figure 1 is as follows. When the BC-IoT system
requires adding or updating policies to protect against
attacks, FPICR first performs the policy conflict detection
and resolution module to determine whether this new policy
can be deployed on the system or not. A policy that can be
deployed will be interpreted into a policy smart contract (or
short, PSC) by a certain log-based template. The templates
are obtained through analyzing the relationship between
items among the system logs. Once the policy has been
deployed, it will be inserted into the weighted directed graph
to record the corresponding dependencies on each other pol-
icies. This policy graph then can be reconstructed and
updated to generate a new policy graph contract (PGC). A
PGC is responsible for saving the property data of PSC and
provides parameters such as weight, the number of access,
or other information that the conflict resolution algorithm
desires to utilize.

4. Fast Interpretation

In this section, we introduce how to realize fast interpretation
with system logs and templates in our FPICR. We first design
the template structures by summarizing and simplifying the
policy description which is based on the system logs. We then
interpret the policy into the smart contract by the converting
process relying on module matching. These processes are
lower latency and less resource-consuming.

4.1. System Log. System log can reflect the system state and
record various special events [38], so there are many impor-
tant data that can be used in fine-grained for preventing secu-
rity threats. Moreover, in general, there are also lots of regular
formal logic in the system logs. Specifically, there are various
kinds of modes, and we select the three typical modes in the
system log to help us explain the details as follows:

Single implies that to define a threat can only use one
entry of the log. For example, rebooting a device can generate
a record in log, such as system status: locked, which repre-
sents the system is deadlocked currently.

4.1.1. Iteration. The iteration stream is a workflow of a cer-
tain process, thus, the iteration can also be used as the basis
for judging whether the system has appeared exceptions or
not.

3Wireless Communications and Mobile Computing

4.1.2. Loop. Loop refers to log entries repeating according to a
certain regulation. When a loop appears in system log, the
systemmay suffer from attacking or exceptions. For instance,
a large repeat state of TCP retransmission means flooding
attack happened. Based on the above explanations, in conse-
quence, these observations facilitate us to skillfully combine
the characteristic between system log and smart contract to
speed up the interpretation.

4.2. Policy Template. In FPICR, an innovation is that we
design templates based on system logs to describe various
policies accurately. The policy template consists of four fields,
MODE, CONDITION, ACTION, and CONF, respectively.
Policy template has referenced the ECA (event-condition-
action) paradigm [39]. A common template can be defined
as follows:

LbP≔ MODE½ � T ,N½ � $SRC, ACT½ � CONF½ �: ð1Þ

MODE refers to the type of relationships among the log
entries. There are several alternative options such as single,
iteration, and loop. T represents specific entries of the system
log. N is denoted as the times that T appears. SRC represents
the resource in the specific entries. ACT is the action on the
corresponding resource SRC. CONF specifies some actions
which are conflicted with the expecting action described in
the field ACT. Hence, CONF is the basis for conflict detec-
tion. We give an instance to explain how the policy template
works. A policy, such as when the number of TCP retrans-
mission from the same host greater than 10, blocking this
host, can be denoted as follows:

LbPeg ≔ LOOP½ � ′$SRCTCP Trans′, 10
h i

,

$SRC,′BLOCKING′
h i

′OPEN′
h i

:

ð2Þ

Moreover, FPICR supports complex policies owing to

enabling the fields in the template to be nested. Because of
meshing with the characteristics of smart contract, the inter-
pretation based on policy template can be program-friendly,
machine-readable, and time-saving.

We have summarized some common security threats
and attacks in Table 1, and we can observe that the
designed log-based templates have strong policy descrip-
tive capacity.

4.3. Converting into Smart Contract. Policy interpretation in
FPICR refers to convert the log-based policy into an execut-
able smart contract that is PSC. As shown in Figure 2, a
PSC is usually composed of three parts as follows:

(i) Metadata is implemented as an extensible structure
that can record some important property informa-
tion of the policy. For instance, metadata may
include the policy mode, the unique identification
number, the timestamp, the policy generator, and
the other parameters

(ii) Interceptor is used for gathering and checking the
system log. Interceptor also has several templates,
which are corresponding with the policy template,
to facilitate fast converting for the policy interpre-
tation. Once the gathered information in the
interceptor matches with the parameter in CON-
DITION field of the policy, the corresponding
actions described in ACT of the policy will be
triggered

(iii) Actuator can activate specific actions when corre-
sponding conditions fulfill the requirement. It
should be noted that a common defense program
usually only gives the abstract expressions rather
than implementation for an action set. The reason
is that devices in IoT system are actually vendor-
dependent, thus, we have to call the hardware device
APIs to instantiate an actuator

SingleSingle or SwitchSwitch or LoopLoop

Conflict detection

Log relationship

PSC

Smart contract templates

Graph reconstruction

E A
0

Policy graph

R

A

A

E
25

106
17

A A
9

10
Updated policy graph

0R

A

A

E

25
106

17

A A
9

10
A

Interpretation

Generate

Update

PGC
Indexing

PGC PGC

PSC

PSC PSC PSC

PSC PSC

Blockchain networkNew policy
Policy

Log series
Action

Event

Policy parsing

Policy

Log series
Action

Event

Policy

Log series
Action

Event

Conflicts resolved manually

Have conflict?

conflicted policy weight >
graph average weight?

