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Unmanned aerial vehicles (UAVs) have increased the convenience of urban life. Representing the recent rapid development of
drone technology, UAVs have been widely used in fifth-generation (5G) cellular networks and the Internet of Things (IoT),
such as drone aerial photography, express drone delivery, and drone traffic supervision. However, owing to low altitude and
low speed, drones can only limitedly monitor and detect small target objects, resulting in frequent intrusion and collision.
Traditional methods of monitoring the safety of drones are mostly expensive and difficult to implement. In smart city
construction, a large number of smart IoT cameras connected to 5G networks are installed in the city. Captured drone
images are transmitted to the cloud via a high-speed and low-latency 5G network, and machine learning algorithms are
used for target detection and tracking. In this study, we propose a method for real-time tracking of drone targets by using
the existing monitoring network to obtain drone images in real time and employing deep learning methods by which
drones in urban environments can be guided. To achieve real-time tracking of UAV targets, we employed the tracking-by-
detection mode in machine learning, with the network-modified YOLOv3 (you only look once v3) as the target detector
and Deep SORT as the target tracking correlation algorithm. We established a drone tracking dataset that contains four
types of drones and 2800 pictures in different environments. The tracking model we trained achieved 94.4% tracking
accuracy in real-time UAV target tracking and a tracking speed of 54 FPS. These results comprehensively demonstrate that
our tracking model achieves high-precision real-time UAV target tracking at a reduced cost.

1. Introduction

The application of 5G and the Internet of Things (IoT) rep-
resents the development of future drone technology. The
development of 5G technology has facilitated the emergence
of smart cities [1]. The recent construction of smart cities in
China has been elevated to a national strategy with the strong
support of the state, and considerable progress has been
made. As of February 2019, 100% of subprovincial cities and
93% of prefecture-level cities of China—consisting of more
than 700 cities in total (including county-level cities)—have
proposed or constructed smart cities. Regardless of the scale
of the smart city market or smart city information technology
investment, both exhibit a rapid growth trend and a large

future market space. IDC (Internet Data Center), an interna-
tional data company, predicts that investments related to
global smart city technology will reach 189.46 billion US
dollars in 2023. Meanwhile, the same investment in China will
reach 38.92 billion US dollars.

Smart cities comprehensively promote the development
of modern living through information technologies, such
as the IoT, cloud computing, and geospatial infrastructure,
in Figure 1. Cities that want high-quality development need
smarter infrastructure, in addition to roads, viaducts, hydro-
power, and so on. Smart city infrastructure, such as the IoT,
tends to become increasingly popular with the development
of 5G networks. Smart cities present new changes on multi-
ple levels, and the construction of smart cities provides
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unprecedented opportunities for development [2]. To sup-
port the information infrastructure of smart cities, the focus
is diverted to full coverage of the 5G network and object
recognition cameras, among others, which can be gradually
integrated with the IoT infrastructure to achieve a compre-
hensive IoT. From the perspective of technological develop-
ment, smart city construction requires the realization of full
perception, interconnection, universal computing, and inte-
grated applications through the IoT, cloud computing, and
other modern information technology applications repre-
sented by mobile technology.

The advantage of a smart city lies in its safety and secu-
rity. The steady progress of 5G technology has also facilitated
the continued optimization of city monitoring systems. Tra-
ditional security surveillance system cameras can be replaced
by smarter 5G cameras. 5G technology has three characteris-
tics: (i) high throughput, which solves the bandwidth trans-
mission problem of video upstream and downstream; (ii)
low-latency, which can achieve a theoretical value of 1ms
or 10ms in the 5G era; and (iii) ultra-large-scale. 5G inher-
ently supports ultra-large-scale device access and can support
more cameras and other IoT devices for the security industry
[3]. Only a city surveillance system with a wider bandwidth
and higher video stability can be combined with an intelli-
gent video surveillance cloud platform to achieve true
intelligent security. Moreover, compared with wired video
transmission, 5G wireless transmission is easier to deploy,
more convenient, and lower in cost. The high transmission,
high broadband, and high reliability of 5G can provide a
UAV identification system with more high-definition moni-
toring data at a faster speed. Using a surveillance system
composed of a network of urban surveillance cameras to
monitor, identify, and warn drones in designated areas in real
time can effectively solve the problems in drone surveillance.
The key to this method is to determine how to effectively
detect whether a drone to track and locate from the video
exists. In this study, we attempt to solve this problem by
machine learning.

With the continuous industrial and technological prog-
ress, low-altitude, slow-speed, and small-target UAVs have

been rapidly developed and are widely used. UAVs fly at
low altitudes; thus, radar waves may not reach these targets
as they are affected by the curvature of the earth and the shel-
ter of buildings. In addition, a large amount of ground clutter
will enter the radar receiver while it is working, which
impedes radar from distinguishing the echo signal of a
UAV target. The flying speed of UAVs is slow, and some
are even lower than the radar speed detection threshold, pre-
venting the pulse-Doppler radar from detecting the target.
Slow-flying UAVs are easily confused with slow-moving
clutter, such as weather clutter and bird swarm, rendering
target t recognition difficult. Their small size and radar reflec-
tion area, in addition to the weak echo signal, weaken w the
UAV detection ability of radar. However, owing to difficulties
in target detection and effective supervision, such UAVs have
incurred major security threats to countries in recent years.
In 2017, UAV interference occurred at Kunming Changshui
International Airport in China, resulting in 35 flights being
forced to divert to alternate routes and 28 flights being
delayed at the airport. Some flights were delayed for 4 h,
and the airport runway was forced to close for 45min. In
2018, “black flight” and “disturbing flight” UAV events in
Germany showed rapid growth trends. As of August 12,
2018, more than 100 UAV interference incidents occurred
in major airports in Germany, which exceeded the total num-
ber reported in 2017. Thus, methods for detecting such
targets have significant and immediate application require-
ments. Various recognition methods for UAV detection
currently exist, including radar technologies, audio signal
analysis, trajectory analysis, and image recognition.

