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In this paper, we investigate the issue of direction-of-arrival (DOA) estimation of multiple signals in coprime arrays. An algorithm
based onmultiple signal classification (MUSIC) and forward and backward spatial smoothing (FBSS) is used for DOA estimation of
this signal caused by multipath and interference. The large distance between adjacent elements of each subarray in the coprime
arrays will bring phase ambiguity issues. According to the feature of the coprime number, the ambiguity problem can be
eliminated. The correct DOA estimation can be obtained by searching for the common peak of the spatial spectrum and finding
the overlapping peaks in the MUSIC spectrum of the two subarrays. For the rank deficit problem caused by the coherent signal,
the FBSS algorithm is used for signal preprocessing before the MUSIC algorithm. Theoretical analysis and simulation results
show that the algorithm can effectively solve the rank deficiency and phase ambiguity problems caused by coherent signals and
sparse arrays in the coprime arrays.

1. Introduction

Array signal processing is a branch of the signal processing
field and is widely used in radar, sonar, satellite, wireless
communications, seismology, and other fields [1, 2]. Array
signal processing is based on a group of spatially arranged
array antennas to process the signal [3]. The purpose of array
signal processing is to enhance useful target signals, suppress
noise, and obtain signal spatial information. Compared with
a single antenna, the use of an antenna array has outstanding
advantages in terms of spatial resolution, receiving sensitivity,
and anti-interference [4]. Thus, array signal processing has
made rapid progress in research and engineering applications
in the past 30 years [5].

DOA estimation of space signal is a basic problem in
array signal processing. DOA estimation is to estimate the
direction of arrival of the signal by receiving the target echo
data through the array antenna in the noise or interference
environment. And it is a kind of direction-finding technique
[6, 7]. In wireless communication, accurate DOA estimation
of the signal source can improve communication quality [8].
And it can improve physical layer security combined with

beamforming technology [9]. In radar target detection,
DOA estimation is the basis for achieving high-precision
direction finding [10]. Therefore, it is of great significance
to study how to improve the accuracy of DOA estimation.
The performance of DOA estimation is determined by the
resolution, accuracy, the number of distinguishable targets,
etc. [11]. In response to these aspects, corresponding theoret-
ical and applied research has been carried out at home and
abroad, which has enabled the rapid development of DOA
estimation theory [12–14].

The past researches have proposed a large number of
DOA estimation algorithms for different array models, such
as the uniform linear array, L-shaped linear array, and uni-
form circular array [15–17]. In the traditional array structure,
the angle ambiguity is avoided by setting the spacing of array
elements no more than half wavelength. However, when the
frequency of the received signal is high, too small array
element spacing will cause larger mutual coupling, and the
physical array layout is difficult to achieve. At the same time,
high resolution means a larger array aperture, and more
physical array elements will further increase the system cost
and complexity. Sparse arrays can overcome the structural
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limitations of traditional arrays by increasing the array ele-
ment spacing [18] and thus have been developed and widely
used, such as the Minimum Redundancy Array (MRA) [19,
20], Nested Array (NA), and coprime array (CPA) [21–23].

The coprime formation is composed of two subarrays,
and the spacing between the subarrays is mutually prime
[24]. Compared with the traditional uniform array, the
element spacing of the coprime array is greater than half a
wavelength. The increase in the element spacing brings the
advantages of an increase in the array aperture and a signifi-
cant reduction in the mutual coupling effect between
elements and significantly improves the estimation accuracy
and resolution [25]. The DOA of two uniform subarrays of
the coprime array is estimated, respectively. According to
the relatively prime characteristics of the element spacing of
the two subarrays, it is proved that the DOA estimation
results of the two subarrays are unique [26, 27]. The coprime
array which does not reduce the array aperture of the original
array is simple to implement, and the estimation accuracy is
greatly improved compared with the uniform array with the
same number of antennas [28–30].