Y

N

N

Y

Weight comparison

Upload

Figure 1: The FPICR architecture.

4 Wireless Communications and Mobile Computing

Mode selector in Figure 2 is used for choosing a
desirable interceptor template in terms of the MODE
parameters of the policy template. The other information
in the policy will be filled into the selected template
directly.

5. Conflict Resolution

To resolve policy conflict fast, we present weighted directed
policy graph (WDPG) to organize deployed policies. WDPG
is to store the dependencies between each policy and record
the system runtime information. These dependencies and
information can facilitate WDPG reconstruction to realize
policy conflict resolution in FPICR.

5.1. Weight Directed Policy Graph. A WDPG consists of one
or more policies. A policy in accordance with the ECA para-
digm can be defined as follows:

P = V , E, φh i,
V = vevent, vactionf g,
E = econditionf g,
φ = vevent, vactionh i:

8>>>>><
>>>>>:

ð3Þ

P is a policy that consists of two vertexes and an edge. V
represents the set of vertexes. E is the set of events. vevent and
vaction represent an event and an action, respectively. econdition
is the edge between the vertex vevent and the vertex vaction (see

Table 1: Common BC-IoT security attacks and the countermeasures based on log-based policy.

Security threats Mode Condition Action

Node capture attack Single ′$num inConsecutive exception′, t
h i

′SELF′, ′ISOLATION′
h i

Sleep deprivation Single ′$dev TIME SLEEPDEL′, 1
h i

′$dev′, ′REBOOT TIME SLEEP′
h i

Flooding attack Loop ′$SRCTCP Transmission′, 10
h i

′$SRC′, ′BLOCKING′
h i

Blackhole attack Iteration ′$addrData recv, Data recv′, 100
h i

′$addr′, ′BLOCKING′
h i

Malicious injection Single ′$str inserted abnormally′, 1
h i

′$str′, ′DELETE′
h i

Homing attack Loop ′$SRCConnectReq′, 20
h i

′$addr′, ′BLOCKING′
h i

Eavesdropping Iteration ′$Addr EaringChel′, 2
h i

′$addr′, ′SHUTDOWN′
h i

Password attack Loop ′$Usr PwLogin′, 5
h i

′$USR′, ′NOLOGIN′
h i

Hardware bugs Single ′$bugid occured in $usr′
h i

′$usr′, ′EXIT′
h i

Mode selector
(SINGLE)

// iteration
function interceptor(t, T){
for(i = 0; i < T.count ;i++){

if(all t[i] is T[i]){

}

// metadata
structure metadata{

mode=SINGLE;
generator=ADMIN;
times=1574842743;

}

// SINGLE interceptor
function interceptor(t,
TCPdiscon){

if(t is TCPdiscon){

}
}

// actuator
void actuator(addr){

API.act(RECON);
}

// loop
function interceptor(t, N){
nonce = 0;

if(t is T){nonce++;}

}

// SINGLE
function interceptor(t, T){
if(t is T){

}
}

···

Police

[$addr TCPdiscon, 1]
[$addr, RECON]

[SINGLE]

[BLOCK]

Policy smart contractInterceptor templates

while nonce N do:

actuator(T. src);

actuator(T. src);

actuator(T. src);

actuator(addr);

Figure 2: The policy interpretation based on template.

5Wireless Communications and Mobile Computing

Figure 3). φ represents to trigger an action execution when
econdition meets requirement.

The weight of an edge in our WDPG can be defined in
terms of the rich system runtime information. In other
words, the meaning of the weight can be different in dif-
ferent applications, for example, the policy’s priority, the
execution time, the resource consumption, and so on.
Because the execution frequency of action can reveal the
importance of a policy, we denote weight by frequency
in this paper. In system runtime, the frequency can be
denoted as the called times of the corresponding smart
contract which reflects the system state. Once a policy
smart contract is involved, the relevant weight can be
increased. The high frequency implies the policy contrib-
utes to a BC-IoT system relative greatly than other poli-
cies. Thus, WDPG can utilize the system runtime data to
evaluate the importance of a policy as shown in
Figure 4. The corresponding policies in the WDPG are
listed in detail in the bottom of Figure 4. In the case,
the policy P1 If NETFLOW is greater than 50, enable
the firewall, with weight number 40, represents that this
policy has been executed 40 times. As a result, the policy
P1 is more important than the policy P2 which weight is
35. When the weight changes with the dynamic system
runtime data, the importance of a policy to a BC-IoT sys-
tem may be changed together. Therefore, WDPG is more
dynamic and flexible than the other methods by presetting
static priority for policies.

5.2. Graph Reconstruction and Updating. Policy conflict
refers that there are inconsistent actions on the same
resource. The conflicts are caused by multiple rules or rule
instances. Policy conflict can make the state of system
uncertain.

