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As a widely used technology, visual saliency detection has attracted a lot of attention in the past decades. Although a large number
of methods, especially fully convolutional neural network- (FCN-) based approaches, have been proposed and achieved
remarkable performance, it is still of great value to extend representative architecture to visual saliency detection task. In this
paper, we propose an improved U-Net-like network, pyramid feature attention-based U-Net-like (PFAU-Net) for visual
saliency detection problem. The main improvements of the proposed model include that in order to enable the network to
extract features with more representation ability, we introduce a context-aware feature extraction (CFE) module and a channel
attention module into the U-shaped backbone to obtain valuable multiscale features, and a feature pyramid path is also utilized
in the decoder part of the network to take advantages of multilevel information. Moreover, we construct the loss function
using three terms including pixel-level cross-entropy, image-level intersection over union (IoU), and a structural similarity
term, which aim to make the model learn more saliency related knowledge. To verify the effectiveness of the proposed model,
we conduct extensive experiments on six widely used public datasets, and the experimental results indicate that (1) our
improved model can significantly improve the performance of the backbone network on all test datasets, and (2) our proposed
model can outperform comparison FCN-based networks and nonneural network approaches. Both objective and qualitative

evaluations verify the effectiveness of our proposed model.

1. Introduction

As an initial step of many computer vision tasks, visual
saliency detection is widely used in a vast range of computer
vision application fields such as object detection [1], visual
tracking [2], image retrieval [3], and image semantic seg-
mentation. Visual saliency detection, which is inspired by
the ability of the human vision system (HVS) to quickly
focus on impressive regions, is aimed at locating important
areas of natural images. It has attracted extensive attention
from researchers, and much progress has been made in the
past decades.

To solve the saliency segmentation problem, many
saliency algorithms have been proposed to distinguish

salient objects from irrelevant backgrounds [4-19]. Early
saliency detection significantly relies on artificially designed
low-level features and various prior knowledge to determine
saliency. These methods usually focus on low-level visual
features, and it is difficult to obtain satisfactory results in
images with complex scenes. With the development of deep
learning technique, convolution neural network (CNN)
attracts many researchers’ attention and is widely used in
various vision-related fields including saliency detection.
Compared to methods based on artificial features and prior
knowledge, CNN-based frameworks have made significant
progress in exploiting high-level semantic features [7-9].
As representative ability of features significantly affects the
performance of algorithms, it is worth exploring models that
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take advantages of multilevel features and other helpful cues
like contextual information for saliency detection task. In
addition, although many end-to-end models have been pro-
posed with the advent of fully convolutional neural network
(FCN) [20], it is still valuable to introduce and develop typ-
ical FCN models, e.g., U-Net [21], for other tasks into
saliency detection. In this paper, we concentrate our efforts
on expanding and improving the U-Net-like FCN network
to the visual saliency detection task. We try to improve the
network’s representation ability by considering the different
characteristics of the encoder and decoder, as well as high-
level features and low-level features, and we propose an
improved U-Net-like based on a pyramid feature attention
strategy with the U-shaped encoder-decoder architecture in
[22] as a backbone. More specifically, for the deep layers of
the encoder, we introduce a context-aware pyramid feature
module to obtain multiscale and multireceptive field high-
level features, and then, the channel attention module is
adopted to integrate different scales and receptive fields by
assigning larger weight to channels conducive to saliency
detection. In addition, in order to effectively extract high-
level semantic information related to salient objects, we fur-
ther construct a feature pyramid fusion path for the decoder
to extract multilevel semantic information related to saliency
targets. In summary, the main contributions of this paper
are as follows:

(1) In this study, we are committed to exploring the use
of U-Net-like architecture in the visual saliency
detection task and propose an improved U-Net-like
network by considering the difference between
high-level and low-level features, as well as the char-
acteristics of encoder and decoder

(2) Context-aware pyramid feature module and channel
attention module are employed to help the encoder
to obtain contextual information, and a feature pyr-
amid path is added to the decoder to extract high-
level semantic information by aggregating the multi-
level outputs of the decoder

(3) Experiments are conducted on six challenging data-
sets to test our improved U-Net-like model, and
the experimental results indicate the effectiveness of
the proposed network on the visual saliency detec-
tion task

The rest of the paper is organized as follows: Section 2
reviews the related works, followed by introducing the pro-
posed method in Section 3, and Section 4 presents the exper-
imental results and discussion, and we finally give the
conclusions in Section 5.