DOA estimation algorithms mainly include traditional
beamforming, subspace algorithm, and maximum likelihood
estimation [31–33]. Among them, the beamforming method
has larger error and low resolution; the maximum likelihood
algorithm uses the probability distribution of the signal and
adopts the high-dimensional search method, which has a
large amount of computation. The subspace algorithm uses
the orthogonality of signal and noise subspace to realize angle
estimation, which requires less computation but cannot
process coherent signals [34]. Generally, the minimum res-
olution that can be achieved under a certain array length is
called the Rayleigh Resolution Limit, and the method that
exceeds the Rayleigh Resolution Limit is called the superre-
solution algorithm. Multiple signal classification (MUSIC)
proposed in 1979 and estimating signal parameters via
rotational invariance techniques (ESPRIT) proposed in
1986 belong to subspace algorithm and are also early clas-
sical superresolution methods [35, 36]. No matter the
MUSIC algorithm or ESPRIT algorithm, it is necessary for
the array element to receive the uncorrelated signal. At this
time, the covariance matrix of the source is a full rank
matrix, so that the covariance matrix of the signal can be
eigendecomposed and the signal subspace and noise sub-
space can be distinguished.

Most signals are coherent signals in the actual application
environment because of the multipath effect and complex
transmission channel [37, 38]. For early DOA estimation
algorithms such as MUSIC and ESPRIT, they are all based
on subspace for DOA estimation. When the received signal
is correlated, the eigenvector corresponding to the source sig-
nal cannot be obtained by decomposing the subspace eigen-
values. Therefore, DOA estimation of coherent source
signals has always been a difficult problem, which is also
the focus of spectral estimation. In order to distinguish
coherent signals accurately, the spatial smoothing method,
singular value decomposition method (SVDmethod), matrix
decomposition method (MD method), and Toeplitz method
are developed [39–41].

In this paper, the MUSIC algorithm and the FBSS algo-
rithm are combined to estimate the DOA of coherent signals
based on the coprime matrix model under the condition of
multipath and interference, and the formulas to solve the sig-
nal coherence and angle ambiguity under the coprime matrix
are given. Finally, the DOA estimation method for coherent
signals is simulated, and the simulation results show the
effectiveness of the method.

The remainder is given as follows: Section 2 outlines the
basic array signal model of the coprime array. In Section 3,
the proposed method for coherent target DOA estimation
based on coprime arrays is presented, and the problem of
phase ambiguity and rank deficiency is discussed together
with its elimination method. Numerical simulations and con-
clusions are presented in Sections 4 and 5, respectively.

Notations. Throughout the paper, we use the lowercase
(uppercase) boldface symbols to represent vectors (matrices).
ð⋅ÞT and ð⋅ÞH denote the transpose and the conjugate trans-
pose, respectively. IN denotes N ×N identity matrix, diag ð⋅Þ
denotes the diagonal matrix operator, and E½⋅� denotes the
expectation operator.

2. Array Signal Model

The coprime array is a sparse array constructed by using the
property of a coprime number. It is composed of two uni-
form linear arrays. Assuming that the number of subarray
elements is M and N , the spacing between two subarrays is
Nλ/2 and Mλ/2, respectively, where M and N are coprime
integers and λ represents the wavelength of the received sig-
nal. The first element of the two subarrays coincides, which is
also called the reference element. The coprime array contains
a total of elements, and the positions of M +N − 1 elements,
and the positions of the elements are

d = Nm
λ

2

� �
∪Mn

λ

2

� �� �
, ð1Þ

where 0 ≤m ≤M − 1, 0 ≤ n ≤N − 1:
Figure 1(a) is a schematic diagram of the structure of a

coprime array with M +N − 1 elements. For the convenience
of analysis, the coprime matrix is divided into two subarrays,
in which the black dot represents subarray 1 and the hollow
dot represents subarray 2, as shown in Figure 1(b). In fact, the
two subarrays are in a straight line and share the first element.

It is assumed that there are far-field narrow-band signals
from different directions in the space, the incident angle is
θk, k = 1, 2, 3,⋯, K , and the output noise of each element is
a complex Gaussian distribution with zero mean value, which
are independent of each other and have the same average
power σ2. The output of themth element can be expressed as

xm tð Þ = 〠
K

k=1
a θkð Þsk tð Þ + nm tð Þ: ð2Þ
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If the first element is selected as the reference element, the
output of the subarray with M elements is

xM tð Þ =AM θð Þs tð Þ + nM tð Þ, ð3Þ

where AMðθÞ = ½aMðθ1Þ, aMðθ2Þ,⋯, aMðθKÞ�. The steering
vector of the Kth source is expressed as