Because there are lots of dependencies between poli-
cies, it is challenging to process policy conflicts. In partic-
ular, adding or updating policy may generate redundant
data, and deleting or deactivating a policy may cause the
associated policies to be affected negatively. For such a dif-
ficult problem, we can address it through reconstructing
WDPG, which is in charge of storing and updating the
relationship between policies. In fact, the key process to
solve policy conflicts is just reconstructing and updating
the corresponding WDPG. We take an example to explain
WDPG reconstruction flow (see Figure 5). We utilize an
adjacent matrix as the storage structure of WDPG. We
assume that when a new policy described by a pair of ver-
tex and edge will be added into the existing WDPG, there
is a conflict between policy A and F. A should be replaced
by following certain requirement. Thus, we will delete A
and add the new policy F into the WDPG. To do this,
we first delete the row and column data related to A in
the adjacent matrix which stores the previous WDPG.

Then, we delete C, the successor vertex of A. At last, we
add F into the WDPG and update the weight value in
the corresponding adjacent matrix.

An observation to evaluate the importance of a policy in
WDPG is to calculate the in degree and the out degree of each
vertex, respectively. A high out degree means a relative strong
dependence. We can define the concept named impact factor
(IF). It is a value reflecting the influence and importance of
policy. IF can be obtained through calculating the sum of in
and out degrees. Besides, we can utilize the average of all pol-
icy impact factor (or short, AvgIF) as a threshold to deter-
mine whether the new conflict policy can be updated
directly or not.

Therefore, we propose a policy conflict resolution algo-
rithm by comparing a policy IF with AvgIF (see Algo-
rithm 1); this algorithm helps simplify the conflict
processing. For example, while a conflicted policy’s IF is
smaller than AvgIF, the policy will be replaced by the
new one due to being not important enough for the whole
BC-IoT.

Algorithm 1: Policy conflict resolution.Input: Policy
graph G, new policy P

Output: BOOL

function CheckG, P

N ⟵ countðG:nodeÞ;
TotalIF ⟵ 0;

fori in Ndo

forj in Ndo

TotalIF ⟵G½i�½j� + TotalIF;

end for

end for

AvgIF ⟵ TotalIF/N ;

W ⟵G½i�½j�; ; //Assume that i, j is conflicted
policy.

ifW > AvgIFthen

sendPolicy(P); //send P to application for
resolving conflict.

return FALSE;

else

GraphReconstruction(P);

return TRUE;

end if

end function

function GraphReconstructionP

fork in Ndo

ifG½i�½k� ==1 then

Event Action
Condition

Figure 3: The security policy in policy graph.

6 Wireless Communications and Mobile Computing

deleteColumn(G, k); //delete the k column
from G.

deleteRow(G,j);

end if

end for

if deleteColumn(G, i) == TRUE then

G½i�½j�⟵ 0; //initial weight is zero.

node½i�, node½j�⟵ P:event, P:action;

edge½j�⟵ P:condition; //store the informa-
tion of P.

return TRUE;

else

return FALSE;

end if

end function

6. Evaluation

FPICR is evaluated on enforcing policies over mobile devices
in a real Ethereum platform to demonstrate the performance
FPICR achieved. We have made a fair comparison with one
of the state-of-the-art solutions, XACML framework. The
objectives of the evaluation are threefold: (1) testing the per-
formance improvement of FPICR over traditional method;
(2) studying the impact of FPICR on the blockchain; (3)

TCP ERRNetflow > 50

Zigbee ERR
⁎

Firewall
enable

Shut
down

Reboot
Deny
access

40
15 35

15

P1
P2

P3
P4

P1 40

35

15

15

V1

Firewall
enable Shutdown

Deny
accessReboot

Reboot

⁎

⁎

V2 E Meaning Weight

P2

P3

P4

Firewall
enable

Netflow
> 50

If Netflow > 50,
enable the firewall.

If device reboots,
then deny any access.

If TCP error is occured,
then shutdown the device.

If Zigbee error occurs,
then reboot the device.

TCP
error

Zigbee
error

⁎

0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0

Figure 4: An example of policy graph.

0 0 0
R

B D

A
CA

CF

C

Assume that
(CA,A) is conflict
with (CF,F).

R

B D

A C
CC

CB
CA

C
B

CD

R B D

CD

CC

Add the new policy
(CF,F).

CB CD
R B D

CB CD

F

ωA
ωB ωC

A Action A

CA
Condition A

ωA
ωB ωC

ωD

R F
CF

The new policy (CF,F)

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

ωD

ωB
ωC

0 0 0 0

0 0 0

0 0 0

0 0ωD

ωB
ωD

ωF

0 0 0

0

0 0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

Figure 5: The policy graph reconstruction.

7Wireless Communications and Mobile Computing

providing insights of FPICR’s outperforming its peers in BC-
IoT.

6.1. Experimental Setup

6.1.1. System Prototype. We build a real fully-equipped BC-
IoT rather than a simulated testbed. We deploy five develop-
ment boards Jetson-TK1s as endpoint devices, and three
more servers as the security and mining server. All of these
devices are under the same LAN, as shown in Figure 6.
Besides, the miner server is set to be full mode, while others
are set to be light mode. The security policies are enforced
by sending transactions to Ethereum. The blockchain used
is Go-ethereum (version 1.7), and the version of EVM we
used is 1.7.0. The Ethereum official recommended evaluation
framework Truffle is employed to evaluate the performance
of blockchain. The hardware configurations in detail are
shown in Table 2.

