
Retraction
Retracted: Heterogeneous Cluster Application Communication
Optimization and Computer Big Data Management

Wireless Communications and Mobile Computing

Received 18 July 2023; Accepted 18 July 2023; Published 19 July 2023

Copyright © 2023 Wireless Communications and Mobile Computing. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

This article has been retracted by Hindawi following an inves-
tigation undertaken by the publisher [1]. This investigation has
uncovered evidence of one or more of the following indicators
of systematic manipulation of the publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and the

research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Peer-review manipulation

The presence of these indicators undermines our confi-
dence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice is
intended solely to alert readers that the content of this article is
unreliable. We have not investigated whether authors were
aware of or involved in the systematic manipulation of the
publication process.

Wiley andHindawi regrets that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research
Publishing teams and anonymous and named external
researchers and research integrity experts for contributing to
this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their agree-
ment or disagreement to this retraction. We have kept a record
of any response received.

References

[1] H. Wang, “Heterogeneous Cluster Application Communica-
tion Optimization and Computer Big Data Management,”
Wireless Communications and Mobile Computing, vol. 2022,
Article ID 1106003, 7 pages, 2022.

Hindawi
Wireless Communications and Mobile Computing
Volume 2023, Article ID 9810896, 1 page
https://doi.org/10.1155/2023/9810896

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9810896


RE
TR
AC
TE
DResearch Article

Heterogeneous Cluster Application Communication
Optimization and Computer Big Data Management

Hongyan Wang

Computing Center of Anshan Normal University, Anshan, Liaoning 114007, China

Correspondence should be addressed to Hongyan Wang; 201903322@stu.ncwu.edu.cn

Received 17 June 2022; Revised 19 July 2022; Accepted 26 July 2022; Published 4 August 2022

Academic Editor: Balakrishnan Nagaraj

Copyright © 2022 Hongyan Wang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to adapt to the constantly updated heterogeneous hardware and super-large-scale parallel computing environment and
solve the problems of low programming level and difficult development, modification, and debugging of commonly used
solutions, the author proposes a method for application communication optimization and computer big data management
based on heterogeneous clusters. A new language mechanism is introduced to describe the multidimensional rule structure,
arrangement, and communication mode of data and threads; and a software migration and optimization method between
different types of heterogeneous systems based on the new language mechanism is proposed. And take direct method
turbulence simulation as an example. Experimental results show that based on the Parray mechanism, it took only one week to
complete the rapid migration of turbulence simulation applications on the Tianhe 1A system, and it was successfully run on a
scale of 8192 cubic meters. Conclusion. The method realizes communication optimization and fast porting in different
heterogeneous systems.

1. Introduction

In recent years, deep training has been successfully imple-
mented in various skills such as drawing and natural language
processing, as shown in Figure 1. The time is very long, usually
days or even weeks, and in order to improve the positioning of
the deep training standard, the measurement of data is too
numerous, the time required for training also increases, and
the computing power of the computer is limited and cannot
be satisfied on demand. In order to improve the efficiency of
system training, distributed training has been carried out on
the cluster in recent years, and the training process on the orig-
inal single machine is distributed to multiple machines for par-
allel execution, which improves the processing speed of data
samples and greatly shortens the training time, for example,
recently, HUAWEI CLOUD ModelArts used 16 nodes and 8
v100 GPUs per node to train ResNet-50 in a cluster distributed
manner, and it only took 10 minutes and 28 seconds to con-
verge on the ImageNet dataset. Distributed deep learning is a
necessary means to cope with the increasing scale of data and
models, becoming a key issue in both academia and industry [1].