Radar technology has been widely used in UAV detection
and classification because of its fast-remote sensing ability. In
radar technology, frequency-modulated continuous-wave
(FMCW) radar is the most common choice because it can
obtain sufficient information about targets with a short dwell
time. When the position of the UAV target changes relative
to the radar, the rotation of the wing can cause the radar echo
to modulate and produce a micro-Doppler effect. Analysis of
the micro-Doppler characteristics of radar echo can extract
detailed information such as the number of rotors of the
UAV target. The use of FMCW in surveillance systems is
limited because it cannot detect the distance from the target
to the radar, requiring manual intervention [4]. For UAV
recognition based on audio signals, the multirotor UAV can
produce FM (Frequency Modulation) noise when flying.
The current study proposes the RPM (rotation per minute)
speed wave correction method, which corrects the classical
noise prediction method of rotorcrafts, considers the fre-
quency modulation effect, and identifies UAVs. Large-scale
public activity venues, airports, government agencies, and
other places requiring UAV detection have large background
noise; thus, the noise emitted by UAVs for identification is
difficult to capture [5]. To address this concern, a UAV flight
path recognition network based on radar monitoring data is
constructed in accordance with the conditions identified by
research on UAV flight path identification and the character-
istics of radar data information of low-altitude surveillance
systems. A UAV identification method based on radar mon-
itoring data and recurrent neural network (RNN) flight path
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Figure 1: Drone in IoT smart cities.
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identification network is then proposed. Modeling with
RNN-Long Short-Term Memory networks after training
can identify the target trajectory in airspace, efficiently iden-
tify the trajectory data of the UAV, and achieve the expected
classification effect. However, collecting trajectory informa-
tion entails time, suggesting that a UAV is impossible to
identify and track in real time.

Traditional UAV detection techniques are often limited
in public places, government agencies, airports, and other
areas. Moreover, radar systems experience difficulty operat-
ing effectively in environments with many shelters, where
the RPM cannot operate because excessive background noise
and track recognition cannot meet the requirements of real-
time monitoring. For the past few years, the rapid improve-
ment of deep learning and computing abilities have greatly
enhanced the accuracy and speed of image target recognition
and classification, allowing the tracking of algorithms based
on target detectors. Relevant research has determined that
existing methods employing a target detection algorithm to
identify UAVs can only be used to identify targets but not
to target the identified drones. Meanwhile, the existing
UAV tracking algorithm has deficiencies in robustness and
real-time performance. To address these issues, this study
introduces the target tracking algorithm into the UAV recog-
nition algorithm.

2. Related Work

The basic idea of multitarget real-time tracking for UAV
positioning in IoTs is illustrated in Figure 2. The IoT camera
is arranged in the city, and the captured images are transmit-
ted to the cloud via 5G at a high speed. The real-time
machine learning algorithm is used to track multiple targets
of the drone. To achieve real-time target tracking, research
on related machine learning algorithms is also necessary.

Currently, the most widely used deep learning target
detection method is the target detection algorithm based on
CNNs (Convolutional Neural Networks). The development
of CNNs has a long history. In 1962, Hubel and Wiesel used
the brain of a cat to explore the visual system. In 1980,
Japanese scientist Kunihiko Fukushima proposed a neural
network structure with a convolutional layer and a pooling
layer. In 1998, Yann LeCun proposed LeNet-5 and applied
the backpropagation algorithm for training this type of
neural network structure, forming a prototype for the con-
temporary CNN. In the 2012 ImageNet Image Recognition
Competition Challenge, AlexNet proposed a deep structure
and dropout method discussed in the study by Hinton et al.
in which the error rate decreased from more than 25% to
15%, revolutionizing the field of image recognition. Follow-
ing the idea of AlexNet, LeCun et al. proposed DropConnect
in 2013, further reducing the error rate to 11%. Network in
Network was proposed by Yan Shuicheng et al. of NUS
(National University of Singapore), significantly altering the
structure of CNN. Based on these methods, Inception and
VGG architectures deepened the network in 2014 to about
20 layers and significantly improved the image recognition
error rate to 6.7%, indicating its similarity to the human error
rate of 5.1%. Ren Shaoqing and He Kaiming et al. of MSRA

(Microsoft Research Asia) optimized the original R-CNN
(region-based CNN) and Fast R-CNN with the development
of Faster R-CNN. The main contributions of Faster R-CNN
are the use and image recognition of the same CNN features
in which features can not only recognize the category of
objects in the image but also record their positions. He
Kaiming subsequently introduced Mask R-CNN and added
a mask head to Faster R-CNN. By using the mask head only
in training, the mask head message was passed back to the
original CNN feature, allowing the original feature to contain
more detailed information. Currently, the structure of CNN
is becoming increasingly complex, and the research direction
is to find algorithms that can automatically optimize its
structure. Supported by a deep coproduct neural network,
the target detection method can be divided into two catego-
ries: the two-stage method and the one-stage method [6–8].