6.1.2. Data Set. We use a policy repository including 10,000
log-based policies and 10,000 XACML-based policies. The

logs utilized are HDFS data collected from the real running
system for policy template construction. The priority of each
log-based policy and each XACML-based policy is assigned
one random of the five values ranged from 1 to 5. The weight
of each policy is initialized by random values. The data and
code used to support the findings of this study have been
deposited in the FPICR repository (https://github.com/
nkicsl/FPICR).

6.1.3. Measure Metrics. The PbSM in the BC-IoT mainly
requires low latency to handle the security problems in
real-time, high throughput to process more access requests
in a short time, and a small ledger size to save the blockchain
storage space. Therefore, to evaluate the performance
improvement, we choose the following metrics: (1) the over-
all performance of FPICR measured by latency, we test the
time consumption of policy conflict resolution in FPICR;
(2) we then care about the resolution rate and the breakdown
latency spent in conflict detection, resolution, and interpreta-
tion phases, the throughput for interpreting policies; (3) to
further understand FPICR making full use of blockchain,

Input: Policy graph G, new policy P
Output: BOOL

function CheckG, P
N ⟵ countðG:nodeÞ;
TotalIF ⟵ 0;
for i in N do

for j in N do
TotalIF⟵G½i�½j� + TotalIF;

end for
end for
AvgIF⟵ TotalIF/N ;
W ⟵G½i�½j�; ; //Assume that i, j is conflicted policy.
if W > AvgIF then

sendPolicy(P); //send P to application for resolving conflict.
return FALSE;

else
GraphReconstruction(P);
return TRUE;

end if
end function
function GraphReconstructionP

for k in N do
if G½i�½k� ==1 then

deleteColumn(G, k); //delete the k column from G.
deleteRow(G,j);

end if
end for
if deleteColumn(G, i) == TRUE then

G½i�½j�⟵ 0; //initial weight is zero.
node½i�, node½j�⟵ P:event, P:action;
edge½j�⟵ P:condition; //store the information of P.
return TRUE;

else
return FALSE;

end if
end function

Algorithm 1. Policy conflict resolution.

8 Wireless Communications and Mobile Computing

https://github.com/nkicsl/FPICR
https://github.com/nkicsl/FPICR

we also evaluate the resource utilization and overhead of
blockchain by ledger size and CPU’s overhead; (4) at last,
we give a breakdown analysis to explain why FPICR outper-
forms other PbSM methods in BC-IoT.

6.2. FPICR Overall Performance. To evaluate the overall per-
formance, we select 5,000 policies with 1,500 conflicted ones
in the policy repository. So there are 30% of the security con-
flicted policies in each group. In the experiment, policies
number size varies from 500 to 5000 with an increment of
five hundred. As a comparison, the control group or blank
blockchain group is set to facilitate evaluating the communi-
cation overhead of blockchain. Experimental results have
been summarized as shown in Figure 7. Compared with
XACML, FPICR can achieve latency reduction by 14.1%,
even maximum by 18.73%. Therefore, FPICR in the BC-
IoT system is outstanding, and FPICR can decrease time con-
sumption from policy interpretation and conflict resolution.

6.3. Resolution Rate

6.3.1. Conflict Resolution Performance. The resolution rate in
this paper refers to the percentage of the resolved conflict
policies to the total conflict policies. One of the FPICR goals
is resolving more policy conflicts automatically according to
the system runtime information. High conflict resolution rate
means FPICR can resolve more policy conflicts without man-
ual decision. We select 2,000 policies with 400 existing con-
flict policies to evaluate the resolution rate of FPICR. We

perform a comparison between FPICR and the baseline
XACML by resolving policy conflicts for 500 times. The
results of the resolution rate of two methods achieved are
shown in Figure 8. We can observe that FPICR achieves a
better policy conflict resolution rate by 91.6%-95.8%, reach-
ing 93.7% on average, while the comparison one is only about
87.6%. It should be noted that though the resolution rate is
higher than the comparison by 6%+ on average, FPICR pro-
cessing speed can also be improved by up to 2.1×.

6.3.2. Latency. Next, we shift our attention to the time con-
sumption FPICR takes to process the same number of policy
conflicts. In this case, we measure the breakdown latency
spent on the conflict resolution and interpretation phase. In
our evaluation, conflict resolution consists of three steps
roughly:

Endpoint devices
(light mode)

Security servers (full mode)

Transaction confirmation
servers (full mode)

Ethereum
platform
(LAN)

Mining

Sending
transactions

Data storage

Configuration
Administrator

Endpoint devices
(light mode)

Security servers (full mode)

Transaction confirmation
servers (full mode)

Ethereum
platform
(LAN)

Mining

Sending
transactions

Data storage

Configuration
Administrator

Figure 6: The prototype of FPICR.

Table 2: The hardware configuration in our experiment.

