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Aiming at the problem of insufficient number of samples due to the difficulty of data acquisition in the identification of tunnel
lining defects, a generative adversarial network was introduced to expand the data, and the network was improved for the
mode collapse problem of the traditional generative adversarial network and the problem that the generated image features
were not obvious. On the basis of the WGAN-GP network, a deep convolutional network is selected as its backbone network,
and the effectiveness of the deep convolutional network in feature extraction by Lv et al. (2022) is used to improve the quality
of the images generated by the network. In addition, the residual module is introduced into the discriminator network, and the
upsampling module is introduced into the generator network, which further solves the problem of gradient disappearance of
the two networks during the update iteration process through the idea of cross-connection, while better retaining the
underlying features, which effectively solves the problem of mode collapse and low quality of generated images in the
generative adversarial network. Compared with the original network, the image quality of the generated adversarial network is
improved, and the discriminator and generator losses converge faster. At the same time, the recognition accuracy of the
YOLOV5 network is improved by 4.4% and the overfitting phenomenon is alleviated, which proves the effectiveness of the

method under the limited training data set.

1. Introduction

In today’s era, rail transit has become an important means to
solve urban traffic jams. Taking advantage of tunnels can
effectively avoid the time cost and safety risks caused by traf-
fic jams. However, the existence of the tunnel itself also has
many security risks, such as the construction at the begin-
ning of the engineering hidden trouble, time erosion under
the aging problem, and the sudden geological disaster caused
by the structural hidden trouble. How to avoid and repair
these hidden dangers effectively is an important problem
for national property and people’s safety. Using GPR image
combined with deep learning to identify defects in tunnel
lining can effectively save manpower and material resources,
which is of great significance to the society [1]. However, it is
not easy to obtain the data of tunnel lining disease, and there
is no public data set for use. The lack of data set is likely to

lead to the problem of insufficient precision or poor robust-
ness of the trained identification network. Therefore, how to
effectively expand the number of samples is a problem that
must be faced.

In the traditional way of expanding data set, the number of
samples can be expanded by rotating, clipping, and adding
noise to the original data in the way of data enhancement
[2]. Goodfellow et al. [3] proposed a generative adversarial
network (GAN) model in 2014. Based on the idea of game the-
ory, they constructed a network of mutually opposing genera-
tors and discriminators to generate images, and the image
generation effect was relatively good. At present, GAN has
been successfully applied in image repair and restoration, ani-
mation generation, superresolution image reconstruction, and
other fields [4]. Arjovsky et al. [5] proposed to use Wasserstein
distance to replace KL divergence and ]S divergence in the
original GAN objective function to construct a WGAN
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network in view of problems such as training instability and
gradient disappearance in the original GAN. However,
although WGAN network solves the problem of original
GAN in principle, its effect is not significantly improved in
the process of image generation compared with traditional
GAN. Therefore, Gulrajani et al. [6] proposed Wasserstein
generative adversarial network (WGAN-GP) with the intro-
duction of gradient penalty terms. The existence of gradient
penalty terms effectively stabilized the training of WGAN net-
work and significantly improved the quality of generated
images.

At the application level, Wang Jianlin et al. made use of the
effectiveness of WGAN-GP in image generation to solve the
problem of low detection accuracy of cooperative target caused
by complex component structure and change of measurement
environment in 3d precision measurement of large components
by expanding the sample number of cooperative target image
and realized multitype cooperative target detection [7]. Li
et al. used WGAN-GP network to generate rice disease image
samples, expanded the small sample set of rice disease image,
and effectively enhanced the model training and learning effect
[8]. Xu et al. [9] proposed an oversampling model based on
convergent WGAN, called convergent WGAN (CWGAN), in
order to improve the training stability of GAN oversampling
to detect network threats. The training process of CWGAN
consists of multiple iterations. In each iteration, the training
time of the discriminator is dynamic, depending on the conver-
gence of the discriminator loss function in the last two itera-
tions. When the discriminator is trained to converge, the
generator is trained to generate new minority samples.