2.1. Target Detection Algorithms

2.1.1. Two-Stage Approaches. The two-stage approach divides
the target detection task into two phases: RoI (region of
interest) extraction, followed by RoI classification and
regression. R-CNN, SPPNet, Fast R-CNN, Faster R-CNN,Mask
R-CNN, and Cascade R-CNN, among others, are all two-stage
approaches. Fast R-CNN before object detection is driven by
the region proposal approach and the region-based CNN. Fast
R-CNN uses a very deep network to achieve near real-time rates
when the time spent on regional proposals is ignored; mean-
while, the proposal is also the bottleneck of inference in the
detection system. Regional proposalmethods often rely on inex-
pensive functions and economic reasoning schemes. Selective
search is a widely used technique but is slower than effective
detection networks by about one order of magnitude [9].

2.1.2. One-Stage Approaches. The one-stage method elimi-
nates RoI extraction and then directly classifies and regresses
the candidate anchor boxes. As its name suggests, this
approach follows a completely different objective to apply a
single neural network to the entire image. The representative
algorithms are YOLO, R-SSD, RefineNet, and so on. Con-
trary to the classifier-based method, YOLO is trained on
the loss function directly corresponding to the detection per-
formance, while the whole model is trained under joint train-
ing [10]. As a representative one-stage method, YOLO has
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Figure 2: Drone tracking flowchart.
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significant advantages in computational speed over the two-
stage method. Subsequent versions of YOLO (YOLOv2 and
YOLOv3) exhibit improved detection accuracy while main-
taining a high detection speed.

The development of anchor-based approaches has
involved several issues. In the anchor mechanism, solid prior
knowledge is needed to set the appropriate super parameters
of scale and aspect ratio, and the number of targets in an image
is often limited. Setting a large number of anchor boxes based
on each anchor can produce a large number of easy samples
and lead to an out-of-balance state of positive and negative
samples. When target classification is based on the anchor
box, the threshold of intersection over union (IOU) is also dif-
ficult to set. By contrast, the anchor-free method can avoid the
anchor. While it cannot provide high detection stability, its
calculation time is significantly reduced, allowing real-time
high-precision detection and segmentation.

2.1.3. Anchor-Based. These methods typically require numer-
ous anchors to ensure a sufficiently high IOU rate on the
ground. Various hyperparameters and design choices are also
possible with anchor boxes, and these methods can become
more complex when these choices are used in conjunction [11].

2.1.4. Anchor-Free. Generally, the nonanchor detector
belongs to a first-class detector. Although the performance
of the one-stage approach CornerNet remains limited by its
relatively weak ability to reference global information, its
productivity can be increased by its ability to perceive visual
patterns within each proposed area. Thus, it can indepen-
dently identify the correctness of each bounding box.

2.2. Target Tracking Algorithms. Early tracking patterns used
temporal and spatial points of interest, which could not be
separated from some low-level features, such as corners and
intensity peaks [12, 13]. Although early classical algorithms
were able to achieve high-precision single-target tracking,
they could not meet the high-speed multitarget tracking
problem. Subsequently, because of the rising interest and
financial support of target detection in recent years [14],
detection by tracking has gradually led the research and
application of multitarget detection. The current target track-
ing algorithm completes detection and tracking simulta-
neously, transforming the existing detector into a tracker.

2.2.1. Classic Algorithms. The improved classic MHT
(Multiple Hypothesis Tracking) algorithm of the 1990s has
achieved performance close to that of the most advanced
methods in the standard benchmark dataset [15]. Using
accurate object detectors simplifies a small number of possi-
ble assumptions. The appearance model can be learned
efficiently using a regularized least-squares framework, and
each assumed branch requires only several additional actions
to take advantage of MHT when using higher-order informa-
tion. JPDA (Joint Probabilistic Data Association) has also
been improved to compute for high target and clutter density
applications. Many experiments have also shown that when
embedded in the simple tracking framework, the JPDA algo-
rithm performs competitively, with the most advanced global
tracking methods in both applications, while significantly

reducing the processing time [16]. While MHT and JPDA
retain their advantages, uncertainty and latency are high
when they are faced with difficult targets. The composite
complexity of these methods increases exponentially with
the number of trace lines, making it impractical to apply such
traditional methods in highly dynamic environments.

2.2.2. Multitarget Tracking. The latest research trend in mul-
titarget tracking is the use of the same framework to include
detection and tracking and the combination of the previous
two-stage methods into a one-stage multitasking process.
This technique uses the current and previous frames as input
and then predicts the target frame offset position of the next
frame. CenterTrack applies the detection model to a pair of
images and detects from previous frames. With minimal
input and the previous frame, CenterTrack can locate objects
and predict their association. Simple, online, and live, Cen-
terTrack can also be easily extended to single-eye 3D tracking
by tracking other 3D attributes [17]. The detector based on
the keypoint has shown satisfactory performance. However,
incorrect key matching still commonly occurs and can seri-
ously inhibit the performance of the detector. Compared
with traditional embedding methods, CentripetalNet com-
bines location information with match corner points more
accurately. The corner pool extracts the information from
the bounding box to the boundary. Feature matching of the
star-shaped deformable convolution network endows the
corner information with clarity. In addition, by equipping
CentripetalNet with a mask prediction module, it can explore
instance segmentation on an anchor-free detector [18].

2.2.3. Tracking by Detection.Mainstream target tracking algo-
rithms are currently designed according to the detection and
tracking mechanism. First, the target detection algorithm is
used to detect the target in each frame and obtain the corre-
sponding position coordinates, classification, confidence, and
other data. Data association is then employed to correlate pre-
vious detection results with the detection results of the previous
frame. However, when the target moves rapidly, traditional
tracking by detecting matching fails. The tracking method
based on trajectory prediction can successfully solve this prob-
lem. By adding a one-step Kalman filter to predict the tracking
state of the next frame, the predicted target state is compared
with the detected target to link the fast-moving objects.