Endpoint Security

Hardware Jetson-TK1 DELL tower

CPU ARMv7 Xeon E5-2630

Memory 1.9GB 96,566MB

OS Ubuntu 14.04 Ubuntu 16.04

1000 4000 5000
Number of policies

500

Ti
m

e (
m

s)

XACML
FPICR
Blank blockchain

2000 3000

1000

1500

2000

3000

4000

2500

3500

Figure 7: The overall performance of FPICR and XACML.

9Wireless Communications and Mobile Computing

(i) Proposal. We proposed transactions to the target
systems, and each transaction contains one security
log-based policy

(ii) Handling. The uploaded policy can be detected
whether there exist conflicts or not by a specific
smart contract. Once the conflict has been detected,
it will be resolved and theWDPG reconstruction will
be performed. The new WDPG will be also updated
into the PGC. If the conflict cannot be handled by
FPICR or the comparison presetting static priority,
this conflict will be handled manually

(iii) Submit Manually. The result for the unresolved con-
flict will be submitted to the BC-IoT system again.
This process can lead to lots of writing operations
in the blockchain network, thus, this step is very
time-consuming. The worse is that too many con-
flicts will lead to a large of labor works

Compared with the static priority-based resolution by
15%, 30%, and 45% conflicted policies among the total poli-
cies, FPICR can efficiently reduce the latency by 17.44%,
23.93%, and 34.47%, respectively. Because FPICR facilitates
solving conflicts by smart contract executing automatically,
policy enforcement can regain more time. In contrast,
unsolved conflict policy which requires to be handled manu-
ally will introduce many labor works; as a result, the time
consumption will be greatly increased.

6.4. Interpretation Performance. FPICR aims to achieve fast
policy interpretation without missing the accuracy of inter-
pretation results. In this part, we interpret the proposed pol-
icy and the typical policy and compare the latency between
them. There are two steps for the interpretation phase, the
first is policy conversion, and the second is contract deploy-
ment. The conversion refers to converting policy into a smart
contract. The deployment is to deploy smart contract on the
blockchain. We prepare several groups of policies from 300
to 5000 to perform a comparison between FPICR and the
baseline XACML. The first metric we are concerned about
is conversion latency. We do not care about the deployment
time, because it costs the same time in both FPICR and base-
line. The comparison results in Figure 9(a) show that com-

pared with XACML, FPICR can speed up by about 2:1 ×
with the obvious advantages. FPICR can fast convert a single
log-based policy by only using 0.051ms on average.

6.4.1. Throughput. Throughput as another metric to evaluate
the performance of interpretation.We have also made a com-
parison between FPICR and XACML to test the number of
interpreting policies into smart contract per period. In
Figure 9(b), the comparison results about throughput indi-
cate that FPICR can convert and deploy more policies than
XACML within 60 seconds. FPICR outperforms the baseline
by 1% to 10% along with time. In addition, to further
improve throughput, we make full use of a single machine
to explore the limitation. We utilize several processes to work
together and the results are shown in Figure 9(c). With the
increment of the number of processes, the experimental
BC-IoT system can enforce dozens of policies per second.
When the number of processes increases from 15 to 30, the
curve of enforced policy number tends to be gentle. However,
when the number is over 30, the curve has begun to drop and
flatten fast.

6.5. Blockchain Overhead. We care about the blockchain
overhead of BC-IoT to measure the performance of WDPG.
The experiments are performed from two aspects: storage
reduction and CPU overhead. The reduction of blockchain
storage space (or ledger size) is achieved by identifying and
cutting the redundant parts brought by the policy
dependencies.

6.5.1. Ledger Size. The main index of storage resources about
blockchain is ledger size. In our evaluation, ledger size refers
to the size of the Ethereum ledger file in runtime. In
Figure 10, we can see that the ledger size of blockchain
increases with the number of policies growing. Storage struc-
ture with WDPG can effectively reduce the size by 16.86% at
most than the others.

6.5.2. CPU Overhead. At last, we also have evaluated the CPU
overhead during the policy interpretation period. In light of
the results in Figure 11, FPICR can interpret and upload
300 policies from 34 s to 110 s. During this period, the peak
point of 8.89% represents the CPU occupied by the convert-
ing function and the process only lasts for a short time, there-
after, the CPU overhead decreases down to around 3.5%. By
contrast, if the ordinary data is uploaded to the blockchain
instead of deploying a contract, the overhead of the CPU
fluctuates around 4.7%. Obviously, FPICR can effectively
reduce CPU overhead during BC-IoT system running. The
comparison also indicates that FPICR can be efficient enough
to be installed in other real BC-IoT.

6.6. Performance Analysis. This subsection gives a breakdown
analysis to explain why FPICR can achieve performance
improvement than other PbSM methods in the BC-IoT
system.

Because of system runtime information recording in our
designed WDPG, FPICR can make full use of the real situa-
tion rather than speculation or presetting. The high-
resolution rate of FPICR is also benefited from the design,

0.96

0.91

0.84

0.90

FPICR

XACML

0.96

0.94

0.92

0.90

Re
so

lu
tio

n
ra

tio

0.88

0.86

0.84
0 50 100 150 200

Number of trials
250 300

Figure 8: The resolution rate.