When performing distributed training in a heteroge-
neous cluster, due to the large differences in computing
and network performance of different machines, the itera-
tion time of different worker nodes under the same work-
load will also vary greatly. When using the BSP algorithm,
since each iteration needs to wait for all worker nodes to
complete, the performance of distributed training is limited
by the slowest worker node [2]. When using the ASP algo-
rithm, each worker node updates parameters independently,
and after completing some iterations, it can start the next
iteration without waiting for other worker nodes, but this
will make each worker node train based on different param-
eters, especially when some worker nodes are significantly
slower than others, the slow worker nodes have completed
multiple iterations and updated parameters during one iter-
ation, while the slow worker nodes still calculate based on
the old parameters before, however, the gradient update
parameters obtained by training with outdated parameters
will cause the parameters to deviate from the optimal solu-
tion, resulting in incorrect convergence, thereby slowing
down the convergence speed [3].

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 1106003, 7 pages
https://doi.org/10.1155/2022/1106003

https://orcid.org/0000-0002-4232-4017
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1106003


RE
TR
AC
TE
D

2. Literature Review

Wang et al. created a software library capable of supporting
C++ applications, using a hybrid implementation of the
MIC coprocessor, communicating with SCIF for data trans-
fer and synchronization. Although COI and SCIF have their
own research work and programming guidance, so far, no
researchers have proposed a programming method that uses
COI and SCIF mixed. Many core algorithmic programs and
real-world applications have been studied on MIC coproces-
sors [4]. Jayakumar et al. summarized the key techniques for
obtaining high performance of MIC coprocessing [5]. Xu
et al. ported an existing scientific computing application
and a number of microkernels to a single MIC coprocessor
[6]. Li et al. developed a SIMD molecular dynamics applica-
tion on a single MIC coprocessor [7]. Goldenberg et al.
accelerated large-scale sparse linear system iterative algo-
rithm PQMRCGSTAB, image and video compression IDCT
algorithm, molecular dynamics simulation application, etc.
on MIC coprocessing and studied the automatic conversion
method and optimization of offload code from OpenACC to
Intel offload mode method [8].

In terms of programming framework research, Bachiller
et al. proposed the Uintah software computing framework
and solved the interaction problem of solving multiple fluid
structures on an adaptive structured grid [9]. For Uintah, the
problem of solving complex multiscale and multiphysics
fields is studied, by integrating various simulation compo-
nents, users can describe the dependencies between compo-
nents through DAG diagrams, automatically generate
parallel code and handle load balancing. The fluid structure
joint interaction simulation (Uintah AMR MPMICE) is car-
ried out on Stampede accelerated by coprocessing, by using

peer-to-peer MPI communication, the MPI process is run
separately on the host CPU and the coprocessor, the device
is regarded as an independent node, and it performs cooper-
ative calculation through MPI communication. The MPI
process on the device develops CPU multicore or coproces-
sor many-core parallelism through Pthreads multithreading.
The host side of each node in this study starts an MPI pro-
cess, each MPI process develops sixteen Openmp threads,
and the coprocessor side is Two MPI processes, and each
MPI process develops sixty OpenMp threads. The applica-
tion scales up to sixteen nodes, each with a MIC coprocessor.
However, Uintah has a load imbalance problem on hetero-
geneous systems and even affects computing performance
in nearly 60% of cases.

Taking the direct turbulence simulation method as an
example, the author discusses the new software that should
be used in this calculation from the perspectives of software
compatibility, programming process, algorithm design and
implementation, and software support and provides experi-
ence in various applications of the exchange software [10].

3. Research Methods

Existing compound sentences are often used in native lan-
guage groups. Table 1 lists the characteristics of the existing
programming paragraphs. Among them, the first row is cat-
egorized by how the language is used: (1) the operations of
data communication and sharing are realized in the form
of libraries, while other operations are represented by tradi-
tional serial language elements; (2) the parallel semantics are
expressed explicitly or implicitly by language constructs or
primitives. The second column categorizes the languages
according to the address space visible to each execution

Data summary
module

Memory Storage controller The processor Acquisition
equipment

Figure 1: Flowchart of computer big data management.

Table 1: Features of existing cluster programming languages.

