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In recent years, the public’s demand for location services has increased significantly. As outdoor positioning has matured, indoor
positioning has become a focus area for researchers. Various indoor positioning methods have emerged. Pedestrian dead reckoning
(PDR) has become a research hotspot since it does not require a positioning infrastructure. An integral equation is used in PDR
positioning; thus, errors accumulate during long-term operation. To eliminate the accumulated errors in PDR localisation, this
paper proposes a PDR localisation system applied to complex scenarios with multiple buildings and large areas. The system is
based on the pedestrian movement behavior recognition algorithm proposed in this paper, which recognises the behavior of
pedestrians for each gait and improves the stride length estimation for PDR localisation based on the recognition results to
reduce the accumulation of errors in the PDR localisation algorithm itself. At the same time, the system uses self-researched
hardware to modify the audio equipment used for broadcasting within the indoor environment, to locate the acoustic source
through a Hamming distance-based localisation algorithm, and to correct the estimated acoustic source estimated location based
on the known source location in order to eliminate the accumulated error in PDR localisation. Through analysis and
experimental verification, the recognition accuracy of pedestrian movement behavior recognition proposed in this paper reaches
95% and the acoustic source localisation accuracy of 0.32m during movement, thus, producing an excellent effect on
eliminating the cumulative error of PDR localisation.

1. Introduction

In recent years, the public’s demand for location-based ser-
vices (LBS) has become more robust, and LBS has affected
many aspects of people’s work and life. The Global Naviga-
tion Satellite System (GNSS) is a significant component of
LBS, and the accuracy has reached the submeter level [1, 2].
Although GNSS can provide good coverage and high accu-
racy outdoors, it does not meet the positioning requirements
indoors and in other sheltered environments due to the low
satellite signal strength and quality in these locations [3].
Therefore, there is an urgent need for indoor LBS with real-

time, stable, and accurate positioning performance, especially
in schools, hospitals, and large commercial shopping centers
due to the large and complex area and numerous users [4].

Commonly used indoor positioning technology can be
divided into three categories based on the positioning princi-
ple: trilateral positioning [5], fingerprint positioning [6], and
track estimation [7]. In complex scenarios, these three indoor
positioning technologies can provide relatively good posi-
tioning performance. However, trilateral positioning requires
a receiver and a reference source, and it is necessary to deploy
the equipment in the area in advance. Therefore, full cover-
age is required in the facility to prevent blind spots,
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increasing the positioning cost. Fingerprint positioning can
achieve good positioning accuracy in scenarios without or
sparsely deployed positioning facilities. In recent years, Wi-
Fi-based fingerprint positioning has attracted attention due
to its deployment practicability. However, the construction
and update of fingerprint maps is a complex and tedious task.
Besides, a fingerprint map has the problem of timeliness [6],
which reduces the positioning accuracy and substantially
increases the positioning cost. The typical trajectory calcula-
tion principle in indoor positioning is pedestrian dead reck-
oning (PDR) positioning. Levi and Judd proposed PDR
positioning in 1996 [7]; it has been widely used in complex
environments because of its advantages, such as no infra-
structure. It achieves good positioning accuracy.

We compared the latest indoor positioning solutions
reported in the literature [8–12] regarding positioning accu-
racy, coverage, cost, smartphone compatibility, and other
parameters, as shown in Table 1.

The comparison shows the advantages of PDR over other
indoor positioning solutions, but it is rarely used alone for
positioning in complex scenes. The main reason is that
PDR positioning has good short-distance positioning accu-
racy, but errors are accumulated due to long-term operation.
Most scholars have researched these two aspects to reduce
the cumulative error in PDR positioning and improve the
positioning accuracy. One solution is to combine PDR with
other positioning methods to improve the positioning accu-
racy, such as Bluetooth low energy (BLE)/PDR fusion [13],
PDR/WiFi fusion [14], PDR/WiFi/geomagnetic fusion, and
other methods [15]. However, positioning infrastructure is
required, which increases and is not conducive to large-
scale applications. Another solution is to reduce the cumula-
tive error using step detection, stride length estimation, and
heading determination to reduce the impact of noise [16].
This approach reduces the error accumulation but fails to
eliminate the root cause of the error. In addition, in previous
PDR positioning research, the default smartphone was rig-
idly linked to the user, i.e., the user holds the smartphone
for PDR positioning. Numerous studies were conducted on
the smartphone’s position and attitude and user movement
in PDR positioning [17, 18]. Although many optimization
methods exist for PDR positioning, we believe that the opti-
mal PDR positioning method should reduce the error accu-
mulation and the cost to achieve the most practical and
cost-effective solution.

In addition to optimizing the PDR positioning method, it
is also necessary to investigate the infrastructure necessary
for indoor positioning applications, such as schools, hospi-

tals, and large commercial shopping centers. Besides the
standard public WiFi and visible light equipment, audio
playback equipment used for broadcasting is often ignored.
Audio equipment is widely deployed in indoor locations,
supporting the positioning method proposed in this article.
This article proposes a PDR positioning method based on
an acoustic source for positioning correction using dual-
microphone smartphones. The main contributions of this
article are as follows:

(1) We propose a practical and cost-effective indoor
positioning method that is suitable for multiple
buildings and large areas. The method introduces
pedestrian movement behavior recognition to
improve PDR localisation accuracy, while using
acoustic source localisation to reverse the cumulative
error of PDR localisation