aM θKð Þ = 1, e−jNπ sin θK ,⋯, e−jN M−1ð Þπ sin θK
h iT

: ð4Þ

Source vector sðtÞ = ½s1ðtÞ, s2ðtÞ,⋯, sKðtÞ�T . Similarly, the
output of the subarray with N elements is

xN tð Þ =AN θð Þs tð Þ + nN tð Þ, ð5Þ

where ANðθÞ = ½aNðθ1Þ, aNðθ2Þ,⋯, aNðθKÞ�. The steering
vector of the Kth source is expressed as

aN θKð Þ = 1, e−jMπ sin θK ,⋯, e−jM N−1ð Þπ sin θK
h iT

: ð6Þ

Because the noise is independent of each other, the noise
and the signal are independent of each other, the covariance
matrix of the noise is σ2I, and the covariance matrix of the
output of the two subarrays:

RM = E xMxMH� �
=AME ssH

� �
AM

H + σ2IM ,AMRssAM
H + σ2IM ,

RN =ANRssAN
H + σ2IN :

ð7Þ

In the DOA estimation based on the coprime array, the
array aperture is greatly expanded by the construction of a
virtual array model. At the same time, the ranks of covariance
matrices constructed by different methods are also different,
but generally, the virtual array degree of freedom of the
coprime array is far greater than that of the physical array.
The degree of freedom is an important sign that the antenna
array can estimate the number of targets or sources. The
higher the degree of freedom is, the more sources the array
can estimate. Besides, the degree of freedom is proportional

to the estimation accuracy. Generally, the higher the degree
of freedom is, the higher the positioning accuracy will be.

3. DOA Estimation of Coherent Signals

Due to the interference effect of coherent signals, the number
of subspaces processed by the ordinary DOA estimation
algorithm will be reduced and affect the direction-finding
accuracy. However, the FBSS algorithm does not appear in
such a situation. Based on this idea, we decompose the
coprime array into two uniform subarrays. For each subarray,
the FBSS algorithm and the traditional MUSIC algorithm are
combined to process the coherent signal. By analyzing the
DOA results of the two subarrays, the correct target angle
can be obtained, and the problem of rank deficiency caused
by phase ambiguity and coherent signal is solved.

3.1. Spatial Smoothing on Subarrays. Coherent signals are
easily generated in signal transmission due to the complex
space environment. The appearance of coherent sources
may lead to serious degradation of DOA estimation perfor-
mance. In the traditionalMUSIC algorithm based on subspace,
the covariance matrix of the received data needs to be full rank,
but the covariance matrix of the coherent source is not full
rank, the signal eigenvectors diverge into the noise subspace,
and the singular value decomposition cannot completely dis-
tinguish the signal subspace from the noise subspace, which
leads to deterioration of DOA estimation performance.

The basic idea of the spatial smoothing algorithm is to
divide the array into several overlapping subarrays and use
the covariance matrix of the received data of subarrays to
replace the original covariance matrix. By sacrificing a certain
effective array aperture, the covariance matrix of the received
data is restored to full rank, so as to achieve the preprocessing
operation of decoherence.

The covariance matrix uses the autocorrelation relation-
ship between signals to extract information. In practical
applications, the maximum likelihood function of the covari-
ance matrix is usually calculated by selecting a large enough
number of snapshots to approximate the ideal covariance
matrix. In this case, the estimated covariance matrix of the
output data can be expressed as

Co-prime array

N𝜆/2

M𝜆/2 M𝜆/2

N𝜆/2

M+N–1

(a) An example of coprime array

Subarray 1

Subarray 2

1 2 3 4 M–1

1 2 3 N–1

N𝜆/2

M𝜆/2

(b) Two coprime uniform linear subarrays

Figure 1: Basic structure of coprime linear array.
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RM = 1
L
〠
L

l=1
xM lð ÞxHM lð Þ,

RN
1
L
〠
L

l=1
xN lð ÞxHN lð Þ:

ð8Þ

As shown in Figure 2, consider the subarray with the
number of M elements and the spacing of Nλ/2 in the
coprime matrix. Under the forward space smoothing
algorithm, the equidistant linear array is divided into L sub-
arrays by sliding, and each subarray has n elements, where
n =M − L + 1.