Language
Accomplish Address space Control

Language Library Global Local Cluster Multicore Many core

Chapel √ √ √ √
CAF √ √ √
HPF √ √ √
HTA √ √ √ √
MPI/PVM √ √ √
Titanium √ √ √
UPC √ √ √
X10 √ √ √ √
ZPL √ √ √

2 Wireless Communications and Mobile Computing



RE
TR
AC
TE
D

element of the parallel program: in MPI, processes can only
access data directly from the local node. Other programming
models allow threads to access global data at any node. The
third line describes resource management in different lan-
guages [11].

The performance of data access, such as the ease of oper-
ation, can be divided into bandwidth constraints (such as
storage bandwidth and communication bandwidth), data
constraints, and external memory. During the counting pro-
cess, important data can be stored in one large memory,
multiple accelerator cards, or other memory. Multicore pro-
cessors are now perfect for heavy duty applications that
seem to have high performance. Computation-intensive
tasks suitable for many-core acceleration (such as dense
matrix multiplication and LINPACK) can generally achieve
satisfactory performance utilization on many-core clusters,
and the data storage location has little effect on performance.

However, the storage bandwidth is high, but the data
area is good. Designing low-bandwidth communication
functions (such as count disparity) requires data directly
on the accelerator card for large memory and network con-
nectivity [12, 13]. Using high bandwidth communications
such as FFT, data can be stored directly in memory and
counted by multiple card accelerators. This category of
applications requires the bandwidth of the PCI bus to match
the network bandwidth; otherwise, the bottleneck of the
entire system will appear at the narrowest bandwidth.

For high-bandwidth communications such as FFTs, the
performance of each band is often limited by node network
bandwidth, bandwidth of multiple PCI interfaces, accelerator
performance, GPU count speed, etc. itself. The speed of data
transfer between the network and the PCI bus far exceeds that
of the card. Such problems do not ostensibly benefit from
many-core acceleration, but the implementation in many-
core clustered FFT shows that many-core cluster architecture
is beneficial to increase the effective total bandwidth of
single-node memory and processing units. Additionally, the
card can store more than the CPU cache, which means large
operations can be sent to memory at once and run faster,

reducing data to the same level as the average [14]. How to
make a processor for high-bandwidth applications, optimiza-
tion of non-homogeneous parallel computing algorithms usu-
ally focuses on reducing the number of data transfers from
memory to memory to the processor.

The new 3D FFT algorithm for the first GPU cluster
divides the Z dimension into N3-sized 3D data ðZ ∗ Y ∗ XÞ
by P nodes and N/P Y − X 2D pages by the amount of mem-
ory (X is a tight configuration). Each page is sent to the GPU
for 2D FFT computation and back into large memory. All
nodes need to reassemble the Z dimension at each node, then
swap big data like Alltoall for FFT computation on GPU. GPU
memory typically ranges from 3GB to 6GB, which is larger
than the CPU cache, allowing it to receive very large blocks
from main memory for a single operation and charge. Allow
limited bandwidth of the main PCI bus. The bandwidth limi-
tation of PCI bus betweenmainmemory and GPU is compen-
sated. In contrast, when doing file blocking, the CPU needs to
access critical memory more than the large cache.

The difficulty with the above scheme is the need to change
the size of the matrix divided by each cluster. Heterogeneous
clusters have more multitier structures than traditional sys-
tems [15]. Taking the GPU cluster as an example, as shown
in Figure 2, the data stored in the memory is very important,
but including the GPU, the data must be stored in the GPU
memory; at the same time, in order to utilize GPU for high-
performance computing, it is necessary to consider the shared
memory and register structure of GPU and perform targeted
programming. Therefore, many groups have more options
for large changes of matrices in the FFT than the key memory
model for existing groups.

There are several ways to identify changes in cluster dis-
tribution in different groups: (1) large communication inter-
faces like Alltoall can switch locations from nodes; (2) main
memory can carry tens of GB of data exchanged in scale; (3)
GPU can carry high-speed small matrix switches [16, 17].
Fixing all the benefits of network communication, how
memory bandwidth is still less than GPU memory band-
width, is not the key to algorithm optimization, but how to

GPU registers

Shared memory

Device memory

Main memory

GPU

GPU registers

Shared memory

Device memory

Main memory

GPU

Figure 2: Multilayer storage structure of GPU cluster.