10 Wireless Communications and Mobile Computing

and more conflicts can be solved automatically, thus, FPICR
can decrease heavy labor works. We can find results in the
submit manually step in Figure 12, transactions by process-
ing manually will be reduced relative greatly in FPICR.

As shown in Figure 9(a), the low latency metric results
benefit from the log-based policy templates. The designed
templates can match the smart contract template exactly.
This facilitates that FPICR can fill the templates directly,
instead of complex parsing. FPICR, in consequence, can only
use one step to complete policy interpretation; otherwise, the

other methods usually need to take two steps to process. They
often require to extract the variables and notations (i.e., “+”,
‘’) from the labels and then execute the parsing module. And
the parsing is very time-consumption as shown in
Figure 9(a). Therefore, our FPICR can meet the requirement
of low latency and fast interpretation process very well. These
advantages help FPICR achieve high throughput without

1000 2000 3000 4000 5000
Number of policies

100

0

200

300

400

500

600

La
te

nc
y

(m
s)

FPICR
XACML

136

40
78 104

145
186220

339

442
515

(a) The latency in FPICR and XACML interpretation

10 20 40 50 60
Time (s)

0

20
0

40
60
80

100
120
140

En
fo

rc
ed

 p
ol

ic
y

nu
m

be
r

FPICR
XACML

30

(b) The throughput of FPICR and XACML

10 50 60
Number of the processes in FPICR

0

10 K

En
fo

rc
ed

 p
ol

ic
y

nu
m

be
r

5.03 K

10.74 K

4030200

8 K

6 K

4 K

2 K

100 s
200 s

(c) Throughput varies for 100 and 200 seconds

Figure 9: The performance of interpretation in prototype.

2000 4000 6000 8000 10000
Number of policies

0 0.05 0.03 0.03 0.04 0.07 0.09
0.12

0.16 0.17
0.142000

4000

6000

8000

10000

Le
dg

er
 si

ze
 (K

B)

0.0

0.1

0.2

0.3

0.4

0.5

C
om

pr
es

s r
at

io

Without policy graph
With policy graph

Figure 10: The ledger size with policy graph.

9.01%

8

6

CP
U

 o
ve

rh
ea

d
(%

)

4

2

0
0 25 50 75 100 125

Time (s)

Data transaction
FPICR
XACML

150 175 200 225

8.89%

4.7% 185 s
191 s3.5%

Figure 11: The CPU overhead during interpretation.

11Wireless Communications and Mobile Computing

blocking almost. The reason about storage reduction is that
WDPG facilitates policies to only store a simple string rather
than redundant uselessly information on blockchain. There-
fore, the source data can be reduced and then the ledger size
can be decreased. We also find that when the number of pol-
icies is increasing large, the compression rate of ledger size
can be even further higher, as shown in Figure 10.

For CPU overhead, FPICR CPU resource is only occu-
pied by 4% to 5%, compared with XACML. Because of
removing the complex syntactic analysis, FPICR does not
need additional computation and can reduce the consump-
tion of CPU. This characteristic enables FPICR to be suitable
for computational resource-limited IoT end devices.

7. Conclusion

In this paper, we present FPICR for fast interpretation and
dynamic conflict resolution so as to implement effective
and efficient PbSM in the BC-IoT system. We propose a
new log-based policy interpretation method by extracting
parameters directly only in one step. In addition, we present
a weighted directed policy graph to organize the relationship

for thousands of deployed policies. To solve policy conflict
dynamically, the resolution algorithm is proposed based on
WDPG reconstruction. FPICR can overcome the limitations
of the BC-IoT system and meet the requirements of low
latency and compression storage space. Evaluation on FPICR
and the comparison results have proved that FPICR can
reduce policy interpretation latency and the ledger size of
blockchain. Therefore, FPICR can actually realize efficient
and economic PbSM for blockchain-based IoT system.

Data Availability

The data and code used to support the findings of this study
have been deposited in the FPICR repository (https://github
.com/nkicsl/FPICR).

Conflicts of Interest

On behalf of all authors, the corresponding author states that
there is no conflict of interest.

200 450 700 950 1200 2000

Number of policies

0

100

200

300

400

500

600

700

La
te

nc
y

(in
 m

s)

XACML
FPICR

Proposal & handling

FPICR
XACML

Submit manually

1450 1700

(a) CR = 0:15

0

100

200

300

400

500

600

700

La
te

nc
y

(in
 m

s)

200 450 700 950 1200 2000

Number of policies
1450 1700

XACML
FPICR

Proposal & handling

FPICR
XACML

Submit manually

(b) CR = 0:3

0

100

200

300

400

500

600

700

La
te

nc
y

(in
 m

s)

200 450 700 950 1200 2000

Number of policies
1450 1700

XACML
FPICR

Proposal & handling

FPICR
XACML

Submit manually

(c) CR = 0:45

Figure 12: The performance of conflict resolution in FPICR.