In this case, the output of the first forward subarray can
be expressed as

x fl tð Þ = xl tð Þ, xl+1 tð Þ,⋯, xl+n−1 tð Þ½ �T =AMDl−1s tð Þ + nl tð Þ 1 ≤ l ≤ Lð Þ,
ð9Þ

where AM = ½aMðθ1Þ, aMðθ2Þ,⋯, aMðθKÞ� is the n ∗ K
dimension direction matrix and aMðθÞ is the n-dimension
guidance vector. D = diag ðejð2πNd/λÞ sin θ1 , ejð2πNd/λÞ sin θ2 ,⋯,
ejð2πNd/λÞ sin θK Þ is a rotation-invariant matrix between
subarrays.

The covariance matrix of the lth forward submatrix can
be expressed as

Rf
l = E x fl tð Þx fl tð ÞH

h i
=AMDl−1RS Dl−1

� 	H
AH

M + σ2I: ð10Þ

The forward spatial smoothing covariance matrix is
defined as

Rl =
1
L
〠
L

l=1
Rf
l : ð11Þ

Similarly, if the subarray is divided from the last element
of the array, the covariance matrix of backward spatial
smoothing can be obtained as follows:

Rb =
1
L
〠
L

l=1
Rb
l : ð12Þ

Because the backward smooth array is the conjugate
reverse order of the forward smooth array, the relation
between Rb and Rl is the conjugate reverse order invariant.
Although the one-way smoothing algorithm can solve the
problem of coherent signals, it sacrifices more array aperture.
The FBSS algorithm can increase the number of estimable
cells by simultaneously performing forward and backward
smoothing. The covariance matrix is the average of forward
smoothing and backward smoothing covariance matrices

Rf b =
1
2 Rf + Rb


 �
: ð13Þ

3.2. DOA Estimation of Subarrays. The MUSIC algorithm is

the most classic superresolution DOA estimation algorithm,
which obtains the cell direction by searching the spectrum
peak in the spatial domain. Compared with multidimen-
sional algorithms such as maximum likelihood (ML) and
weighted subspace fitting (WSF), the algorithm has less com-
putation. The basic idea of the MUSIC algorithm is to eigen-
decompose the covariance matrix of the array output data to
obtain the signal subspace corresponding to the signal com-
ponent and the noise subspace orthogonal to the signal com-
ponent and then use the orthogonality of the two subspaces
to estimate the signal parameters.

The covariance matrices of the two submatrices are
eigendecomposed, respectively, to obtain

RM =USM〠
SM

USM
H +UNM〠

NM

UNM
H,

RM =USN〠
SN

USN
H +UNN〠

NN

UNN
H:

ð14Þ

Among them, matrices USM ∈ℂM∗K and USN ∈ℂN∗K are
the signal subspaces formed by the eigenvectors corresponding
to K large eigenvalues in R̂M and R̂N , matrices ∑SM ∈ℂK∗K

and ∑SN ∈ℂK∗K are the diagonal matrices formed by K large
eigenvalues in R̂M and R̂N , matrices UNM ∈ℂM∗ðM−KÞ and
UNN ∈ℂM∗ðN−KÞ are the noise subspaces formed by the eigen-
vectors corresponding to M − K and N − K small eigenvalues
in R̂M and R̂N , and the matrices ∑NM and ∑NN are diagonal
matrices composed of M − K and N − K small eigenvalues in
R̂M and R̂N , respectively (these small eigenvalues are equal,
which is the noise power σ2).

Under ideal conditions, the signal subspace US and the
noise subspace UN are orthogonal to each other, so the array
flow pattern vector aHðθÞ corresponding to the signal sub-
space is also orthogonal to the noise subspace UN , namely,

aH θð ÞUN = 0: ð15Þ

In practice, the steering vector and the noise subspace can-
not be completely orthogonal due to the existence of other
noises. Usually, the minimum optimization search process is
used to find the minimum value to realize the direction-of-
arrival estimation. This process can be expressed as

θMUSIC = argθ min aH θð ÞÛNÛ
H
Na θð Þ: ð16Þ

Based on the orthogonality between the signal subspace
and the noise subspace, the spectral function of the MUSIC
space power spectrum of the two subarrays can be
expressed as

PMUSIC M = 1
aHM θð ÞÛMÛ

H
MaM θð Þ

,

PMUSIC N = 1
aHN θð ÞÛNÛ

H
NaN θð Þ

:

ð17Þ

Among them, the value θ range is generally ð−π/2, π/2Þ.
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The accurate DOA estimate can be obtained by searching
for the coincident peaks of the two subarray spectral func-
tions of the coprime array.