3Wireless Communications and Mobile Computing



RE
TR
AC
TE
D

reduce memory performance. The main innovation is to fur-
ther divide the data into blocks during the data transmission
process and adjust the relative offset of the data blocks, so
that the connection between this “offset switch” and the
GPU transposition can only be completed for three hours
of large, medium, and small. Memoryless transposes in the
main move function. Note: different communication sys-
tems have different rules for communication granularity
(such as the length of data segments). For example, a PCI
transfer from critical memory to the GPU requires more
than 2MB of storage to almost peak, while the optimal den-
sity for an Infiniband network requires more than 10,000
bytes. Because data sharing reduces the complexity of rela-
tionships, the best strategy for saving base memory must
take the complexity of relationships into account.

The authors performed validation experiments on a
small GPU cluster at PKU McClus to determine the idea of
using data movement to FFT groups and adjusting the rela-
tive variance of data blocks to minimize memory critical
functions [18]. Although the cluster has only 16 nodes, it
has a unique architecture, as shown in Figure 3. Each node
has two IOHs, each connected to the GPU and Infiniband
NIC.

To design dual GPUs and dual Infiniband NICs in a
PKU McClus GPU group, we developed detailed procedures
for changing the process of distributing data to 2 GPUs per
count and using 2 Infiniband NICs to communicate across
multiple integrated data channel (directly via IB/veRbs via
communication module).

The dimension transformation of the PKUFFT algo-
rithm for this PKU McClus GPU cluster is as follows. Divide
the array data into 16 segments according to the length of X,
and divide them into 16 nodes. Since they each have 2 GPUs,
the data nodes are split into 2 additional parts. Also, the
decomposition of the Y length is the same as the decompo-
sition of the X length. First, each GPU performs 128
(x1 dimension × x0 dimension) 2D FFTs and computes the
data in Y- and Z-dimension instructions. The 128 2D FFTs
are divided into 32 groups, each group is 4 2D FFTs of 4
096 × 4 096. The loop executes 32 times, sending a set of files

to the GPU and 2D each time. Compute the FFT, and pull
the result to the Infiniband output, unlike a GPU. In the pro-
cess of writing from the Infiniband output to the Infiniband
output buffer of other nodes, the program transposes the x3
dimension and the y3 dimension; when the data output by
Infiniband is not in the pinned memory of the correspond-
ing GPU, the dimension is adjusted; finally, the transforma-
tion is repeated in GPU memory before the 1D FFT of the X
dimension after the data is transferred from the memory key
to GPU memory. Note: in the subsequent implementation,
the GPUDiReCe technology is used, so that the data in the
Infiniband output buffer can be directly uploaded to the
GPU device memory, thus realizing a complete headless
transposition operation.

4. Analysis of Results

4.1. Tianhe 1A Cluster FFT Algorithm and Its Parray
Description. Tianhe-1 group and Peking University McClus
are two GPU groups, but the models are completely differ-
ent: each Tianhe-1 group has one GPU and only one com-
munication card. Although the implementation of the PKU
McClus FFT algorithm has a similar concept, it needs to
provide data sharing for each session and repeat the repre-
sentation of the communication [19, 20]. The author only
describes the implementation of the FFT algorithm for the
Tianhe-1 cluster.

We use Parray to represent the pseudocode of the algo-
rithm. For simplicity, the pseudocode only recognizes the
array type, not the exchange of real objects. As a benchmark,
we employ a single-precision complex float2 (length 8 bytes)
to complex (C2C) transform and assume that the data is
communicated and back in place after the FFT computation.