2. Related Works

The existing saliency detection methods can be roughly
divided into conventional methods and deep neural
network-based methods. Conventional saliency detection
approaches are mainly nonneural network methods [15,
16, 23], and they usually use low-level handcrafted features
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to estimate the saliency maps of images. For example, Cheng
et al. [15] proposed a global contrast method using the his-
togram of pixel color to construct region contrast. In litera-
ture [24], local texture patterns, color distribution, and
contour information were combined to encode superpixels
for region contrast computing. In addition to handcrafted
features, heuristic priors are also often employed for saliency
detection. Typical priors include contrast prior [25, 26], cen-
ter prior [25], and boundary prior (background prior) [10],
and these priors are used to identify initial foreground or
background candidate regions. Although conventional
methods have achieved good performance, handcrafted fea-
tures and heuristic priors are difficult to acquire high-level
global semantic knowledge about objects.

In recent years, deep convolutional neural networks
(CNN) have achieved remarkable performance on various
vision tasks. Different from many traditional algorithms that
rely on low-level handcrafted features, CNN can effectively
learn high-level semantic features with stronger representa-
tion ability from raw data automatically. In terms of visual
saliency detection tasks, early CNN-based methods used
CNN to learn high-level semantic features [27-29] and
achieved superior performance compared with traditional
algorithms using handcrafted features. However, in all these
methods, CNN only plays the role of feature extractor,
which extracts features from patches of the processed image
for further classification or regression. It means that, on one
hand, saliency maps generated by these methods are patch-
level rather than pixel-level which may increase the over-
head of the algorithms and make the boundary of the
saliency map rough. On the other hand, CNN used in these
methods need to be pretrained first, which is usually com-
pleted using datasets for visual recognition tasks. The advent
of fully convolutional neural network (FCN) [20] provides a
new way for end-to-end pixel-level saliency detection. FCN
is first proposed for semantic segmentation, and it integrates
feature extraction and pixel label prediction together using
one network consisting of convolutional layers and deconvo-
lutional layers. After that, a large number of FCN-based
saliency detection models have been proposed, such as
recurrent fully convolutional networks (RFCN) [11], deep
contrast learning (DCL) [12], and deep uncertain convolu-
tional features (UCF) [13], and they have significantly
improved the performance of visual saliency detection algo-
rithms. Although the existing FCN-based saliency detection
methods have made great progress, it is still valuable to
explore visual saliency detection using some FCN-based
models designed for other tasks. One representative model
is U-Net [21], which is a well-known FCN-based segmenta-
tion network for medical images. As an FCN-based model,
U-Net has strong feature representation ability and can
gradually supplement the feature information from the
encoder to the decoder. Given the impressive performance
of U-Net in many computer vision tasks, in this paper, we
try to explore the U-Net-like architecture for the task of
visual saliency detection.

The key of the FCN-based visual saliency detection algo-
rithm is to obtain strong feature representation, and recent
works have proposed different strategies to improve the
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feature learning or representation ability of the networks.
Zhang et al. [30] proposed to aggregate multilevel convolu-
tional features and achieved a more accurate salient object
labelling. Zhang et al. [31] designed a bidirectional
message-passing structure to pass messages between multi-
level features. In literature [32], the authors proposed the
aggregate interaction modules to integrate the features from
adjacent levels and the self-interaction modules, which are
embedded in each decoder, to obtain more efficient multi-
scale features. Wei et al. [33] proposed F°Net, which mainly
consists of cross feature module (CFM) and cascaded feed-
back decoder (CFD), to consider differences between fea-
tures generated by different convolutional layers ignored by
most feature fusion strategies. In addition, some studies
designed different loss functions to constrain the network
to learn features corresponding to specific targets (e.g., the
boundary or position of salient objects) [22, 33]. However,
most of these methods only focus on combining rich feature
information for better feature representation and ignore the
difference between encoder and decoder. While the core
function of the encoder is to extract low-level informative
features such as object edges and textures, which contain
detailed location information of objects, the decoder plays
an important role in extracting semantic information related
to object categories. It is worth exploring integrating feature
maps of different decoders to improve the ability of feature
representation.

Recently, attention mechanisms have been successfully
used for various vision tasks including visual saliency detec-
tion due to its strong feature selection ability. Zhang et al.
[31] proposed a progressive attention-guided network that
sequentially generates attention features for saliency detec-
tion through the channel and spatial attention mechanisms.
Zhao and Wu [34] employed spatial attention (SA) and
channel-wise attention (CA) for low-level feature maps and
context-aware pyramid feature maps, respectively, to help
the network pay more attention to features suitable for the
current sample. However, these existing methods commonly
deal with multilevel features indiscriminately while fusing
convolutional features. Although some methods adopt cer-
tain strategies as gate function [31] and progressive attention
mechanism [35], they only select features in some certain
directions and ignore the difference between high-level fea-
tures and low-level features. As the saliency feature maps
corresponding to low-level features usually tend to contain
noise and the saliency maps corresponding to the high-
level features are commonly insufficiently detailed, it is nec-
essary to deal with the low-level features and high-level fea-
tures differently to adapt their characteristics, so as to get a
better saliency map.