12 Wireless Communications and Mobile Computing

https://github.com/nkicsl/FPICR
https://github.com/nkicsl/FPICR

Acknowledgments

This work is partially supported by the National Key
Research and Development Program of China
(2018YFB2100300), Zhejiang Lab (2021KF0AB04), the Nat-
ural Science Foundation of Tianjin (20JCZDJC00610 and
19JCQNJC00600), and the National Natural Science Foun-
dation (62002175 and 61872200).

References

[1] R. Petrolo, V. Loscri, and N. Mitton, “Towards a smart city
based on cloud of things,” in Proceedings of the 2014 ACM
international workshop on Wireless and mobile technologies
for smart cities, pp. 61–66, Philadelphia, Pennsylvania, USA,
2014.

[2] Y. He, J. Guo, L. Liu et al., “Iot for the power industry: recent
advances and future directions with pavatar,” in Proceedings
of the 16th ACM Conference on Embedded Networked Sensor
Systems, SenSys’18, pp. 353-354, New York, NY, USA, 2018.

[3] L. Zhao and X. Dong, “An industrial internet of things feature
selection method based on potential entropy evaluation cri-
teria,” IEEE Access, vol. 6, pp. 4608–4617, 2018.

[4] X. Han, L. Wang, S. Xu, D. Zhao, and G. Liu, “Recognizing
roles of online illegal gambling participants: an ensemble
learning approach,” Computers & Security, vol. 87, p. 101588,
2019.

[5] A. A. Seif and N. El-Saber, “Scalable distributed-computing iot
applied architecture with semantic interoperable gateway,” in
Proceedings of the 3rd Africa and Middle East Conference on
Software Engineering, AMECSE ‘17, pp. 43-44, New York,
NY, USA, 2017.

[6] Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, and Y. Sun, “A
survey of networking applications applying the software
defined networking concept based on machine learning,” IEEE
Access, vol. 7, pp. 95397–95417, 2019.

[7] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab,
L. Maglaras, and H. Janicke, “Blockchain technologies for the
internet of things: research issues and challenges,” IEEE Inter-
net of Things Journal, vol. 6, no. 2, pp. 2188–2204, 2019.

[8] Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. Leung, “Block-
chain-based decentralized trust management in vehicular net-
works,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1495–
1505, 2019.

[9] V. Scoca, R. B. Uriarte, and R. De Nicola, “Smart contract
negotiation in cloud computing,” in 2017 IEEE 10th Interna-
tional Conference on Cloud Computing (CLOUD), pp. 592–
599, Honololu, HI, USA, 2017.

[10] Z. Shae and J. Tsai, “Ai blockchain platform for trusting news,”
in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pp. 1610–1619, Dallas, TX,
USA, 2019.

[11] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart
contract-based access control for the internet of things,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 1594–1605, 2019.

[12] G. Liang, S. R. Weller, F. Luo, J. Zhao, and Z. Y. Dong, “Dis-
tributed blockchain-based data protection framework for
modern power systems against cyber attacks,” IEEE Transac-
tions on Smart Grid, vol. 10, no. 3, pp. 3162–3173, 2019.

[13] F. Moradi, A. Sedaghatbaf, S. A. Asadollah, A. Causevic, and
M. Sirjani, “On-off attack on a blockchain-based iot system,”

in 2019 24th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), pp. 1768–1773,
Zaragoza, Spain, 2019.

[14] Y. Wang, S. K. Lahiri, S. Chen et al., “Formal verification of
workflow policies for smart contracts in azure blockchain,”
in Working Conference on Verified Software: Theories, Tools,
and Experiments, pp. 87–106, Springer, 2019.

[15] S. Zhu, W. Li, H. Li, L. Tian, G. Luo, and Z. Cai, “Coin hopping
attack in blockchain-based iot,” IEEE Internet of Things Jour-
nal, vol. 6, no. 3, pp. 4614–4626, 2019.

[16] W. Han and C. Lei, “A survey on policy languages in network
and security management,” Computer Networks, vol. 56, no. 1,
pp. 477–489, 2012.

[17] V. Varadharajan, K. Karmakar, U. Tupakula, andM. Hitchens,
“A policy-based security architecture for software-defined net-
works,” IEEE Transactions on Information Forensics and Secu-
rity, vol. 14, no. 4, pp. 897–912, 2019.

[18] A. Lara and B. Ramamurthy, “Opensec: policy-based security
using software-defined networking,” IEEE Transactions on
Network and Service Management, vol. 13, no. 1, pp. 30–42,
2016.

[19] A. Gember, C. Dragga, and A. Akella, “Ecos: leveraging soft-
waredefined networks to support mobile application offload-
ing,” in 2012 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), pp. 199–
210, Austin, TX, USA, 2012.

[20] A. A. Jabal, M. Davari, E. Bertino et al., “Methods and tools for
policy analysis,” ACM Computing Surveys (CSUR), vol. 51,
no. 6, pp. 1–35, 2019.

[21] Z. B. Celik, G. Tan, and P. D. McDaniel, “Iotguard: dynamic
enforcement of security and safety policy in commodity iot,”
in Proceedings 2019 Network and Distributed System Security
Symposium, San Diego, California, USA, 2019.