In the above virtual code, “2DCUFFT” refers to calling
the CUFFT library to perform N2 2D FFT in Y and X
dimensions, while “1DBATCHED CUFFT” refers to per-
forming FFT calculation of size N in N dimension Z. The
dummy code also gives time estimates for each step. βh2d
represents the ideal data transmission bandwidth from the
main memory to the GPU card (about 5GB/s). βd2h is the

GPU0 CPU GPU1

IOH0

HCA0

IOH1

HCA1

ETHN

ICH

HDISK

Infiniband switch 36 ports

GPU0 CPU GPU1

IOH0

HCA0

IOH1

HCA1

ETHN

ICH

HDISK

...

Node 16Node 1

40 gb40 gb

16 node GPU cluster
1 Gb OS Ethernet

Figure 3: Architecture of PKU McClus.

4 Wireless Communications and Mobile Computing



RE
TR
AC
TE
D

bandwidth of data transmission back to the main memory
(about 4GB/s). βd2d is the bandwidth of data transmission
in the GPU card (about 100GB/s). βa2a is the average band-
width of all nodes communicating to each port at the same
time (1.2GB/s for the whole Tianhe machine). And FFT is
the single-precision floating-point of reasonable-scale FFT
on GPU (the total number of floating-point for a single M-
length FFT is 5 Mlog M) calculation speed (about
200Gflops/s). The time-consuming estimation of the three-
dimensional FFT with the size of 14336 for the whole 7168
nodes of Tianhe is as follows:

N3

P
· 2 · 8

βh2d
+ 2 · 8

βd2h
+ 2 · 8

βa2a
+ 2 · 8

βd2d
+ 5 log N2

ϕFFT
+ 5 log N

ϕFFT

�
≈ 35:8s

�
:

ð1Þ

We measured the whole machine in Tianhe for 35 s.
The FFT data values used in the turbulence simulations

are half of those tested above, split into a forward transform
of real to complex (R2C) and a reverse transform of complex
to real (C2R). Both real and hard have digit counts, so the
exchange rate can be returned to that location without fur-
ther communication at the end of the line. Note: the R2C
and C2R of the CFFT library are slower than C2C, and the
model performance varies greatly, so C2C is a necessary
measure.

The 3D FFT performance of the GPU group used by
Parray was tested on Tianhe 1A and compared with Intel
MKL 10.3.1.048 [21]. Figure 4 is the 3D FFT comparison
of different scales of the same hard disk (figure PKUFFT is
the 3D FFT model of the GPU group used by Tianhe-1 A
Parray). It can be seen that the performance of PKUFFT
far exceeds that of MKL. Figure 5 shows that PKUFFT has
better performance scalability compared to MKL.

4.2. Migration of Direct Method Turbulence Simulation
Program. Isotropic direct simulation methods are often used
for large Fourier switches. In Tianhe-1A, the measurement
of the whole machine can reach 14,336 three-dimensional
single-digit real numbers, and the packaging material can
reach 11TB. A turbulent system must have more than a
dozen arrays to represent the different components of the
system. The competition has shifted from traditional culture
to different groups of Tianhe No. 1, and it is necessary to
reconstruct the distribution, preparation, and output infor-
mation according to the characteristics of the heterogeneous
groups of buildings.

For the core FFT algorithm used in direct competition,
although the FFT algorithm of Tianhe Group 1A is similar
to the application algorithm of Peking University McClus,
due to changes in product distribution, data preparation
and distribution must be reused. Its implementation requires
re-coding universally. There are similar problems for porting
applications of different heterogeneous groups. The applica-
tion development based on Parray provides a new mecha-
nism for software migration between different types of
heterogeneous systems.

According to the Parray programming interface, agile
development and changes of applications in heterogeneous
groups can be seen with minimal and fastest code modifica-
tions by changing the file types and sizes described in Parray
programs. Rapid migration of Parray-based applications
typically includes the following steps, please scan the OSID
for specific requirements.

(1) Improve the Parray programming interface for new
heterogeneous processes, and provide support for
new threads and storage formats, this process is done
by programmer programmers

0 2000 4000 6000 8000 10000

200

300

400

500

600

700

800

900

1000

G
 fl

op
s

X⁎Y⁎Z

PKUFFT 256 nodes
MKL 4096 nodes

Figure 4: Comparison of Parray 3D FFT code with system performance.