The above methods still have the problems of poor sample
quality or slow convergence of network loss. Aiming at this
problem, this paper proposes a WGAN-GP generative adver-
sarial network model based on deep convolutional networks
and uses the superiority of deep convolutional networks in fea-
ture extraction to improve network performance. At the same
time, residual module and upsampling module are introduced
into discriminator network and generator network, respec-
tively, which can avoid the loss of bottom features by crossing
connections, alleviate the problem of disappearing gradient of
network, and improve the stability of network. Finally, the
generated defect data is combined with the original data to
form an enhanced data set to improve the accuracy and
robustness of the recognition network.

2. Introduction to GAN

2.1. Generative Adversarial Networks. Generative adversarial
network (GAN) is a generative model proposed by Goodfel-
low et al. In 2014, its main idea is to make two neural net-
works continuously play binary minimax game, during
which the model gradually learns the real sample distribu-
tion. Generally speaking, when the confrontation between
two networks reaches Nash equilibrium, the training is con-
sidered to be completed [10].

Figure 1 shows the basic model of GAN. The input of gen-
erator network (denoted as G) is random variable (denoted as
Z) from hidden space (denoted as p,), and the output generates
samples. Its training objective is to improve the similarity
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F1GURE 1: Generate adversarial network model.

between the generated samples and real samples, so that they
cannot be distinguished by discriminator network (denoted
as D). Let the distribution of the generated sample (called p,)
be as similar as possible to that of the real sample (called p,).
The input of D is the real sample (denoted as x) or the gener-
ated sample (denoted as x"), and the discriminant result is out-
put. The training objective is to distinguish the real sample
from the generated sample. The discriminant results are used
to calculate the objective function, and the network weights
are updated by back propagation.

Therefore, the training purpose of GAN can be described
as minimizing the distance between p_ and p, while maximiz-
ing the sample discrimination accuracy of discriminator D.
Thus, the expression of the objective function can be obtained:

min maxV (D, ) = E,.,, log D(x)] + E,.,, [log (1 - D(x/)ﬂ :
(1)

2.2. WGAN-GP. The problems and challenges that the original
GAN has been facing can be summarized in one sentence: the
better the discriminator, the more serious the generator gradi-
ent disappears. During the training process, if the discrimina-
tor is trained too well, the generator will have a problem that it
cannot continue to learn. When the discriminator is the opti-
mal discriminator, the optimal discriminator is brought into
the generator loss function, and after transformation, we can
get the following:

E.. logL +E, logL -2log 2.
PNl P\l
Priy Py Priy * Py

(2)

At this point, KL divergence is introduced:
P 1
KL(PIHPZ) ZEXNPI log F, (3)
2

and JS divergence is as follows:

P, +P, 1
+ =KL( P,
2 2

1
ISP = 5K

P, ;—P2>,
(4)

to measure the similarity between two data distributions,
so Equation (2) can be written as follows:

2JS(P,||P,) —2log2. (5)
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If two distributions have no overlap at all, or if their over-
lap is negligible, their JS divergence is a constant log 2.
Whether P, and P are far away or close at hand, JS divergence
is constant log 2, and this leads to the problem of gradient dis-
appearance. At this point, the generator will not be able to
propagate back, resulting in no further learning.

In view of the above problems, Wasserstein distance pro-
posed in literature [5, 11] is used as a new similarity mea-
surement standard. Wasserstein distance, also known as
Earth-Mover (EM) distance, is defined as follows:

inf
W(pr’ Pg) = y~H(Pr,Pg)E(x,y)~y[||x _yH] (6)

II(P,, P,) is the set of all possible joint distributions of p,
and p, combined. For each possible joint distribution y, it is

possible to sample (x, y) ~y from it to obtain a true sample
x and a generated sample y and calculate the distance between
the pair of samples: ||x —y||. E(, ), [|[x - y||] represents the

expected distance of samples under the joint distribution y.
And the Wasserstein distance is the minimum expected value
of all possible joint distributions. The advantage of Wasser-
stein distance is that even if two distributions do not overlap,
it still reflects the distance between them. The iyanH(Pr,P 9) in
Wasserstein distance definition cannot be solved directly, so
the author transforms it into the following form based on
existing theorems. Then, calculate the expected value of the
sample distance under the joint distribution y. And the lower
bound that we can take on this expectation value in all possible
joint distributions is defined as the Wasserstein distance. The
advantage of Wasserstein distance compared with KL diver-
gence and JS divergence lies in that Wasserstein distance can
still reflect their distances even if the two distributions do

not overlap. The ;,nfn (pr,pg) Of Wasserstein’s distance definition

cannot be solved directly. The author uses an existing theorem
to transform it into the following form:

W(E,P) =g By [(W)-Eep /() ()

where x represents the Lipschitz constant, which is defined
as an additional constraint is imposed on a continuous func-
tion f, requiring that there exists a constant K >0 such that
any two elements x; and x, in the domain are satisfied:

(1) = f ()| < Ky = x5 (8)

However, although WGAN is proved to be perfect theo-
retically, the real effect is not very good, mainly because of
the Lipschitz continuity condition, and WGAN-GP is an
improvement on the Lipschitz continuity condition. Its algo-
rithm process includes two important processes:

(1) Use random numbers to make an interpolation

between the generated data (denoted as x') and the
real data (denoted as x)

Xe—ex+(1-e)x. 9)

(2) Introduce gradient penalty term

LO — Dy (x) = Dy(x) + A(|V:Du(®)l, = 1) (10)

Advantages of WGAN-GP compared with WGAN are as
follows:

(1) When the weight of WGAN is cut (for example,
when the weight is cut to [-0.01,+0.01], it will lead
to uneven weight distribution), WGAN-GP can
make good weight distribution by using gradient
punishment and give full play to the learning power
of neural network

(2) The gradient of D is the entire sample space includ-
ing the generated image and the real image. It is very
difficult to find the gradient directly. However, using
random numbers to make an interpolation between
the generated data and the real data, to replace all
of the parts can achieve similar results, and it is
much simpler

3. Improved WGAN-GP Network Model

3.1. Generator Network Structure. The generator structure
model is shown in Figure 2. Compared with the original net-
work, the generator network has made the following
improvements:

(1) Upsampling is carried out by transpose convolution

(2) Batch-normalization has been used in each layer
except for the input layer of the network to stabilize
learning

(3) Remove the full connection layer and use the full
convolutional network to increase the stability of
the model

(4) The activation function in the network uses ReLU
function, and the last layer uses Tanh activation
function

In each layer of the module, two different methods are
used for upsampling, including one nearest neighbor upsam-
pling and deconvolution. The two results are added and aver-
aged to get the final output. This module can effectively
prevent information loss and error caused by upsampling. Dif-
ferent sampling methods can extract different shallow local
image features, which is conducive to the extraction of texture
features and obtain better generation effect. At the same time,
as a shortcut, it is completed directly by simple identity map-
ping, so there is no need to introduce additional parameters,
reducing the computational burden.
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Ficure 2: Generator structure model.

3.2. Discriminator Network Structure. As the depth of deep net-
work increases, the training of deep learning network becomes
more and more difficult, mainly because in the training process
of network based on stochastic gradient descent [12], the mul-
tilayer back propagation of error signal is very easy to cause the
phenomenon of “gradient dispersion” or “gradient explosion.”
This phenomenon has troubled the design, training, and appli-
cation of deeper convolutional neural networks for a long time.

In 2015, the 152-layer ResNet (residual network) pro-
posed by He et al. [13] won the image recognition champion
of ILSVRC competition (top1 error 3.6%), which well solved
the problem of training difficulties caused by network depth,
and its network performance was far superior to traditional
network models. Its main idea is to reduce the computa-
tional burden through the identity mapping of shortcut
(shortcut connection), and its basic residual module network
structure is shown in Figure 3.