[22] L. F. Cranor, “P3p: making privacy policies more useful,” IEEE
Security & Privacy, vol. 1, no. 6, pp. 50–55, 2003.

[23] J. D. Moffett and M. S. Sloman, “Policy conflict analysis in dis-
tributed system management,” Journal of Organizational
Computing and Electronic Commerce, vol. 4, no. 1, pp. 1–22,
1994.

[24] H. X. Son and E. Chen, “Towards a fine-grained access control
mechanism for privacy protection and policy conflict resolu-
tion,” International Journal of Advanced Computer Science
and Applications, vol. 10, no. 2, 2019.

[25] X. Du, Z. Lv, J. Wu, C. Wu, and S. Chen, “Pdsdn: a policy-
driven sdn controller improving scheme for multi-tenant
cloud datacenter environments,” in 2016 IEEE International
Conference on Services Computing (SCC), pp. 387–394, San
Francisco, CA, USA, 2016.

[26] N. M. Hoang and H. X. Son, “A dynamic solution for fine-
grained policy conflict resolution,” in Proceedings of the 3rd
International Conference on Cryptography, Security and Pri-
vacy, pp. 116–120, Kuala Lumpur, Malaysia, 2019.

[27] Y. Kim, J. Nam, T. Park, S. Scott-Hayward, and S. Shin, “Soda:
a software-defined security framework for iot environments,”
Computer Networks, vol. 163, p. 106889, 2019.

[28] D. Wenxia, L. Chengyong, W. Ding, and F. Li, “Policy conflict
resolution method and apparatus,” US Patent 10,193,755,
2019.

[29] A. Molina Zarca, J. B. Bernabe, R. Trapero et al., “Security
management architecture for nfv/sdn-aware iot systems,”

13Wireless Communications and Mobile Computing

IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8005–8020,
2019.

[30] S. Godik and T. Moses, Oasis Extensible Access Control
Markup Language, OASIS Committee Secification cs-xacml-
specification-1.0, 2002.

[31] B. Wu, X.-y. Chen, Y.-f. Zhang, and X.-d. Dai, “An extensible
intra access control policy conflict detection algorithm,” in
2009 International Conference on Computational Intelligence
and Security, pp. 483–488, Beijing, China, 2009.

[32] M. Charalambides, P. Flegkas, G. Pavlou et al., “Policy conflict
analysis for quality of service management,” in Sixth IEEE
International Workshop on Policies for Distributed Systems
and Networks (POLICY’05), pp. 99–108, Stockholm, Sweden,
2005.

[33] C. Shin and W. Woo, Conflict Resolution Method Utilizing
Context History for Context-Aware Applications, vol. 577, Cog-
nitive Science Research Paper-University Of Sussex Csrp,
2005.

[34] B. Rodrigues, T. Bocek, A. Lareida, D. Hausheer, S. Rafati, and
B. Stiller, “A blockchain-based architecture for collaborative
ddos mitigation with smart contracts,” in Security of Networks
and Services in an All-Connected World, pp. 16–29, Springer,
Cham, 2017.

[35] O. Novo, “Blockchain meets iot: an architecture for scalable
access management in iot,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 1184–1195, 2018.

[36] O. Alphand, M. Amoretti, T. Claeys et al., “Iotchain: a block-
chain security architecture for the internet of things,” in 2018
IEEE Wireless Communications and Networking Conference
(WCNC), pp. 1–6, Barcelona, Spain, 2018.

[37] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou,
“Hawk: the blockchain model of cryptography and privacy-
preserving smart contracts,” in 2016 IEEE symposium on secu-
rity and privacy (SP), pp. 839–858, San Jose, CA, USA, 2016.

[38] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: anomaly
detection and diagnosis from system logs through deep learn-
ing,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1285–1298, Dal-
las, TX, USA, 2017.

[39] J. Bailey, G. Papamarkos, A. Poulovassilis, and P. T. Wood,
“An event-condition-action language for xml,” in Web
Dynamics, pp. 223–248, Springer, 2004.

14 Wireless Communications and Mobile Computing

	Fast Policy Interpretation and Dynamic Conflict Resolution for Blockchain-Based IoT System
	1. Introduction
	2. Background and Motivation
	2.1. Traditional PbSM
	2.2. Related Work
	2.3. Challenges and Goals

	3. System Overview
	4. Fast Interpretation
	4.1. System Log
	4.1.1. Iteration
	4.1.2. Loop

	4.2. Policy Template
	4.3. Converting into Smart Contract

	5. Conflict Resolution
	5.1. Weight Directed Policy Graph
	5.2. Graph Reconstruction and Updating

	6. Evaluation
	6.1. Experimental Setup
	6.1.1. System Prototype
	6.1.2. Data Set
	6.1.3. Measure Metrics

	6.2. FPICR Overall Performance
	6.3. Resolution Rate
	6.3.1. Conflict Resolution Performance
	6.3.2. Latency

	6.4. Interpretation Performance
	6.4.1. Throughput

	6.5. Blockchain Overhead
	6.5.1. Ledger Size
	6.5.2. CPU Overhead

	6.6. Performance Analysis

	7. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