5Wireless Communications and Mobile Computing



RE
TR
AC
TE
D

(2) For example, for GPU clusters, providing GPU
device memory and support for GPU phones
through the Parray programming interface, a CUDA
strategy must be developed; similarly, new types of
support can be quickly introduced to the MIC team

(3) Modifications to applications using Parray are made
by the application programmer. For applications not
using Parray, use Parray to describe their file distri-
bution and classification, and compare stakeholders;
for applications successfully implemented using Par-
ray, the Parray file format and Parray parallelization
code need to be modified to accommodate different
new demand. During traditional operation, data
transfer variables can be looked up by nesting multi-
ple turns, clear description, and application in Parray
array mode

(4) Debug new heterogeneous groups for Parray appli-
cations. In the process of porting turbulent services,
the original code based on MPI is to ensure the accu-
rate operation of heterogeneous groups. The pro-
gram is not optimized for the same acceleration
components and network transfer types. Then, enter
the Parray process/thread array mode in the code,
and specify the current counting process/thread par-
allel mode; the Parray data array format is intro-
duced to represent the data array according to the
type of application data relationship, and the Parray
mixed array format shows the variety of data arrays
sex. Allocation is between storage methods and sub-
routine communication. Simplify the description of

data communication methods and optimize trans-
mission. For equations that require composite accel-
eration, the thread-array type heterogeneous
Chinese material is called, further consider the opti-
mal representation of data storage distribution and
transmission in heterogeneous computing compo-
nents and complete the implementation and trans-
plantation of thread computing code in the thread
array of heterogeneous computing components

According to the Parray mechanism, we achieved a rapid
conversion of the thermal efficiency of the Tianhe-1A sys-
tem within a week, achieving a measurement of 8192 cubic
meters.

5. Conclusion

The authors introduce Parray’s communication model to
describe the different models, planning, and communication
of information and messages. For new heterogeneous pro-
cesses, Parray can extend the line array type, expand the
array support type, and represent new data distribution
models; at the same time, by extending and optimizing the
performance of subroutine replication, new submissions will
be provided. Multithreaded array type integrated telephone
can support the transmission of various heterogeneous sys-
tems. As an example of using direct turbulence simulation
in heterogeneous group transformation, the authors develop
an agile method for transforming heterogeneous group pro-
grams by changing file types and sizes, based on the Parray
programming interface. Minimal and faster than code mod-
ification, this process is especially important for the use of
heterogeneous groups.

PKUFFT
MKL

0
0

2000 30001000 4000 5000 6000 7000 8000
Number of nodes

2000

4000

6000

8000

10000

12000

14000

16000

G
 fl

op
s

Figure 5: Speedup of Parray 3D FFT code.

6 Wireless Communications and Mobile Computing



RE
TR
AC
TE
D

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The author declares no conflicts of interest.

References

[1] H. Miyamura, R. G. Bergman, K. N. Raymond, and F. D. Toste,
“Heterogeneous supramolecular catalysis through immobili-
zation of anionic M4L6 assemblies on cationic polymers,”
Journal of the American Chemical Society, vol. 142, no. 45,
pp. 19327–19338, 2020.

[2] X. Gong, F. Wu, R. Xing, J. Du, and C. Liu, “LCBRG: a lane-
level road cluster mining algorithm with bidirectional region
growing,” Open Geosciences, vol. 13, no. 1, pp. 835–850, 2021.

[3] M. Fan and A. Sharma, “Design and implementation of con-
struction cost prediction model based on SVM and LSSVM
in industries 4.0,” International Journal of Intelligent Comput-
ing and Cybernetics, Ahead-Of-Print(Ahead-Of-Print), vol. 2,
2021.

[4] J. Wang, X. Li, R. Ruiz, J. Yang, and D. Chu, “Energy utilization
task scheduling for mapreduce in heterogeneous clusters,”
IEEE Transactions on Services Computing, vol. 15, no. 2, p. 1,
2020.