Assuming that the expected mapping is, and the residual
module converts the expected mapping to H(x) = F(x) + x
by using the shortcut, then there is H' (x) = F'(x) + 1 during
back propagation. The existence of constant 1 effectively
ensures that the gradient will not disappear when calculating
the gradient. At the same time, when the network is propagat-
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FIGURE 3: Residual module structure diagram.

ing, we can ensure that there is more than one path for the
information at the bottom layer to be transmitted to the next
layer. Even if the gradient of a certain network layer becomes
0, the information will be transmitted across the connection at
this time to ensure that the performance of the residual net-
work is better than that of the ordinary network. Therefore,
the discriminator network structure of this design is as follows:

(1) The convolution of stride and padding was added to
replace the pooling layer

(2) In addition to the last output layer, the full connec-
tion layer is removed and the convolutional network
is used to increase the stability of the model

(3) The LeakyReLU function is selected as the activation
function in the network, while the last layer does not
use the activation function

(4) Introduce residual modules to optimize the network
between each layer

Its structural model is shown in Figure 4.

4. Experiments

4.1. Data Set Establishment. The data used for deep learning
this time came from a tunnel bureau in Xi’an. The interior of
the tunnel lining was scanned and imaged by ground pene-
trating radar, and five kinds of disease images, such as voids
and incompactness, were selected as input data for model
training. A certain proportion is divided into training set
and test set. After the traditional data enhancement of the
training set and test set, the training set is divided into train-
ing set and verification set, which is convenient to under-
stand the training degree in the training process. The
collated data set of tunnel lining diseases includes 3800
ground penetrating radar images, and part of the collected
disease images are shown in Figure 5.

4.2. Experiment Configuration. In the process of neural net-
work construction, in order to reduce the repeated creation
of various tedious environmental codes, the deep learning
framework constructed in advance can be used. The deep
learning framework used in this experiment is PyTorch
framework, which has three main characteristics: concise,
high-speed, and easy to use.
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FIGURE 4: Discriminator network structure diagram: (a) no residual module network and (b) discriminator residual network model.

PyTorch is designed for minimal encapsulation, using
existing code rather than rewriting existing code. PyTorch’s
simplicity allows developers to understand the logic of each
step of the code. At the same time, the code of PyTorch frame-
work runs faster than many frameworks, and the implementa-
tion and invocation of the code is very convenient, so this
framework is selected as the construction framework of all
the networks in this experiment.

The experimental environment of this paper is Windows10
system, in which the batchsize of the improved WGAN-GP
network model is set as 64, and that of YOLOv5 network is
set as 2. The improved WGN-GP network uses Adam opti-
mizer, and the initial learning rate is set to 0.0002 with 3000
iterations. YOLOV5 network iterates 200 times. Table 1 lists
the detailed parameters of the experimental environment.

4.3. Result Analysis

(1) After the improved WGAN-GP network is defined,
the collected data set of tunnel lining diseases is used
to train the improved WGAN-GP network and com-
pare it with the original network. As shown in
Figure 6, the feature of disease image generated by
WGAN-GP network reconstructed by convolutional
network is significantly better than that generated by
WGAN-GP network constructed by full-connection
layer. The improved WGAN-GP network based on
convolutional layer is obviously clearer than the
WGAN-GP network based on convolutional layer.
In addition, the number of parameters in the original
WGAN-GP network using full connection layer is
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FIGURE 5: Tunnel disease images: “TK” stands for “void beneath”; “BM” stands for “not dense”; “YBM” stands for “seriously not dense.”

TaBLE 1: The software and hardware environment of the experiment.

Configuration Content

The operating system Windows10

The graphics card Nvidia GeForce GTX 3070TI
Memory 8G

CPU 12th Gen Intel(R) Core(TM) i5-12400F
Programming language Python

Deep learning framework

Programming platform

PyTorch (version 1.11)
Pycharm

F1GURE 6: Comparison of image quality generated by WGAN-GP networks with different structures (Epoch = 500, Imgsize = 64 * 64, and
label: empty). (a) WGAN-GP (full-connection layer structure) network generates disease samples. (b) WGAN-GP (deep convolution
layer structure) network generates disease samples. (c) WGAN-GP (shortcut structure) network generates disease samples.