Compared with detection and tracking combined into
multitasking, the traditional tracking-by-detection tracking
algorithm requires no high-cost video streaming data train-
ing and only needs to make several improvements on the
basis of the existing target detector and thereby obtain robust
and real-time compliance tracking.

The advantage of the algorithm used in this study is that it
does not rely on the video streaming dataset to train the
model. Only image datasets can be used to train effective target
tracking models to realize real-time tracking of UAV models.

3. Detection and Tracking Method of UAV

This study primarily is aimed at achieving a simple and
effective drone tracking method. In the target detector
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component, YOLOv3 [19] and CenterNet are selected to sat-
isfy the speed and performance requirements of the target
tracking model. As a representative of a single-stage network,
YOLOv3 has no complicated network structure and can be
well applied in industrial landing. As a representative of the
new-generation anchor-free detection model, CenterNet
can provide a good comparison with the algorithm under
the anchor mechanism. The strategy in this study is to add
data association between image frames on the existing target
detector to achieve target tracking. Moreover, the most cur-
rent detection and tracking methods require video streaming
data as training data. However, the dataset entails consider-
ably high costs. Consequently, we abandoned this tracking
algorithm and turned to the mainstream tracking-by-
detection tracking algorithm. This approach provides a
clever strategy to complete the training of high-precision
detection and tracking models with only image datasets.

3.1. Detector

3.1.1. Target Detector YOLOv3 and Its Improved Design.
YOLOv3 is the third-generation version of the YOLO series.
Compared with the two previous versions, the third-
generation version integrates newly proposed techniques in
target detection. The backbone partly draws on the structural
design of the residual network. In the Darknet-53 [20] net-
work, the neck part introduces the feature pyramid network
(FPN) [21] structure. The superior techniques of the previous
version are simultaneously retained, such as batch normali-
zation (BN) [22] and k-means clustering algorithm [23].
The network structure of YOLOv3 is presented in Figure 3.

In YOLOv3, the network uses an improved backbone,
upgrading Darknet-19, which was used by YOLOv2, to
Darknet-53. Darknet-53 uses a 3 × 3 convolution kernel to
replace the pooling layer, cuts the feature map, reduces the
dimensionality, and performs a 1 × 1 convolution operation
on the cut result to control the final output channel number.
This approach not only reduces the amount of data brought
by pooling and accelerates the calculation but also increases
the nonlinearity and robustness of the network.

Recognizing objects at different scales is a basic challenge
of Computer Vision, hence the proposal of the FPN struc-

ture. YOLOv3 introduces a structure similar to that of FPN
to perform information fusion on detection frames with
three different sizes. The FPN structure is aimed at using
the inherent multiscale pyramid layer of the deep CNN to
construct the feature pyramid, and its implementation
combines low-level features with enhanced resolution and
positioning information, together with high-level features
with strong semantic information. This approach helps the
network in detecting multiscale targets, particularly small
ones. The information fusion of FPN includes three routes.
The first route is a bottom-up pathway, which generates mul-
tiple feature maps of different layers through the forward
propagation of the backbone CNN. For the feature pyramid,
each stage is defined as a pyramid level. It is a top-down path-
way, which is the core of the FPN structure, as shown in
Figure 4. Its main function is the upsampling of the high-
order pyramid layer to the same size as that of the secondary
feature map. The lateral connection, which is mainly the high
semantic feature map and high positioning information fea-
ture map obtained from the previous two roads, is combined
by interpolation. Three sizes of prediction results—13 × 13,
26 × 26, and 52 × 52—are output to the network.

To accelerate the convergence speed during network
training and prevent gradient explosion or disappearance in
the backpropagation of the deep network, BN technology
was integrated with YOLOv2 and retained in YOLOv3. In
training the neural network, the input distribution of each
layer of the network is always changing at each stochastic
gradient descent for each minibatch. Owing to the sensitivity
interval of the activation function being fixed, when continu-
ous multilayer input distributions are present, the input dis-
tribution is in the activation function. In nonsensitive areas,
network convergence tends to stall. To solve this problem,
BN is added. The BN operation restricts the input distribu-
tion to a standard normal distribution with a value of 0 and
a variance of 1 via a normalized operation; thus, the gradient
change moves toward the optimal value of the loss function.
This approach accelerates network convergence.

YOLOv3 is a representative of the anchor mechanism in
the single-stage detection model. The method of setting set a
suitable anchor is a finishing touch to enhance the detection
performance of the model. In the anchor setting of YOLO, k
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-means clustering is still used for data processing to obtain
the distribution setting of the anchor. Unlike that in Faster
R-CNN, the anchor is manually generated through a preset
scale and coordinate relationship. In YOLOv3, cluster analy-
sis needs to be performed on the bounding boxes in the train-
ing set to generate appropriately sized anchors. In this study,
we use a modified k-means clustering algorithm.