(2) We propose an acoustic localisation algorithm based
on Hamming distance. The algorithm uses pseudoul-
trasonic sound, which is inaudible to the human ear
and can be processed by ordinary speakers and
microphones, at frequencies between 18 kHz and 20
kHz as the localisation signal. And use the known
position of the sound source to correct the estimated
position, in order to achieve the purpose of eliminat-
ing the accumulated error of PDR positioning

(3) We propose a method to improve the accuracy of
PDR localisation using pedestrian movement behav-
ior recognition. The method uses the proposed
method based on gait periodicity features proposed
in this paper to extract features from the data col-
lected by smartphones, uses support vector machine
(SVM) as a classifier to recognize the movement
behavior of each gait, and uses Dempster–Shafer
(D-S) evidence theory to fuse the recognition results
for the problem of low recognition accuracy in cer-
tain complex scenes, improving the overall recogni-
tion accuracy to 96%. Based on the excellent
recognition accuracy, this paper improves the stride
length estimation for PDR localization and elimi-
nates the cumulative error of PDR localization using
map matching

This paper is organized as follows: Section 2 describes
the related work of PDR positioning, pseudoultrasonic posi-
tioning, and acoustic source positioning based on dual-
microphone smartphones. Section 3 presents the proposed

Table 1: Comparison of the latest indoor positioning methods.

Solution Principle Precision (m) Dimension Coverage area (m2) Cost ($/m2) Compatible with smartphone

Bluetooth Trilateral positioning <2 2D 30 0.4 Yes

WiFi Fingerprint positioning <2 2D 50 0.6 Yes

PDR Track estimation <4 2D / / Yes

UWB Trilateral positioning <0.04 3D 100 60 No

Acoustics Trilateral positioning <0.3 3D 60 0.9 Yes
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system framework. In Section 4, we introduce the methods,
and Section 5 describes the experiments. Section 6 provides
the conclusion and future work.

2. Related Works

PDR positioning requires the establishment of an integral
equation; thus, minimizing or eliminating the accumulated
errors has been a research focus. Studies have shown
[13–15] that fusion methods have several advantages and
can significantly reduce the accumulated error of PDR
positioning. The disadvantage is that the infrastructure
needs to be deployed in advance, which requires access
to the facilities and increases the costs. The optimization
of the PDR algorithm includes the optimization of the step
detection part [19, 20] or the continuous iteration of the
step estimation model [15, 21, 22]. The advantage of
PDR optimization is the minimization of the error gener-
ated in each step, which reduces the cumulative error.
However, the disadvantage is that the cumulative error
cannot be entirely eliminated.

Scholars have used PDR positioning in increasingly com-
plex scenarios in addition to efforts to eliminate the accumu-
lated error. Most previous PDR studies assumed that the
smartphone remained in the same position (maintain a hor-
izontal hand-held position) at different pedestrian locations,
the person and the smartphone were rigidly connected, and
the positioning area was two-dimensional. In real-world con-
ditions, the behavior of pedestrians is complex and variable.
In other words, pedestrians may walk, run, or go up and
downstairs in an indoor environment, and the smartphone
may be placed horizontally in front of the chest, held by the
hand, or placed in a pocket. Researchers often ignore these
variable conditions, resulting in a single PDR positioning sce-
nario and significant use limitations. Dirican and Aksoy [23]
proposed a spectrum analysis method based on fast Fourier
transform (FFT) for step detection to convert the time-
domain information of the step frequency to the frequency
domain to deal with more complex application scenarios.
However, this approach requires a fixed time window, mak-
ing it impossible to identify walking at different speeds accu-
rately. Mohssen et al. [24] analyzed scenarios where the
pedestrian heading direction was inconsistent with the device
and proposed a heading estimation model based on principal
component analysis. This method improved the PDR posi-
tioning accuracy in different scenarios. However, only a
two-dimensional structure was considered.

Scholars have also used machine learning methods to
solve this problem due to recent developments in this field.
References [11, 17, 25, 26] used different classification
methods, such as K-nearest neighbor, dynamic time warping,
SVMs, neural networks, decision trees, and hidden Markov
model to analyze acceleration, angular velocity, and magnetic
field strength related to pedestrian behavior recognition.
Wang et al. [17] separated the recognition of pedestrian
movement/behavior into two steps: recognition of the smart-
phone pose (hold, calling, swinging, and pocket) and recog-
nition of the pedestrian movement (walk, run, upstairs, and
downstairs). SVM and decision tree were used to detect the

pedestrian movements and smartphone pose with a recogni-
tion rate of 92.4%. The authors used only PDR positioning
and reduced the positioning error in a 164m trajectory to
3.5m for different pedestrian movements and smartphone
poses.

The improvement in the PDR positioning accuracy for
pedestrian movement recognition requires optimization of
the PDR algorithm. Therefore, it is essential to develop low-
cost positioning methods and eliminate the accumulated
error of PDR. Acoustic positioning has a lower equipment
cost than other smartphone-based positioning methods.
Therefore, this approach has attracted the interest of many
research teams. Acoustic-based indoor positioning can be
divided into three categories: time of arrival (TOA), time dif-
ference of arrival (TDOA), and difference of arrival (DOA)
methods. In the past ten years, several acoustic positioning
methods have emerged, such as the ASSIST positioning sys-
tem proposed by Höflinger et al. in 2012 [27]. It uses acoustic
signals in the 18 kHz-21 kHz frequency band and the TDOA
positioning principle to increase the positioning accuracy to
0.26m. The GuoGuo positioning system proposed by Liu
et al. [28] in 2015 uses acoustic signals in the 17 kHz-22
kHz frequency band and the TOA positioning principle to
increase the positioning accuracy to 0.25m in a static scene.
In the past two years, the research group led by Wang et al.
at Zhejiang University used acoustic signals in the frequency
band of 20 kHz, resulting in high accuracy [12, 29]. Acoustic
signals in the frequency band of 20 kHz have unique ultra-
sonic characteristics, i.e., strong anti-interference ability, as
well as broader transmission than other ultrasonic wave-
lengths. Since ultrasonic wavelengths are not perceived by
humans, there is no danger of noise pollution. Therefore,
pseudoultrasound is suitable for use as positioning signals.