252m, and the number of parameters in the
improved network is only 1.77m, which reduces
92.98%, greatly reducing the operation cost

(2)At the same time, compared with the generation net-
work that does not introduce the residual module in the dis-
criminator, the improved generative confrontation network
converges faster in both D_loss and G_loss and can be gener-
ated earlier. For stable and high-quality disease images, the
loss functions of the two networks are shown in figure 7

(3)In the official code given by YOLOV5 [14], its target
detection network has four versions of different depth and

breadth, namely, YOLOv5s, YOLOv5m, YOLOv5], and
YOLOv5x models. Among them, YOLOV5s has the smallest
depth and the smallest width of feature map, while YOLOv5]
is the largest. Take YOLOv5s as an example, its network
structure is shown in Figure 8, which can be divided into
input, backbone, neck, and prediction according to different
stages of data processing. Among them, data enhancement,
adaptive picture scaling, and Ancho box calculation of input
image data are all completed in the input part. Backbone
uses focus structure and CSP structure to extract the charac-
teristic information of input data and sends it to neck for
further study. The neck part adopts FPN+PAN [15, 16]



Wireless Communications and Mobile Computing 7

10 40 A
0 30 A
@ o 20 4
2 10 E
| |
a © 0
-20
0 A
-30
-10 1
0 2000 4000 6000 8000 10000 12000 14000 0 500 1000 1500 2000 2500 3000
Iter_num Iter_num
— D_loss — G_loss
(a) (b)
200 A
0 4
150
-50 4
-100 100 A
E z
1 -150 A o
A CR—
-200 +
-250 - 01
-300 A 50 A
0 2000 4000 6000 8000 10000 12000 14000 0 500 1000 1500 2000 2500 3000
Iter_num Iter_num
— D_loss — G_loss
() (d)

Ficure 7: Comparison of convergence speed of network loss: (a) no residual module discriminator loss; (b) no residual module
discriminator loss; (c) including residual module discriminator loss; (d) including residual module discriminator loss.
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FiGUure 8: YOLOV5s network structure diagram.

TaBLE 2: Identification accuracy table of tunnel defect data (excluding generated pictures).

Defect types ValmAP@.5 TestmAP@.5 Label
Not dense 98.5% 90.4% 0
Void beneath 98.9% 86.8%

Cavity 98.5% 88.7% 2
Seepage 99.5% 77.6% 3
Seriously not dense 98.0% 70.3% 4

All 98.7% 82.8% All
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TaBLE 3: Identification accuracy table of tunnel defect data (include generated images).

Defect types ValmAP@.5 Test mAP@.5 Label
Not dense 98.0% 91.4% 0
Void beneath 99.0% 88.2% 1
Cavity 98.9% 89.3% 2
Seepage 97.6% 79.4% 3
Seriously not dense 97.8% 87.6% 4
All 98.3% 87.2% All

structure, and the CSP2 structure is adopted to strengthen
the ability of network feature fusion. Finally, prediction is
made in the prediction part, loss function is calculated, and
NMS [17] (nonmaximum suppression) is used to screen
the multiobjective box

Finally, 1909 images were selected for the data samples
to be integrated and labeled, and then, the original data set
was mixed and sent to YOLOV5 network for training and
recognition. Under the same test set, the tunnel disease test
results are shown in Tables 2 and 3.

5. Conclusions

Generative adversarial networks have always been a hot
research field in artificial intelligence. Its advantage lies in
the introduction of a new data enhancement method, which
can greatly improve the robustness and security of neural
networks. However, it also faces prominent problems,
including the efficiency of model training, the probability
of model crash, and the quality of generated samples. There-
fore, it is of great significance to further study and explore
generative adversarial networks.

Under the premise of limited tunnel image disease data,
this paper introduces generative adversarial network to
expand the data and makes improvements to the problems
existing in the original generative adversarial network, which
greatly improves the quality of generated samples. At the
same time, compared with the original data set, the average
recognition rate of the training network using the expanded
data set is increased by 4.4%, and the recognition rate of all
classes is greatly improved. The experimental results show
that the improved WGAN-GP network designed in this
paper effectively improves the quality of generated samples,
strengthens the stability of generative adversace network,
and improves the recognition accuracy of the network effec-
tively with the expanded data samples.

In this experiment, the generative adversarial network is
mainly improved. In future research, in addition to further
optimizing the generative adversarial network, the used rec-
ognition network can also be improved, which is believed to
improve the recognition rate of diseases.
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