Performing standard k-means clustering on the anchor
can induce the large box to generate a larger error during
clustering, and this error is expected to be almost unrelated
to the size of the box. The key to solving this problem is the
measurement of the distance between different anchors. We
use the maximum IOU (intersection over union) to replace
the Euclidean distance measure in the standard k-means
clustering algorithm. The IOU calculation is presented in
Figure 5. The formula is as follows:

d box, centroidð Þ = 1 − IOU box, centroidð Þ: ð1Þ

The brief process of k-means clustering for anchor boxes
is summarized:

(i) The coordinates of all labeled ground truth frames in
the training set are extracted

(ii) The coordinates of all ground truth (GT) boxes are
converted into the height information of the boxes

(iii) K GT boxes are randomly selected as anchor boxes;
with these k anchor boxes and the remaining GT
boxes, IOU is determined and d = 1-IOU is calculated

(iv) The GT boxes are classified. The distance fdði, 1Þ,
dði, 2Þ⋯ dði, kÞg of each GT box is compared with
each anchor box, and the smallest distance d is
selected. The GT box owned by the k anchor boxes
is ultimately recorded

(v) The anchor box is updated. For each anchor box, the
average value of the frame height of its GT box is cal-
culated, and the value is used as the new size of the
anchor box

(vi) Steps (i) to (iv) are repeated until the size of the
anchor box no longer changes

To perform the k-means clustering operation on the
anchor section, we set k = 9 because YOLOv3 has three fea-
ture maps. Each feature map requires three anchors of differ-
ent scales. To perform k clustering training on the anchor
data information in the training set and then ultimately
obtain nine anchor scales, (36, 17), (54, 28), and (81, 40)
are first used on the smallest 13 × 13 feature map. For the
26 × 26 feature map of the intermediate size, the three-scale
anchors (123, 71), (156, 128), and (259, 111) are used, and
(206, 172), (275, 217), and (380, 283) are prepared for the
largest 52 × 52 feature map.

The SPP-Net [24] network is used to improve the
YOLOv3 network. After the first layer feature map of
YOLOv3, a structure similar to the SPP network is added.
This addition is intended to effectively avoid the problems
of image area clipping and image distortion caused by zoom
operations and to solve the problem of CNN for image
repeated feature extraction, which greatly improves the speed
of generating candidate frames and reduces computational
costs. Adding the SPP module to YOLOv3 strengthens the
feature pyramid and semantic information and realizes the
extraction of local and global features on the smallest feature
map, which is favorable for addressing the problem of large
differences in target size. The structure of YOLOv3-SPP is
presented in Figure 6.
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Figure 4: YOLOv3 feature pyramid network structure.
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Figure 5: IOU calculation diagram.
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The loss function of the YOLOmodel must then be mod-
ified. The modified YOLO loss function mainly consists of
box loss, confidence loss, and category loss:

λ = λcoord 〠
S2

i=0
〠
B

j=0
Tobj
ij xi − xið Þ2 + yi − yið Þ2 + wi −wið Þ2�

+ hi − hið Þ2� + 〠
S2

i=0
〠
B

j=0
Tobj
ij Ci − Cið Þ2

+ λnoobj 〠
S2

i=0
〠
B

j=0
Tobj
ij Ci − Cið Þ2

+ 〠
S2

i=0
Tobj
i 〠

c∈classes
pi cð Þ − p∧i cð Þð Þ2:

ð2Þ

Tobj
i defines whether there is a target in the i -th grid; Tobj

ij

defines whether the j -th a priori box in the i -th grid is the a
priori box responsible for target prediction; and λcoord is the
frame loss. The coefficient λnoobj is the coefficient of no target
confidence loss; s is the side length of the feature map; and B
is the number of anchors for each grid. The original YOLO
loss function divides the width and height of the detection
frame with a root sign and then calculates the loss. The pur-
pose is to reduce the proportion of the width and height loss
occupied by the target frame size and prevent the coordinate
loss of the central point from being overwhelmed. However,
in the k mean value after clustering, the loss of the target
frame size is reduced. Consequently, the square root opera-
tion is no longer performed on the loss of the target frame

size. With this approach, the increased accuracy of anchor
initialization is ensured, and the initial error exerts less effect
and is easier to converge. The final loss category uses a cross-
entropy loss function design.

3.1.2. Target Detector CenterNet and Its Improved Design. In
recent years, the research on object detection has been redir-
ected improving the detection accuracy of target detectors to
focusing on the speed of the detector and then to the current
weighting of the accuracy and real-time performance of the
target detector. In this process, the two-stage detector meth-
od—for instance, the first stage of Faster R-CNN—proposes
possible regions of interest (RoIs) via the region proposal
network (RPN), combining the screening and calibration of
RoIs. The first one is similar to the effect of coarse
classification + fine classification. Owing to this design,
Faster R-CNN achieves high detection accuracy, but simulta-
neously, the two-stage network runs at a low speed (5 FPS)
and produces larger memory occupation, hindering its appli-
cation in many real-world scenarios. The two-stage method
is a slow process and thus has been reduced to a one-stage
technique. The detection speed of one-stage detectors repre-
sented by SSD [25] and YOLO can generally be increased to
more than 30 FPS, which basically meets the real-time
requirements of detection and also achieves good detection
accuracy. The most crucial problem at present is the poor
detection efficiency of small target objects in multiscale
detection tasks. Since the one-stage method does not have
the same proposal stage as the RPN network layer, only a
small part of the boxes can be selected as anchors when the
anchor is preset, and few boxes match small objects. Many
one-stage solutions have also been proposed in response to
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Figure 6: Modified YOLOv3-SPP network structure.
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this situation. For instance, in the YOLO series, a k-means
clustering algorithm is used for the dataset to generate a pre-
set anchor. Moreover, an FPN-like structure is added to the
train to enhance the positioning information of each layer,
including semantic information. Since the development of
target detectors, the anchor-based detection mechanism has
gradually hindered the improvement of the detection perfor-
mance. Therefore, a new method of solving object detection
has emerged using the anchor-free technique.