Few studies were conducted on acoustic source localiza-
tion using dual-microphone smartphones. Acoustic source
localization is different from acoustic-based indoor position-
ing in that acoustic source localization is used to locate the
location of the acoustic emitting source, while acoustic-
based indoor positioning uses acoustic as a positioning signal
for information transmission to achieve the purpose of local-
ization. These two are essentially different elements. The
acoustic source localization principle is to use the dual micro-
phones of smartphones to create a microphone array. The
localization method is the same as for acoustic source locali-
zation of a microphone array. For example, Jin et al. [30, 31]
used a dual-microphone smartphone, a Hamming window,
and weighted probability to achieve acoustic source localiza-
tion accuracy of 0.19m in a static scene. This study uses a
dual-microphone smartphone for acoustic source localiza-
tion in dynamic scenarios to eliminate the cumulative error
of PDR localization.

3. System Overview

The proposed system framework consists of three parts:
pedestrian movement behavior recognition, PDR position-
ing, and PDR positioning correction. The smartphone repre-
sents the system input, and the current pedestrian position is
the output. The system block diagram is shown in Figure 1.
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In PDR positioning, the estimated position of the k-th
step of the walking pedestrian can be expressed as an integral
equation:
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step length of the i-th step, and bθi is the estimated heading
angle of the i-th step. The cumulative error is expressed inde-
pendently by rewriting Equation (1) as:
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step. In this article, we consider the primary error source of
the position estimation the step size estimation term when
the heading angle estimation error is small; thus,
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The proposed pedestrian movement behavior recogni-
tion method adaptively estimates the step length for 16 com-
binations of pedestrian movements and smartphone poses,
reducing the step length term’s cumulative error.

Although the recognition of the pedestrian movement
behavior can reduce the cumulative error of PDR position-
ing, the error is not entirely eliminated. Therefore, we incor-
porate two global optimization items: map matching and
acoustic source localization. Therefore, Equation (1) can be
expressed as:
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represents the position coordinate parame-

ter that needs to be corrected after n times of map matching,

∑p
i=1
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represents the position coordinate parameter that

needs to be adjusted after p times of acoustic source position-
ing correction.

4. Pedestrian Dead Reckoning (PDR)

The PDR system comprises three parts: step detection, stride
length estimation, and heading determination, and all three
parts contain errors. Most previous studies assumed that
the smartphone was rigidly connected to the human body.
However, this state does not apply in actual scenarios. This
section describes the method of using pedestrian movement
behavior recognition to improve the stride length estimation
accuracy of PDR positioning. In addition, a map matching
algorithm is used to distinguish moving upstairs and down-
stairs to eliminate the cumulative error of the PDR.

5. Movement Behavior Recognition

The proposed pedestrian movement behavior recognition
method is described in detail in one of our recent conference
papers. This section describes the details of this method. We
divide the pedestrian movement behavior recognition into
smartphone pose recognition and pedestrian movement rec-
ognition. We believe that a nonmoving pedestrian does not
have to be considered in indoor positioning because the sen-
sor of the smartphone does not record movement, and no
positioning errors are created. Thus, this state will be dis-
cussed separately. The categories of pedestrian movement
behavior recognition considered in this article are shown in
Figure 2.

Data collection 

Pedestrian movement behavior recognition
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Magnetometer
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Figure 1: The system block diagram. The data are collected by the smartphone, and the estimated position is the output.
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5.1. Smartphone Pose Recognition. Compared with PCs,
smartphones have limited computing capabilities. Therefore,
complex machine learning algorithms used in smartphone
pose recognition will significantly increase the system’s cal-
culations, which is not conducive to the fast and stable oper-
ation of the system. The internal resources of smartphones
are often not considered for implementing functions. For
example, Android smartphones have many built-in sensors,
referred to as hardware sensors. Therefore, the Android ker-
nel functions are accessible; those are referred to as software
sensors. A software sensor performs calculations using data
obtained from hardware sensors. An example is the angle
sensor.

On the Android platform, the angle sensor is called
“TYPE_ORIENTATION.” The official document shows that
it provides the device’s pitch and rotation (roll). Therefore,
we can use clustering to obtain the smartphone pose, as
expressed in Equation (5):

Phone Pose =

Holding, x11 < pitch < x21, y11 < pitch < y21 ;
Calling, x12 < pitch < x22, y12 < pitch < y22 ;
Swinging, x13 < pitch < x23, y13 < pitch < y23 ;
Pocket, x14 < pitch < x24, y14 < pitch < y24,

8>>>>><
>>>>>:

ð5Þ

where x1i and x2i ði = 1, 2, 3, 4Þ represent the upper and lower
limits of the pitch angle, and y1i and y

2
i ði = 1, 2, 3, 4Þ represent

the upper and lower limits of the roll angle, respectively.