3. The Proposed Method

In this paper, we propose an improved U-Net-like FCN net-
work, pyramid feature attention-based U-Net-like (PFAU-
Net), for the visual saliency detection task. Figure 1 shows
the architecture of our proposed network, and next, we will
introduce the proposed PFAU-Net in detail from the over-

view, pyramid feature module, channel attention module,
feature pyramid path, and loss function.

3.1. Overview of the Proposed PFAU-Net. As shown in
Figure 1, the backbone network of the proposed PFAU-Net
is U-shaped with encoder on the left and decoder on the
right proposed in literature [22]. Before introducing the
details of our improvements, we first present the architecture
of the backbone network. The backbone is composed of two
symmetrical parts, i.e., the encoder and the decoder. The
encoder part contains a convolutional layer as input and is
followed by six stages, which consist of basic residual blocks.
The input convolutional layer contains 64 3 x 3 filters with a
stride of 1. The following four stages of the backbone are
directly adopted from the ResNet-34, and two extra stages
are composed of a nonoverlapping max-pooling layer with
size 2 and three basic residual blocks with 512 3 x 3 filters.
In addition, there is a bridge stage consisting of three convo-
lutional layers, each of which is with 512 dilated 3 x 3 filters
[36] and followed by a batch normalization [37] and ReLU
activation function, between the encoder and decoder to
help capturing global information. The decoder part of the
backbone is almost symmetric with the encoder except that
upsampling instead of max-pooling is used for adjacent
stages of decoder.

In order to make the model learn more useful features, in
our proposed PFAU-Net, several improvements have been
made to the backbone network. Firstly, one more side output
is added to each stage of the decoder of the backbone. Sec-
ondly, in order to capture more beneficial features, a bridge
is added between the encoder and decoder. For the first two
stages, the output of each encoder stage and the input of the
decoder stage are concatenated, and an extra context-aware
pyramid feature extraction module and channel attention
module, which aim to obtain multiscale and multireceptive
field features, respectively, are added before concatenating
for the other stages. Moreover, a feature pyramid path is
added for the decoder to extract multilevel semantic infor-
mation related to saliency targets, and more details about
the feature pyramid path can be found in Feature Pyramid
Path.

3.2. Context-Aware Pyramid Feature Extraction Module.
Visual context is of great help to better represent visual con-
tent. However, most existing saliency detection models,
which extract visual features by directly stacking multiple
convolutional and pooling layers, rarely consider the visual
context. As the scale, shape, location, etc., of salient objects
in images vary greatly, it is necessary to use more represen-
tative features for the visual saliency detection task. Scale-
invariant feature transformation, which is abbreviated as
SIFT, is a well-known image feature descriptor proposed
by Lowe [38]. It proposes the Laplacian algorithm for Gauss-
ian representation, which fuses scale-space representation
and pyramidal multiresolution representation [38]. The
scale-space representation is obtained by convolution
between multiple Gaussian kernel functions and images with
the same resolution, while the pyramid multiresolution rep-
resentation is the results of downsampling feature maps of
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FIGURE 1: Architecture overview of our proposed pyramid feature attention-based U-Net-like (PFAU-Net) model. CFE and CA stand for
context-aware feature extraction and channel attention, respectively. Compared with the U-Net-like backbone used in [22], two main
improvements are made, including (1) introducing context-aware pyramid feature module into deep layers of the encoder to pass
multiscale and multireceptive field high-level features to the decoder through shortcut and (2) adding a feature pyramid fusion path for
the decoder to extract multilevel semantic information related to saliency targets.

different resolutions. The advantages of SIFT are that it is
invariable in the scale and rotation in the image changes
and robust to illumination and image deformation. Inspired
by SIFT, we introduce a context-aware pyramid feature
extraction (CPFE) module, which use dilated convolution
to generate feature maps with the same scale but different
receptive field, to extract multiscale features for stage 3, stage
4, and stage 5 of the U-Net-like backbone.

Specifically, the CPFE module is shown in Figure 2.
Please note that the CPFE module uses the output of stage
3 to stage 5 as input. To make the final extracted high-level
features contain more context information, we employ
dilated convolutions with different dilation rates. In our
implementation, we use one 1x 1 convolution filter and
three 3 x 3 dilated filters with 3, 5, and 7 as their dilation
rates to assemble the context-aware feature extractor, which
is abbreviated as CFE in Figure 2. We then directly concate-
nate the feature maps generated by the four convolution
operations, and the feature maps of stage 3, stage 4, and
stage 5 of the U-Net-like backbone construct the pyramid
features. The stacked feature maps of each stage will be fur-

ther processed by a channel attention module, which will be
introduced later, and passed to the corresponding stage of
the decoder.