The anchor-free method was originally proposed by
CornerNet. Different from their previous target detector,
the anchor is preset to predict the offset in order to complete
the regression correction of the target frame. CornerNet
directly converts the object detection problem into a key-
point detection problem. The network directly predicts the
coordinates of the upper left point and the lower right point
of the target frame and uses the embedding vector to match
them and thereby complete the target detection. This
approach abandons the anchor mechanism and no longer
requires anchor setting; in addition, no subsequent screening
and nonmaximum suppression (NMS) operations of a large
number of anchors are needed. However, CornerNet also
has deficiencies because some errors inevitably occur when
the upper left corner and the lower right corner of the target
box are matched, resulting in the reduced accuracy of the net-
work. Moreover, the corner pooling it uses only relies on the
edge information of the object and consequently uses no
internal information, weakening its capability for global
information acquisition. Therefore, we used CenterNet, a
more advanced anchor-free detector (Figure 7).

CenterNet is further simplified in the idea of CornerNet.
The network directly predicts whether each pixel is the target
center; if so, it predicts the bounding box for the central point.
This method is closely related to the anchor-based technique
because each pixel in the feature map A pixel can be regarded
as a shape-agnostic anchor. However, the “anchor” is only
related to the position, and further predicting the offset and
using NMS for postprocessing is unnecessary.

Among Figure 7, Pre is a 7 × 7 residual error unit with a
step size of two. After this structure, the size of the picture
is compressed to 1/4 of the original picture, and two
hourglass modules perform keypoint detection. The final
output has three branches: (i) Heatmap with the dimensions
(W/4, H/4, C), which outputs the center point positions of
the objects in C categories; (ii) Offset, with the dimensions
(W/4, H/4, 2), which supplements and corrects the output
result of Heatmap to improve the accuracy of positioning;
and (iii) Height & Width, with the dimensions of (W/4,

H/4, 2), which predicts the width and height of the detection
frame centered on the keypoint.

The loss function of CenterNet also consists of three parts
(target category loss, target center point offset loss, and target
frame size loss):

Ldet = Lk + λsizeLsize + λoffLoff , ð3Þ

Lk =
−1
N

〠
xyc

1 − Y
∧
xyc

� �α

log Ŷxyc

� �� �
, if Yxyc = 1,

1 − Yxyc

� �β Y
∧
xyc

� �α

log 1 − Ŷxyc

� �� �
, otherwise,

8>>><
>>>:

ð4Þ

Loff =
1
N
〠
p

Ô
p
~ −

p
R
− p

~� �				
				, ð5Þ

Lsize =
1
N
〠
p

Ŝpk − sk
			 			: ð6Þ

Lk is the target category loss function. For a W ×H
picture I ∈ RW×H×3, the keypoint heatmap generated after

going through the network is Ŷxyc ∈ ½0, 1�ðW/RÞ×ðH/RÞ×C ; R is
the output stride; C is the number of keypoints; and N is
the number of keypoints in the heatmap. In the heatmap,
Ŷxyc = 1 indicates that the point is the center point of the tar-
get; Ŷxyc = 0 indicates that the point is the background; Yxyc is
the labeled GT information; α and β are the hyperparameters
of focal loss [26]; and the default settings are 2 and 4. The cat-
egory loss function in this part draws on the idea of focal loss.
The central point of the training weight in the easy example is
appropriately reduced, which is the loss value. When Yxyc = 1,
ð1 − Y∧

xycÞαacts as a correction function; if Ŷxyc is close to 1,
point detection is relatively easy, and ð1 − Y∧

xycÞαis corre-

spondingly lower. When Ŷxyc is close to 0, the proportion of
training should be increased because the center point has not
been learned. Therefore, ð1 − Y∧

xycÞαtends to be consider-
ably large. The purpose is to balance the training process,
that is, to solve the problem of imbalance between positive
and negative samples. Loff is the offset loss of the center
point, and Ôp~ ∈ RðW/RÞ×ðH/RÞ×C is the local offset of each pre-
diction center point, the target center point. The bias function
must account for the accuracy loss of the input picture after
the downsampling operation of the backbone network to ren-
der the prediction result closer to the target center point. In

Pre Hourglass module 1 Hourglass module 2

7×7 conv
stride = 2

Residual
stride = 2 Joint

Heatmap

Offset

Height&
width

Figure 7: CenterNet network structure based on Hourglass backbone.
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this case, Lsize is the loss function of the width and height of the
target frame for the frame k with coordinates ðxk1, yk1, xk2, yk2Þ.
The size of the target frame sk = ðxk2 − xk1, yk2 − yk1Þ and the loss
function of the center point error are then designed by the loss
function of L1 loss.

The backbone network of CenterNet consists of ResNet
[27] and DCN [28]. However, upsampling convolutional
layers, such as DCNv2, greatly limit the deployment of the
model. To improve the performance of the CenterNet net-
work and enable it to achieve real-time detection, we perform
TensorRT acceleration processing on CenterNet. Limited by
the design of the DCNv2 network, TensorRT does not cur-
rently support the acceleration operation of the DCN net-
work. The network used appears in Figure 8.

The CenterNet network is separated to achieve TensorRT
acceleration. The network is divided into two parts of the
backbone network, ResNet and DCN, and ResNet is sepa-
rately accelerated using TensorRT. This design can theoreti-
cally increase the running time of the backbone network by
10–20 times.

3.2. Tracker. After determining the detectors YOLOv3-SPP
and CenterNet, we use Deep SORT [29] as the follow-up
tracking algorithm. The Deep SORT algorithm is improved
on the basis of the Simple Online and Realtime Tracking
(SORT) algorithm [30].