5.2. Feature Extraction.We use the feature extraction method
described in our previous paper [32]. It is based on the peri-
odicity of pedestrian movement, and the acceleration and
angular velocity data are segmented and transformed into
feature vectors. This section discusses the use of this method
in this study. The proposed method’s advantages over com-
monly used sliding window methods for feature extraction
are as follows: (a) the sliding windowmethod commonly uses
a redundant design to avoid data leakage. The proposed
method does not use this approach, improving the system’s
operating efficiency. (b) The eigenvectors obtained after seg-
mentation include the acceleration and angular velocity
information of each gait, providing information on the
movement behavior at each gait. The vector length maps
the gait frequency, resulting in a high recognition rate of

the movement behavior with few dimensional features. (c)
The pedestrian movement behavior in each gait can be deter-
mined accurately.

5.3. State Recognition Algorithm of the Movement Transition
Zone Based on SVM and D-S Evidence Theory. In complex
positioning scenarios such as connected buildings, stairs are
located at the buildings’ junctions and between floors. There-
fore, pedestrians need to change their movement states con-
tinually. The previous discussion shows that we can
accurately recognize the pedestrian’s current movement
state. However, when the pedestrian transitions between dif-
ferent movements, a transition zone occurs, leading to recog-
nition errors. We use an SVM and D-S evidence theory to
reduce these errors.

Few scholars investigated the errors occurring in the
transition between different states, but this error exists and
reduces the positioning accuracy. Figure 3(a) shows typical
stairs in connected buildings, Figure 3(b) is a schematic dia-
gram of the longitudinal section of the stairs, and Figure 3(c)
shows the acceleration curve as a pedestrian is walking on the
stairs. When the pedestrians are walking on level ground and
the stairs, the acceleration curve shows periodicity, and when
a transition occurs between walking on level ground and the
stairs, the acceleration value curve shows fewer fluctuations.
Therefore, it is difficult to identify the current state of motion
accurately, and we confirmed this in experiments.

Although this process is concise, and there are only two
or three steps that cause errors, we believe that the stride
lengths are different when the pedestrian walks downstairs
or upstairs. If we mistakenly use the wrong stride length for
walking downstairs, the error of each step is close to 0.5m,
significantly increasing the positioning error.

The first condition for using the map matching algorithm
to eliminate the cumulative error (this is discussed in the next
section) is to obtain an accurate position of the current land-
mark. Therefore, it is crucial in this study to detect the tran-
sition between different movement states of the pedestrian.
The DS evidence theory is an uncertainty reasoning method.
It uses multiple inaccurate judgments and descriptions of
problems, focuses on consistent information, and eliminates
and integrates contradictory information to determine inac-
curate conclusions. Therefore, the combination of D-S evi-
dence theory and SVM is well suited to identify the
transition zone between different movement states. The algo-
rithm framework of this approach has been described in our

Walk
(1)

Run
(2)

Upstairs
(3)

Downstairs
(4)

Holding
(1)

Calling
(2)

Swinging
(3)

Pocket
(4)

Smartphone posePedestrian movement

Figure 2: Schematic diagram of the recognition category of the pedestrian movement behavior. Four pedestrian movements and four
smartphone poses are considered in pairs, resulting in 16 pedestrian movement behavior types.
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previous papers. Here, we only discuss the specific applica-
tion of the algorithm. The pseudocode of the algorithm is
shown in Algorithm 1.

In Algorithm 1, SVM1 in 1.2.2.2 represents a classifier
constructed using acceleration data, and SVM2 represents a
classifier constructed using angular velocity; Pjðxi ∣ x ∈ XÞ
represents the probability of the current event x input event
X (X = Walk\Upstairs\Downstairs), j represents the classi-
fiers difference, and n represents the events difference. Piðx
∣ x ∈ AÞ represents the probability that the i-th step of the
current output belongs to walk\upstairs\downstairs.

5.4. Stride Length Estimation Based on Pedestrian Movement
Behavior Recognition. In Section 3, we listed the primary
sources of position estimation errors. Equation (3) indicates
that the stride length estimation error has a more significant
impact on the overall error when the heading angle estima-
tion error is small.

If the pedestrian’s movement state from step j to l in k
steps is the upstairs movement state when the movement
state of the pedestrian is not recognized, we will mistakenly
classify it as the walking state. The stride length of normal
adults is 0.6m-0.8m during walking, whereas the stride
length on the stairs is only about 0.2m; the resulting error
is usually tens of meters. Therefore, the proposed pedestrian
movement/behavior recognition method has high accuracy.

The stride length estimation algorithm is continuously
updated with the development of PDR technology. The most
commonly used algorithm is the stride length optimal
parameter estimation algorithm proposed by Shin et al. in
2011. The stride length is defined as:

Stride Length = α · f + β · σ2 + γ, ð6Þ

where f is the step frequency, i.e., f = 1/△T; σ2 is the acceler-
ation mode variance; α and β are the parameter weights, and γ

(a) (b)

ERROR

(c)

Figure 3: Schematic diagram of the scene. (a) Typical stairs found in connected buildings. (b) Longitudinal section view of stairs. (c) Curve of
acceleration values as a pedestrian is walking on the stairs.