3.3. Ambiguity Elimination. The calculation formula of phase
defuzzification for incoherent sources is given in Reference
[31]. For coherent sources, if there is phase ambiguity after
using the spatial smoothing algorithm for the subarray with
M elements, it can be seen from (13) that the steering vector
between the real angle θk and the blurred angle θk should be
equal, that is,

AM θkð Þ = AM θk
� 	

,

exp −jNπ sin θkð Þð Þ = exp −jNπ sin θk
� 	� 	

:

ð18Þ

After simplification, we get

sin θkð Þ − sin θk
� 	

= 2PM

N
, ð19Þ

where PM is a nonzero integer, θk, θk ∈ ð−π/2, π/2Þ. For any θk
and θk, it must satisfy jsin ðθkÞ − sin ðθkÞj < 2, that is, j2P/Nj
< 2. The value range of PM can be −ðN − 1Þ, −ðN − 2Þ,⋯,
−1, 1,⋯,N − 1; there are 2ðN − 1Þ values in total. Consider
that θk and θk can be exchanged. In addition to the real
angle, there are N − 1 fuzzy angles. That is to say, for a
single subarray M whose element spacing is Nλ/2 in the
coprime array, there must be phase ambiguity. There are
N peaks in the MUSIC spectrum using spatial smoothing,
and the N − 1 peaks correspond to the fuzzy angle.

In the same way, when considering the single subarray N
whose element spacing is Mλ/2 in the coprime array, the
fuzzy angle needs to meet the requirement:

sin θkð Þ − sin θk
� 	

= 2PN

M
: ð20Þ

The value range of PN can be −ðM − 1Þ, −ðM − 2Þ,⋯,−1,

1,⋯,M − 1. Combined with (19), the condition of phase
ambiguity is obtained as follows:

2PM

N
= 2PN

M
: ð21Þ

After simplification, we can getNPN =MPM . SinceM and
N are relatively prime, it cannotmake the equation hold in the
range of value; that is to say, θk does not exist and there is no
angle ambiguity. Therefore, the unique DOA estimation can
be determined by using the spatial smoothing algorithm and
MUSIC algorithm, respectively, for the subarrays of the
coprime array, and then finding the overlapped peaks in the
two groups of spectrum.

3.4. Complexity Analysis. The spatial smoothing algorithm,
SVD algorithm, and Toeplitz algorithm can process coherent
signals well, and the computational complexity of these three
decoherence algorithms increases gradually. At present, the
spatial smoothing algorithm has the least amount of compu-
tation; that is, the time of DOA processing is the shortest. In
addition, spatial smoothing technology is also more mature,
which is a more practical algorithm for processing coherent
signals. The uniform linear array withM elements can distin-
guish 2M/3 coherent targets by using the spatial smoothing
algorithm. And the virtual element number of the coprime
array with two subarray elementsM andN isOðMNÞ. There-
fore, Oð2MN/3Þ coherent targets can be distinguished by the
coprime array with this algorithm. In the same case, only O
ð2ðM +N − 1Þ/3Þ coherent targets can be distinguished by
the uniform linear array with this algorithm.

4. Simulation Results

In this section, we have carried out the corresponding simu-
lation analysis to prove the effectiveness of FBSS and MUSIC
algorithms for coherent signals under the coprime array
model. In the simulation process, the number of elements
of two subarrays of the coprime array is M = 7 and N = 5,
and the spacing between elements is 5λ/2 and 7λ/2, where
λ is half wavelength. For a fair comparison, a 12 uniform lin-
ear array with half-wavelength spacing is also simulated with
the FBSS and MUSIC algorithms. Consider two coherent sig-
nals in the space, which are incident from 0° and 30° to the

Forward spatial smoothing 

Backward spatial smoothing 

1 2 ... N ...M–N+1 M

Subarray L
Subarray L–1

N+1

Subarray 1

Subarray 1
Subarray 2

Subarray L

Figure 2: Schematic diagram of FBSS algorithm.
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coprime array, respectively, and the noise is Gaussian
white noise. The searching steps for all methods are set
to be 0:02°.