The core of the SORT algorithm presented in Figure 9
consists of the Kalman filter and the Hungarian algorithm.
The Kalman filter algorithm is divided into two processes: pre-
diction and update. The algorithm defines the motion state of
the target as eight normally distributed vectors. When the tar-
get starts to move, the position and speed of the target detec-
tion frame of the current frame are predicted from the target
detection frame and target speed of the previous frame. This
process describes the prediction approach of the Kalman filter.
The update process of the Kalman filter is based on the pre-
dicted value of the previous frame and the observed value of
the current frame (the predicted value and the observed value
are in accordance with the normal distribution), which are
linearly weighted to obtain the current prediction state of the
system. The Hungarian algorithm then solves the matching

Speed-up by tensorRT

No change

TensorRT

512×512

conv1
bn1
relu

maxpool

Layer1
Layer2
Layer3
Layer4

Resdcn net

DCN_prev_trt

DCN DCN

hm wh reg hm wh reg

Figure 8: Split acceleration design.
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Figure 9: SORT algorithm flow.
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problem. After the similarity matrix, the Hungarian algorithm
can solve the problem of matching the target of the two frames
before and after the similarity matrix.

The most significant improvement of the Deep SORT
algorithm over the SORT algorithm is the introduction of
deep networks for appearance feature extraction and the
use of models in pedestrian rerecognition for feature extrac-
tion. This operation also substantially reduces the amount
of ID switching in the tracking algorithm. The Deep SORT
algorithm can be divided into three steps: (i) predicting the
trajectory tracks by Kalman filter; (ii) matching the predicted
trajectory tracks with the detection frame in the current
frame, including cascade matching and IOU matching, by
using the Hungarian algorithm; and (iii) the third step which
is to update the Kalman filter (Figure 10).

In matching the detection frame and the predicted trajec-
tory, the situations shown in Figure 11 are expected to occur.

(i) Matched Tracks in which the detection frame and
the track match: ordinary continuous tracking
targets are classified under this situation, and the
targets in the previous and subsequent frames exist
and can be matched.

(ii) Unmatched Detections in which the detection box
does not find a matching track: if the detector sud-
denly detects a new target in the image, the detection
frame cannot find a matching target in the previous
trajectory.

(iii) Unmatched Tracks in which the track does not
match the detection frame: the continuously tracked
target disappears from the video or flies out of the
shooting range of the camera, and the predicted tra-
jectory does not find the matching detection frame
information.

(iv) Another situation occurring when two targets over-
lap: that is, when one target is occluded by another
target, the trajectory of the occluded target cannot
find a matching detection frame, and the target tem-
porarily disappears from the image. When the
occluded target reappears, the ID assigned by the

occluded target should not change as much as possi-
ble and can be recognized by the algorithm as the
target corresponding to the previous ID. This prob-
lem cannot be solved using the SORT algorithm.
Thus, cascade matching in the Deep SORT algo-
rithm is needed to solve it.

4. Experiments

4.1. Dataset. We generated a drone target dataset because of
the lack of a publicly available one. To ensure the diversity
of data sources and process the drone pictures downloaded
from the Internet, we also prepared four drones for shooting:
two quad-rotor drones and two single-rotor drones. We
obtained drone flight shots in both indoor and outdoor sce-
narios. The video was shot at 30 frames per second to prevent
the pictures from appearing too similar between the data.
One of 10 video frames was selected as the dataset, and
2459 pictures were obtained. We also crawled 341 pictures
from the Internet as a supplement. The dataset composition
is listed in Table 1.

After the photos were acquired, the corresponding data-
sets were built for the YOLO and CenterNet networks. The
YOLO dataset had its format requirements, and the Center-
Net network used the COCO dataset format.

1 2

3 4

Figure 11: Four tracking situations.
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In the YOLO dataset format, a picture corresponds to a
text annotation file, which contains the category and coordi-
nate information of all target frames in the corresponding
picture. The YOLO format requires that the coordinate
values of all target frames be normalized. The conversion for-
mula is as follows:

x′ = xmin + xmaxð Þ
2W

,

y′ = ymin + ymaxð Þ
2H

,

w′ = w
W

,

h′ = h
H
,

ð7Þ

where W and H are the width and height of the picture; x′
and y′ are the coordinates of the center point of the target
frame, respectively; and w′ and h′ are the width and height
of the target frame, respectively, and are normalized based
on the width and height of the picture operation.

The COCO dataset format requires the coordinates of
the upper left corner of the target frame and the width
and height of the target frame. They are converted using
the following formula:

x′ = xmin,

y′ = ymin,

w′ = xmax − xmin,

h′ = ymax − ymin,

ð8Þ

where x′ and y′ are the coordinates of the center point of
the target frame and w′ and h′ are the width and height
of the target frame, respectively.

After obtaining the labeled data files, we divided the data-
set into two parts with a train set : test set ratio of 9 : 1. The
training set contained 2520 images, and the test set contained
280 images.

4.2. Experimental Performance Index

4.2.1. Target Detection Index

(i) True positives (TP): the true value is a positive exam-
ple, and the predicted value is a positive example.

(ii) True negatives (TN): the true value is a negative exam-
ple, and the predicted value is a negative example.

(iii) False positives (FP): the true value is a negative
example, and the predicted value is a positive
example.

(iv) False negatives (FN): the true value is a positive exam-
ple, and the predicted value is a negative example.

As shown in Figure 12, the main indicators used are as
follows:

(i) Precision, the proportionofTP in the recognition result

Precision = tp
tp + fp

ð9Þ

(ii) Recall, where TP accounts for the proportion of all
positive samples in the dataset

Recall = tp
tp + fn

ð10Þ

(iii) AP, where the size of the area is enclosed by the
precision-recall curve

(iv) Mean (mAP), the average of multiple categories
of AP

TP

FN

FP

True
value

Predicted
value

TN

P P

NN

Figure 12: Four predicted results.