Input: The movement state of the pedestrian’s current gait;
Output: Update the movement state of the first 5 steps of the pedestrian’s current gait.
1: Determine the current movement state
if movement state = upstairs or downstairs
1.1: for i =1 to 5 do:
1.2: Fusion of all categories:

1.2.1: Set A=Walk, B=Upstairs, C=Downstairs;
1.2.2: for n =1 to 3 do:
1.2.2.1:if n =1, X = A;

else if n =2, X = B;
else if n =3, X = C;
end if

1.2.2.2: Obtain Pjðxi ∣ x ∈ XÞj = SVM1or SVM2;
1.2.2.3: Obtain Pjðxi ∣ x ∉ XÞ,j = SVM1or SVM2;
1.2.3.4: Obtain Pjðxi ∣ x ∉UnkownÞj = SVM1or SVM2;

1.2.3: end
1.3: Fusion between categories:

1.3.1: Obtain the probability Piðx ∣ x ∈ AÞ,Piðx ∣ x ∈ BÞ,Piðx ∣ x ∈ CÞ
1.4: Decision output.
1.5: end

end if
2: Update the first 5 steps of the movement state

Algorithm 1: Algorithm for detecting the movement transition zone based on D-S evidence theory and SVM.
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is a compensation constant. Although this algorithm is more
flexible than linear and nonlinear stride length estimation
algorithms, the α and β parameters are often fixed, which is
not suitable for pedestrians performing complex activities.

In the pedestrian movement behavior recognition, we
consider four movements (walk, run, upstairs, and down-
stairs) and four smartphone poses (holding, calling, swing-
ing, and pocket). The 16 pedestrian behaviors had different
parameters. The pseudocode of the stride length estimation
algorithm is shown in Algorithm 2.

5.5. Cumulative Error Elimination in PDR

5.5.1. Cumulative Errors Based on Map Matching. In indoor
positioning, a geometric algorithm is commonly used for

map matching. It uses the map’s geometric information to
extract points on the path corresponding to the position
information. The geometric relationship between the cur-
rent position information and the path network is analyzed
[33]. There are three methods to implement geometric
algorithms: point-to-point matching, point-to-arc match-
ing, and arc-to-arc matching. Since we use line segments,
point-to-arc matching is used for map matching. In this
method, we find the line segment closest to the estimated
point on the map, obtain the vertical line from the esti-
mated point to the line segment, and use the vertical foot
as a new estimated point. The matching process can be
expressed as:

Input: The movement state of the pedestrian’s current gait.
Output: The stride length of the pedestrian’s current gait.
1: Determine the α and β parameters in different movement behavior states
switch smartphone pose:
case holding:
switch movement state:
case walk:
α = αhw ; β = βhw ;
case run :

α = αhr ; β = βhr ;
case upstairs :

α = αhu ; β = βhu ;
case downstairs :

α = αhd ; β = βhd ;

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(Process 1

case downstairs:
α = αhd ; β = βhd ;
case calling:
switch movement state:
Same process 1;
case swinging:
switch movement state:
Same process 1;
case pocket:
switch movement state:
Same process 1;
end
2: Substitute α and β into Equation (6)

Algorithm 2: Adaptive stride length estimation.

Distance = Xcurrent X2 − X1ð Þ + Ycurrent Y2 − Y1ð Þ½ � + Y2 − Y1ð Þ X1Y2 − X2Y1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − X1ð Þ2 + Y2 − Y1ð Þ2

q , ð7Þ

Xrevise =
Xcurrent X2 − X1ð Þ + Y current Y2 − Y1ð Þ½ � + Y2 − Y1ð Þ X1Y2 − X2Y1ð Þ

X2 − X1ð Þ2 + Y2 − Y1ð Þ2� �
X2 − X1ð Þ−1 , ð8Þ

Yrevise =
Xcurrent X2 − X1ð Þ + Ycurrent Y2 − Y1ð Þ½ � + Y2 − Y1ð Þ X1Y2 − X2Y1ð Þ

X2 − X1ð Þ2 + Y2 − Y1ð Þ2� �
Y2 − Y1ð Þ−1 , ð9Þ
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where ðXcurrent, Y currentÞ represents the estimate of the
current PDR position, and ðX1, Y1Þ and ðX2, Y2Þ represent
the starting coordinates of a given line segment in the map
database. The distance in Equation (7) is used to calculate
the distance between ðXcurrent, Y currentÞ and each line seg-
ment. The line segment with the shortest distance is obtained
by projecting ðXcurrent, YcurrentÞ into the line segment using
the foot position ðXrevise, Y reviseÞ in Equations (8) and (9).
Subsequently, the position coordinates are updated.

We assume the scene illustrated in Figure 4. Building I
and Building II make up the height difference between them
by means of stairs A and B. In this scenario, a pedestrian
takes N steps to walk a circle and encounters stairs A and B
(in m) at the k‐th and p‐th steps.

First, the cumulative error generated in N steps can be
obtained by Equation (3):

Error Nð Þ = 〠
N

i=1
ΔLi ·

sin θið Þ
cos θið Þ

" #
: ð10Þ

For the convenience of presentation, we normalize the
cumulative error generated in N steps to obtain:

Error =
∑N

i=1ΔLi ·
sin θið Þ
cos θið Þ

" #

N
:

ð11Þ

After using map matching, the cumulative error within
nð0 ≤ n ≤NÞ steps can be expressed as:

Error =
Error · k, 0 ≤ n ≤ kð Þ ;
Error · p − kð Þ + Errormap1, k ≤ n ≤ pð Þ ;
Error · N − pð Þ + Errormap2, p ≤ n ≤Nð Þ,

8>><
>>:

ð12Þ

where Errormap1 and Errormap2 represent the positioning
error generated when the map is matched in the k‐th and p
‐th steps. After map matching, the global cumulative error
becomes the error of the endpoint:

Error Nð Þ = Error · N − pð Þ + Errormap2: ð13Þ

Therefore, the objective of map matching is to eliminate
the cumulative error at the matching point; thus, the error

depends on the number and layout of the matching points.
However, the amount of landmark information in the posi-
tioning environment is limited, and the layout of landmark
information is fixed. Therefore, a more flexible cumulative
error elimination method is needed. In this study, we use
acoustic source localization eliminate.