4.1. Spatial Spectrum. We then show the spatial spectrum
using FBSS and MUSIC algorithms in Figure 3, where
we assume the signal to noise (SNR) as 10 dB and snap-
shot n = 200. The red spectral line is the subarray spectrum
with M = 7, and the blue spectral line is the subarray spec-
trum with N = 5. It can be seen from the previous derivation
that phase ambiguity will be generated when using spatial
smoothing and MUSIC algorithm for a single subarray of
coprime array. For a subarray with an element spacing
of Nλ/2, estimating a DOA will produce N − 1 ambiguity
angles. Therefore, the subarray with M = 7 has 10 peaks, 8
of which are fuzzy angles. And the subarray with N = 5 has

14 peaks, 12 of which are fuzzy angles. However, the com-
mon spectral peak formed by the two subarrays is only at 0°
and 30°, which proves the correctness of the algorithm for
DOA estimation of coherent signals.

Under this condition, we further compare the DOA
estimation spectrum of 11 elements uniform linear array
and coprime array. The specific results are shown in
Figure 4. Through the comparison of DOA estimation
spectrum peaks, we can intuitively find that two coherent
signals, whether uniform linear array or coprime array,
can be well distinguished. But the coprime array is better
than the uniform linear array in suppressing interference.
Because the number of virtual elements of the coprime
array is much larger than that of the uniform linear
array, it has a higher degree of freedom and better esti-
mation performance.
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Figure 3: Spatial spectrum of DOA estimation simulation of two subarrays for coherent sources.
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Figure 4: Spatial spectrum of DOA estimation simulation of uniform linear array and coprime array.

6 Wireless Communications and Mobile Computing



4.2. Root Mean Square Error (RMSE). In this simulation, we
study the RMSE performance of the two arrays under differ-
ent configurations. The root mean square error (RMSE) of
the estimates is defined as the performance metric:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NK
〠
N

n=1
〠
K

k=1
θk − θ

ið Þ
k

� 	h ivuut , ð22Þ

where N0 denotes the times of Monte-Carlo simulations

and θ
ðiÞ
k and θk are the estimate and real values of the k

th DOA for the nth trial, n = 1, 2, 3,⋯,N . The targets
are located at θ1 = 10°, θ2 = 20°, θ3 = 30°, and θ1, θ2 are
coherent signals. For each simulation scenario, S = 500
rounds of Monte-Carlo runs are conducted. The Cramer-
Rao bound (CRB) is plotted as a benchmark.

Figure 5 depicts the RMSEs of different configurations in
terms of SNR, where the number of snapshots is 200. In
Figure 6, we compare the RMSEs of the two arrays versus
the number of snapshots, where the SNR is set as 5 dB. It is
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Figure 5: RMSE versus the number of snapshots.
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obvious that the performance of all these configurations
improves with the increase of the SNR and number of
snapshots. But the performance of the coprime array is
better than that of the uniform linear array in any case.
Even in the case of low snapshot number and low signal-
to-noise ratio, the coprime array can also show good
DOA estimation performance.

Although the phase ambiguity of a single subarray of the
coprime array is caused by the large element spacing, accu-
rate DOA estimation can be achieved by comparing the peak
values of the two subarrays. Through the simulation experi-
ment, we can see that compared with the uniform linear
array, the coprime array using the spatial smoothing algo-
rithm greatly improves the resolution and reduces the com-
putational complexity.

5. Conclusions

In this paper, we use FBSS and MUSIC algorithms for DOA
estimation of coherent signals based on the structure of
coprime arrays, where the spatial spectrum of each decom-
posed subarray can generate spectral peaks at the actual
DOAs and multiple ambiguous DOAs simultaneously. And
we solve the phase ambiguity by finding the common spectral
peaks in the spectrum of the two subarrays. Theoretical anal-
ysis and simulation results show that the algorithm can effec-
tively process DOA estimation of coherent signals, and the
coprime array has better performance than the uniform lin-
ear array. However, some spatial degrees of freedom are
sacrificed when using the spatial smoothing algorithm.
How to increase the spatial degrees of freedom and improve
the direction-finding accuracy under low snapshot numbers
will be our further research direction.
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