Figure 13: Image data splicing.

Table 1: UAV dataset.

Black four-
rotor

White four-
rotor

Yellow single
rotor

Red single
rotor

Total

823 678 500 799 2800
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4.2.2. Target Tracking Indicator. To measure the target track-
ing algorithm performance, the following are the main
indicators:

(i) ID switch (IDSW), target ID switch total

(ii) Fragmentation (FM), the total number of inter-
rupted target tracking

(iii) Multiple object tracking accuracy (MOTA):

MOTA = 1 −
∑t FN + FP + IDSWð Þ

∑tGT
ð11Þ

where GT is the ground true box of each frame.

4.2.3. Training Result

(1) Detection Results. YOLOv3, YOLOv3-SPP, and Center-
Net algorithms were used to train the previously constructed
drone dataset. The training machine environment was the i7-
9700K CPU and the single card 1080 Ti GPU. The deep
learning framework used by YOLOv3 was Pytorch1.4.0, and
that by CenterNet was PyTorch 1.2.0. YOLOv3 and
YOLOv3-SPP used the same training parameters. A batch
size of 8300 epochs was trained, and CenterNet was trained
for 150 epochs with a batch size of 16. By using this approach,
the training volume of the three models was identical. More-
over, in the training process of YOLOv3, a data enhancement
operation of randomly splicing data pictures was used
(Figure 13), which could achieve multiscale training of the
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Figure 14: YOLOv3 loss curves.
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target and also simulate the appearance of multiple targets in
the same picture.

Figures 14–16 present the loss function curves during
training of the three models:

All loss curves presented in Figure 16 meet the training
expectations. Comparison and observation of the data in
Table 2 reveal that the performances of YOLOv3 and
YOLOv3-SPP do not considerably vary, although that of
YOLOv3-SPP is slightly better. The speed of CenterNet can
only reach one-third than that of YOLO, and the accuracy
is lower than that of the YOLO model. Compared with
YOLOv3, CenterNet eliminates the anchor setting and
NMS operation calculation, and the final output feature
map of CenterNet has only one heatmap layer. Therefore,

CenterNet should theoretically exhibit superior real-time
performance than the YOLO series. However, CenterNet
only needs one layer of feature maps; for such a layer to
obtain sufficient feature information, a larger backbone net-
work and a more complex feature fusion neck layer need to
be used to extract features. Thus, the amount of calculation
is not comparable to the YOLOv3 series. In summary, the
single-stage detection model YOLOv3 under the anchor
mechanism is evidently superior to CenterNet under the
anchor-free mechanism on our UAV dataset.

(2) Tracking Algorithm Experiment Results. The core of Deep
SORT matching tracking is to extract effective image feature
information by using deep networks. The existing deep
network is a suitable network model for pedestrian rerecog-
nition. This model was originally a 751 classification
network. The previous training data used 751 images of dif-
ferent positions and different angles as the training set for
classification model training. The remaining problem was
pedestrian reidentification.

In order to apply the algorithm to our drone information
feature extraction, we used the detector to collect the drone
image data, crop the image part in the detection frame, and
classify and store it according to the categories of the four
drones. We then used the previous pedestrian rerecognition
model for classification training. The model obtained by
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Figure 16: CenterNet loss curves.

Table 2: A comparison of model training time and detection
performance.

Algorithm model YOLOv3 YOLOv3-SPP CenterNet-DLA34

Training time 12.5 h 9 h 8.5 h

mAP (IOU = 0:5) 0.988 0.993 0.958

Precision 0.971 0.982 0.961

Recall 0.962 0.973 0.942

Detection speed 69.5 FPS 69 FPS 23 FPS
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classification training was employed as the feature extraction
model of our tracking algorithm. The operation is illustrated
in Figure 17.

Finally, the two detectors were combined with the tracker
to obtain the following tracking results. The left picture in
Figure 18 is the tracking effect of YOLOv3-spp + Deep
SORT, and the right picture is the tracking effect of
CenterNet + Deep SORT.

For the same online drone video tracking, the results are
obtained as shown in Table 3.

5. Conclusion

In this study, we introduce a new method, referred to as
tracking-by-detection, in tracking UAV targets. The

approach can achieve real-time high-precision tracking. This
method used YOLOv3 as the detector and Deep SORT as the
tracking mode to achieve a detection speed of 54 FPS and
MOTA reaching 94.4%, which meets the requirements of
real-time tracking of multiple targets for drones. On this basis,
we alsomodify the YOLOv3 network by changing the loss func-
tion of the model in accordance with the characteristics of the
drone target and adding the SPP module to collect the drone
data to generate the initial anchor. These operations improve
the MOTA of the modified YOLOv3-SPP network by 2% with
high detection speed, which is only 5 FPS. For comparison, we
also attempt tracking UAV targets by using the anchor-free
mode. This mode is currently widely used in target tracking,
with CenterNet as the target detector and Deep SORT as the
tracker. The final detection speed of this model is 25 FPS, and
the MOTA is 66.4%, only slightly enhancing real-time tracking.
The experimental results indicate the effectiveness of the pro-
posed approach and confirm that YOLOv3-SPP + Deep SORT
is highly applicable for multitarget real-time tracking of UAVs.
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Figure 17: Generating data for Deep SORT.
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Figure 18: Target tracking results in IoT.

Table 3: Target tracking performance.

Tracking
model

YOLOv3-SPP + Deep
SORT

CenterNet + Deep SORT

FP 0 0

FN 85 503

ID switch 4 31

FM 13 28

GT 1591 1591

MOTA 0.94406 0.66436

Speed (FPS) 54 25
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