[5] J. Jayakumar, B. Nagaraj, S. Chacko, and P. Ajay, “Conceptual
implementation of artificial intelligent based E-mobility con-
troller in smart city environment,” Wireless Communications
and Mobile Computing, vol. 2021, Article ID 5325116, 2021.

[6] H. Xu, Y. Liu, and W. C. Lau, “Optimal job scheduling with
resource packing for heterogeneous servers,” IEEE/ACM
Transactions on Networking, vol. 29, no. 4, pp. 1553–1566,
2021.

[7] L. Li, Y. Diao, and X. Liu, “Ce-Mn mixed oxides supported on
glass-fiber for low-temperature selective catalytic reduction of
NO with NH3,” Journal Of Rare Earths, vol. 32, no. 5, pp. 409–
415, 2014.

[8] E. P. Goldenberg and C. J. Carter, “Programming as a language
for young children to express and explore mathematics in
school,” British Journal of Educational Technology, vol. 52,
no. 3, pp. 969–985, 2021.

[9] P. Bachiller, I. Barbecho, L. V. Calderita, P. Bustos, and L. J.
Manso, “Learnblock: a robot-agnostic educational program-
ming tool,” IEEE Access, vol. 8, pp. 30012–30026, 2020.

[10] T. Saito and Y. Watanobe, “Learning path recommendation
system for programming education based on neural net-
works,” International Journal of Distance Education Technolo-
gies, vol. 18, no. 1, pp. 36–64, 2020.

[11] Z. Xia, X. Han, and J. Mao, “Assessment and validation of
very-large-eddy simulation turbulence modeling for strongly
swirling turbulent flow,” AIAA Journal, vol. 58, no. 1,
pp. 148–163, 2020.

[12] K. Tawackolian and M. Kriegel, “Turbulence model perfor-
mance for ventilation components pressure losses,” Building
Simulation, vol. 15, no. 3, pp. 389–399, 2022.

[13] R. Huang, “Framework for a smart adult education environ-
ment,” World Transactions on Engineering and Technology
Education, vol. 13, no. 4, pp. 637–641, 2015.

[14] Y. Li and F. Xu, “All-phase fast Fourier transform and multiple
cross-correlation analysis based on Geiger iteration for acous-
tic emission sources localization in complex metallic struc-
tures,” Structural Health Monitoring, vol. 21, no. 3, pp. 1235–
1250, 2022.

[15] Y. Chen, W. Zhang, L. Dong, K. Cengiz, and A. Sharma,
“Study on vibration and noise influence for optimization of
garden mower,” Nonlinear Engineering, vol. 10, no. 1,
pp. 428–435, 2021.

[16] Y. Qiang and W. Li, “Accelerated pseudo-spectral method of
self-consistent field theory via crystallographic fast Fourier
transform,” Macromolecules, vol. 53, no. 22, pp. 9943–9952,
2020.

[17] A. Bhardwaj, “Machine learning and optimization techniques
in major human fatal disorders: a short communication,”
International Journal of Computer Applications & Information
Technology, vol. 13, no. 1, pp. 423–427, 2021.

[18] J. Zhang, “Interaction design research based on large data rule
mining and blockchain communication technology,” Soft
Computing, vol. 24, no. 21, pp. 16593–16604, 2020.

[19] H. Xiao, S. Ali, Z. Zhang, M. S. Sarfraz, and M. Faisal, “Big
data, extracting insights, comprehension, and analytics in car-
diology: an overview,” Journal of Healthcare Engineering,
vol. 2021, Article ID 6635463, 2021.

[20] W. Wang, “Deployment and optimization of wireless network
node deployment and optimization in smart cities,” Computer
Communications, vol. 155, pp. 117–124, 2020.

[21] I. Awajan, M. Mohamad, and A. Al-Quran, “Sentiment analy-
sis technique and neutrosophic set theory for mining and
ranking big data from online reviews,” IEEE Access, vol. 9,
no. 99, pp. 47338–47353, 2021.

7Wireless Communications and Mobile Computing