5.5.2. PDR with Acoustic Source Localization Correction. This
correction method uses a dual-microphone smartphone as a
microphone array to receive acoustic signals. Multiple signals
are received by the pedestrians’ smartphones, and an acoustic
source localization algorithm based on the Hamming dis-
tance is used. If the sound source positioning’s accuracy
meets the requirements and the acoustic source’s position is
known, the PDR positioning can be corrected to eliminate
the accumulated error.

5.5.3. Acoustic Source Data Association. There are multiple
different acoustic sources in the localization environment,
and when a mobile phone collects audio data, it collects data
from multiple acoustic sources. Moreover, each acoustic
source used to correct the PDR data has a fixed position; thus,
the mobile phone has to distinguish different acoustic
sources and associate them with the position information.
Our solution has the following approach:

(1) We used pseudoultrasound as the acoustic signal to
increase the system’s anti-interference ability. Pseu-
doultrasound refers to an acoustic frequency range
of 18 kHz-20 kHz. Humans cannot hear this sound,
but ordinary speakers and microphones can acquire
the acoustic signal. The pseudoultrasonic signal has
the advantages of strong anti-interference, strong pri-
vacy, and no noise interference audible to humans.
Unlike ultrasonic signals, pseudoultrasonic signals
can be received using standard audio equipment, no
unique ultrasonic signal is needed, and the propaga-
tion distance is longer than for ultrasonic signals

(2) We used self-developed hardware to broadcast pseu-
doultrasonic signals with location information. The
self-developed hardware was connected in series to
the speaker and consisted of the central control unit,
a DDS module, and a bandpass filter. The main con-
trol module determines if the speaker is occupied. If it
is not occupied, the DDS module generates a pseu-
doultrasonic signal with position coordinates and
sends it out through the bandpass filter that is linked
with the speaker. In Figure 5(a), we show the

Building I Building II

Start/end point
Direction of walk

Stairs B

Stairs A

Figure 4: Schematic diagram of the scene. Start from the starting point and walk along the running track, passing through two stairs, to the
end.

8 Wireless Communications and Mobile Computing



connection diagram of each module. Further, we
formed the preliminary product, as shown in
Figure 5(b). Figure 5(c) shows the PCB (printed cir-
cuit board, PCB) diagram of our product

5.5.4. Acoustic Source Localization Algorithm Based on
Hamming Distance. At present, most smartphones are
equipped with dual microphones for noise reduction and
other functions. For example, in the Android system, the dual
microphones are strictly clock-synchronized when collecting
audio signals. The pseudoultrasonic frequency range is 18
kHz-20 kHz with a wavelength of about 17mm. Therefore,
even if the distance between the two microphones of the
mobile phone is short, the TDOA can be calculated using
the time difference of the acoustic signal. The acoustic source

localization algorithm based on the Hamming distance con-
sists of five steps: spatial gridding, generating a regional
Hamming code, generating the acoustic source location
Hamming code, matching the Hamming code, and calculat-
ing the acoustic source location.

(1) Spatial Gridding. When a pedestrian’s mobile phone
receives a valid acoustic signal, it records the coordinates of
the source in a grid and obtains several discrete grid points.

Table 2: Actions performed by volunteers.

Holding
(step)

Calling
(step)

Swinging
(step)

Pocket
(step)

Walk 150 150 150 150

Run 150 150 150 150

Upstairs 150 150 150 150

Downstairs 150 150 150 150

Table 3: Pedestrian movement behavior recognition results.

Walk Run Upstairs Downstairs

Walk 96.3% 0.7% 0.8% 2.2%

Run 0.0% 99.7% 0.3% 0.0%

Upstairs 3.4% 0.8% 92.1% 3.7%

Downstairs 0.7% 0.6% 2% 96.7%

Power supply module

Bandpass filter

DDS
module

Central
control unit

Power
amplifiers

Speaker

(a) (b)

(c)

Figure 5: The physical connection. (a) The photo shows the connection. (b) Physical picture of the product. (c) PCB diagram.

(xj + m, yj + m)

(xj + 4, yj + 4)

(xj + 3, yj + 3)

(xj + 2, yj + 2)

(xj + 1, yj + 1)

(xj, yj)

(xA, yA)

Figure 6: Schematic diagram of the acoustic source localization
scene. The pedestrians are walking near the acoustic source with
their smartphones.
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(2) Generating the Area Hamming Code. When pedestrians
are walking, the positioning area can be divided into two in
a clockwise direction to determine the position and pose of
the mobile phone. The left side is marked as 0, and the right
side is marked as 1. Therefore, if a pedestrian walks M steps,
we divide the positioning area into several small areas, each
of which has a binary code of length M. The grid points of
each small area also have the binary code of the small area.

(3) Generating the Acoustic Source Location Hamming Code.
In this study, we binarize the TDOA value to increase the sys-
tem’s robustness, i.e., we use the vertical line of the mobile
phone as the boundary. When moving in a clockwise direc-
tion, the acoustic source is denoted as 0 if it is on the left part
of the vertical line (the TDOA has a negative value) and as 1 if
it is on the right side of the vertical line (the TDOA has a pos-
itive value). Thus, if a pedestrian walksM steps, a binary code
of length M is generated, indicating the area of the acoustic
source.

(4) Matching the Hamming Code. We match the acoustic
source location Hamming code with the regional Hamming
code to determine the small area with the closest Hamming
distance.

(5) Calculating the Acoustic Source Position. By matching the
Hamming code, the acoustic source position can be reduced
to a small area. However, since all grid points in the small
area have the same binary code, the Hamming distance is
the same for all the points in the small area. The average of
the grid point positions is used as the estimated position of
the acoustic source. However, the robustness of this method
is too strong; thus, we use the methods in Refs. [30, 31] and
use the proportional relationship between the Hamming dis-
tance and the actual distance for all grid points in the area.
The source location Hamming code has different weights
(the weight is inversely proportional to the Hamming dis-
tance). Therefore, the acoustic source position is determined
by all grid points rather than the point with the smallest
Hamming distance. We use a Gaussian function to obtain
the weights of all grid points:

ωi = e−HD T ,Dið Þ/Mσi , ð14Þ

where HDðT ,DiÞ is the Hamming distance between the
acoustic source location Hamming code and the spatial grid
point iði = 0, 1, 2⋯ pÞ, and σ is the weighting parameter.
We normalize Equation (14) to obtain:

ωi =
ωi

∑p
i=1ωi

: ð15Þ

The final acoustic source position SðxA, yAÞ based on all
grid point coordinates piðxi, yiÞ as:

S = 〠
p

i=1
ωi · pi: ð16Þ

5.5.5. Elimination of the Cumulative Error in PDR
Positioning. As shown in Figure 6, the mobile phone of the
pedestrian receives the audio information and records the
pedestrian’s position as ð bxj , byj Þ. The acoustic source position
ðcxA , cyA Þ is recorded forM steps, and ðcxA , cyA Þ is calculated at
each step’s position. PDR expresses the position ðcxk , byk Þ of
any step k in the M steps as an expression of ð bxj , byj Þ, as
shown in Equation (17).

cxk
byk

" #
=

bxj
byj

" #
+ 〠

M

i=j
bLj ·

sin θið Þ
cos θið Þ

" #
: ð17Þ

In the same way, the observed acoustic source position
ðcxA , cyA Þ is represented by ð bxj , byj Þ. If the accuracy of the
observed acoustic source position meets the expectations,
ðcxA , cyA Þ is approximately equal to ðxA, yAÞ. The position
ð bxj , byj Þ is updated with the known acoustic source position

information to obtain the coordinate ðxj ′, yj ′Þ after the
cumulative error has been eliminated. This method takes
advantage of the high short-term accuracy of PDR position-
ing. There is already a cumulative error in the ð bxj , byj Þ posi-
tion. However, due to the short running time of the PDR in
M steps, the cumulative error is not large enough to affect
the overall system; thus, it can be ignored.

Further, we analyze the PDR localization accuracy based
on the correction of the acoustic source localization. We use
Equations (10)–(12), and the latter is transformed as follows
after performing the acoustic source localization correction:

Error =

Error · k, 0 ≤ n ≤ kð Þ ;
Error · t − kð Þ + Errormap1, k ≤ n ≤ tð Þ ;
Error · p − tð Þ++Erroracoustic1, t ≤ n ≤ pð Þ ;
Error · r − pð Þ + Errormap2, p ≤ n ≤ rð Þ ;
Error · N − rð Þ + Erroracoustic2, r ≤ n ≤Nð Þ,

8>>>>>>>>><
>>>>>>>>>:

ð18Þ

where Erroracoustic1 and Erroracoustic2 represent the position-
ing errors caused by the acoustic source positioning correc-
tion in the first and second step. After using the acoustic

Table 4: Results of the recognition of the movement transition zone.

Step 1 (walk) Step 2 (upstairs) Step 3 (upstairs) Step 1 (walk) Step 2 (downstairs) Step 3 (downstairs)

SVM 96.4% 82.6% 89.4% 96.1% 90.7% 88.3%

SVM+D-S theory 97.1% 91.3% 92.5% 97.8% 95.2% 96.6%
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source localization method, the global localization error is
changed to a piecewise error. By segmenting the accumulated
error, the large error can be decomposed into several smaller

errors, minimizing the global cumulative error. The results
show that the proposed PDR positioning method based on
acoustic source positioning correction provides relatively

Measured acoustic source location

Calculated acoustic source location

B

A

Step

(a)

Measured acoustic source location

Calculated acoustic source location
Step

B

A

(b)

Measured acoustic source location

Calculated acoustic source location
Step

B

A

(c)

Measured acoustic source location

Calculated acoustic source location
Step

B

A

(d)

Figure 7: (d) Pedestrian trajectory in experiment. (a) In experiment 1; (b) in experiment 2; (c) in experiment 3; (d) in experiment 4.
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good positioning accuracy. The final positioning error is

Error Nð Þ = Error · N − rð Þ + Erroracoustic2: ð19Þ

6. Experiment

6.1. Pedestrian Movement Behavior Recognition Experiment.
Experiments were conducted to validate the proposed
method. A Xiaomi 10 mobile phone with a sensor sampling
frequency of 20Hz is used. We recruited six male and female
volunteers with different heights and weights to perform the
actions listed in Table 2.

We used 70% of the feature data as the training set and
30% as the test set. The recognition accuracy is listed in fol-
lowing Table 3.

Further, we conducted experiments on the recognition of
the movement transition zone, and we used two standard
short stairs. We asked six volunteers to walk ten steps, walk
up/down the stairs, and walk ten steps. We obtained 150
samples of walking upstairs and 150 samples of walking
downstairs. The objective was to detect the transition zone
of walking up/down the stairs (three steps). The result of
using the SVM and the SVM+DS evidence theory is listed
in Table 4.

Tables 3 and 4 show that the SVM provides reasonable
accuracy for detecting single movements. However, the
SVM method has lower accuracy than the SVM+D-S theory
method for the recognition of the movement transition zone.

6.2. Acoustic Source Localization Experiment Based on
Hamming Distance. We conducted an acoustic source

Table 5: Results of the acoustic source localization experiment.

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Actual acoustic source location (m) (3.529, 4.353) (3.529, 4.353) (4.048, 6.904) (4.048, 6.904)

Measured acoustic source location (m) (3.75, 4.125) (3.15, 4.3) (3.9, 7.05) (4.15, 7.15)

Root mean square error (m) 0.3175 0.3827 0.2079 0.2663

Figure 8: Schematic diagram of the stride estimation method experiment.
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localization experiment in a conference room with a size of
9:5m ∗ 8m, as shown in Figure 7. A Huawei smart speaker
was placed on the table in the middle of the conference room
to simulate standard speaker equipment. We divided the four
volunteers into two groups. The first group of students
walked from point A to point B, and the second group of stu-
dents walked from point B to point A. Four sets of data were
collected. We used the electronic total station to obtain the
coordinates of the speaker (as the black star in Figure 7), used
PDR positioning to obtain the position of each step (as the
blue dot in Figure 7), and use the acoustic source positioning
method proposed in this paper to calculate the sound source
position (as the red star in Figure 7). The results are shown in
Figures 7(a)–7(d).

The actual and measured acoustic source locations and
the root mean square errors are listed in Table 5.

The average error of the proposed acoustic source locali-
zation method is 0.2936m, which met the expectations.

6.3. PDR Positioning Experiment. In this paper, an experi-
ment is designed to verify the accuracy of the step estimation
method based on pedestrian movement behavior recogni-
tion. The scene of this experiment is selected in the display
hall of Guilin Smart Industrial Park, China. The scene dia-
gram is shown in Figure 8. In the experiment, we stipulate
volunteers to march along a prescribed route, in which vol-
unteers first run forward to the west, and then walk north,
east, and south in turn until they return to the starting point,
with a total length of 108m.

The experimental results are shown in Figure 9. Method 1
used a fixed stride length for PDR positioning (each stride

length was 0.7m), method 2 used the method of Equation
(6) to calculate the stride length (using fixed α and β), and
method 3 was the method proposed in this paper. Let the
coordinates of the starting point be (0, 0), and the coordi-
nates of the three methods and errors are shown in Table 6
after the volunteer walks one turn. The proposed method in
this paper has the best positioning accuracy, and the trajec-
tory of the volunteer walking best matches the prescribed
trajectory.

A PDR positioning experiment was conducted in the sev-
enth teaching building of Guilin University of Electronic
Technology, Jinji Road. We asked the volunteers to travel
along the route shown in Figure 10 from the starting point
on the 3rd floor to the end of staircase B. The track was 70
m long, with two staircases (including a short staircase),
and two acoustic sources were used.

The trajectory in the positioning experiment is shown in
Figure 11.

The experiments verified that the proposed PDR and
pedestrian movement behavior recognition eliminated the
cumulative error of PDR positioning. As shown in
Figure 11, when only PDR positioning was used and the run-
ning time was extended, the accumulated error of PDR posi-
tioning mistakenly located the pedestrians outside the
building. Meanwhile, the root mean square error of position-
ing at the end point using only PDR is 2.15m. Moreover,
there were no prominent map landmarks such as stairs;
therefore, the map matching algorithm could not be used to
correct the PDR data. The acoustic source positioning elimi-
nated the cumulative error, e.g., I and II. The correction per-
formance is excellent for II, where the wrong route outside

North

EastWestern

South
Method 2

Method 1

Method 3

Start/Finish point
Prescribed routes

Figure 9: The trajectory in the stride estimation method experiment.

Table 6: Results of the stride estimation method experiment.

Method 1 Method 2 Method 3

Coordinates (1.06, -0.30) (1.97,-1.2) (-0.57, 0.30)

X-direction error (m) 1.06 1.97 0.57

Y-direction error (m) 0.30 1.2 0.30

Root mean square error (m) 1.10 2.30 0.67
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the building is corrected. In addition, without the pedestrian
movement behavior recognition method, the movement
behavior states, such as going up and down the stairs, cannot
be identified, resulting in a wrong trajectory. However, using
the map matching methods (III, IV) results in correct stride
length estimation and the elimination of the accumulated
error of PDR positioning.

7. Conclusions and Future Work

This paper proposed a new PDR positioning method that
optimizes the PDR positioning algorithm by identifying the
pedestrian movement behavior recognition. The experiments
showed that the recognition accuracy exceeded 96%, which
met the expectations. The acoustic source positioning

method eliminated the cumulative error of PDR positioning,
resulting in a positioning error of 0.3m, which met the
requirements. The proposed method shows excellent poten-
tial for positioning applications. In the future, we will inves-
tigate the use of this method in more complex scenarios.

Data Availability

The Pedestrian Movement Behavior Recognition data and
Positioning data used to support the findings of this study
have not been made available because this paper is funded
by the Guangxi Innovation-Driven Development Project
(Science and Technology Major Project of Guangxi No.
AA18118039). The grant is still in the research phase and

Site: Jinjilu, Guilin, China
Floor: 3

Utility
room

Acoustic source correct

Toilet

Toilet

Map correct

Stairs A

Stairs B

Stairs C
III

II

I

IV

Starting point
Destination point
Acoustic source

PDR + Map
Only use PDR

PDR + Map + Acoustic

Figure 11: The trajectory in the positioning experiment.

Site: Jinjilu,Guilin, China
Floor: 3

Utility
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Toilet
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Figure 10: Schematic diagram of the positioning experiment.
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