3.3. Channel Attention Module. As introduced in the last
subsection, we utilize CPFE module to extract multiscale
and multireceptive field high-level features. However, the
contribution of different feature map to the visual saliency
detection task is not exactly the same, which implies that
the results may be disturbed if we treat all feature maps
indiscriminately. Therefore, it is of great significance to filter
out feature maps those contribute little to the task and fur-
ther emphasize feature maps with strong correlation with
the task. For this purpose, in this subsection, we introduce
the attention mechanism to help the model focus on those
promising feature maps. Specifically, we use a channel atten-
tion (CA) module [39] for high-level features according to
the characteristics of feature maps.

Figure 3 shows the architecture of the used channel
attention module. It is simple and effective implementation
of channel attention proposed by Hu et al. [39]. From
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o x Then, we get v € RP1XC after the global pooling layer as
LHXWXC
T v = average(X). (1)
Global pooling
Ix1xC Next, v is further processed by two fully connected layers
] fe,(-) and fc,(+) in turn, and then, we get the channel-wise
FC weights W € RPC as
I1x 1x C/4
L We =a(fafo(n Wab) Wab)
L x 1e>< i =0(W,8(Wv+b))+b,),
: S =max (0.)=1* "7 ®)
x) =max (0,x) =
X llx ¢ 0 x<0,
Sigmoid 1
1x 1x C G(x):1+e—"’ (4)

where 8(x) and o(x) are the ReLU and Sigmoid activation

Weighted functions, respectively, and W, b, and W,, b, are weights
l and bias for fc,(-) and fc,(-), respectively. After we get the
e channel-wise weights W, we can input feature maps that
| HxWxC | can be rescaled X' = [x], x}, -+, x| € RFWXC a5
FIGURE 3: Scheme of the channel attention module used in this X' = WeeX, (5)

work [39]. X and X’ represent features before and after
weighting, respectively. where ® is element-wise multiplication. Note that the
channel-wise weights are input specific, which makes the
CA module capable of introducing dynamics conditioned
on the input and helps to boost feature maps

Figure 3, we can see that the weight generation part of the R
& W wesT 8 P discriminability.

CA module is composed of a global pooling, two fully con-
nected layers with ReLU and Sigmoid a;a‘;\;‘i‘éation function, 34 Feature Pyramid Path. As semantic features correspond-
respectively. Let X =[x}, x,, -+, xc] € R7"*® represent the  ing to different levels of the decoder may represent different
C channel input feature maps with size H x W and avg(-)  aspects of the saliency objects, considering more high-level
: REWXC _, RIIXC be a global average pooling function.  features may promote the saliency detection results. For this
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TaBLE 1: Description of the six used benchmark datasets.

Dataset Year Publication Image amount Object area (%) Annotation
SOD 2010 CVPR-W 300 27.99 £19.36 Pixel-wise object level
ECSSD 2015 CVPR-W 1,000 23.51 +14.02 Pixel-wise object level
DUT-OMRON 2013 CVPR 5,168 14.85+£12.15 Pixel-wise object level
PASCAL-S 2014 CVPR 850 24.23+16.70 Pixel-wise object level
HKU-IS 2015 CVPR 4,447 19.13 £10.90 Pixel-wise object level
DUTS 2017 CVPR 15,572 23.17 £15.52 Pixel-wise object level
TABLE 2: Learning parameters used in the implementation. can capture structural information in images, was originally
] proposed for image quality assessment [41]. In this paper,
Parameter Value the SSIM loss function is used to evaluate the structural sim-
Learning rate (Ir) 0.001 ilarity of the predicted saliency map and the ground truth.
Betas (09,0999)  Let X={x;:j=1,--,N’} and Y={y,:y=1,---,N’} be
Eps le-8 the two pixel blocks with size N x N cropped from the pre-
Weight decay 0 dicted probability map and the ground truth, respectively,
Batch size 3 Hy 0 and p, 0, be the mean value and variance of X and

purpose, we add a feature pyramid path to the decoder of the
backbone, which fuses output of different decoder layers as
shown in Figure 1. As feature maps of the same resolution
contain information with different granularity, we can get
multilevel feature representation by fusing these features.
We can fulfil feature fusion for adjacent feature maps in
the feature pyramid path by two ways, which are “concate-
nate” and “add” fusion. In this study, we use an “add” con-
nection. Suppose X = [x;,x,, -+, xc] and Y = [y}, ¥, - ¥l
are two group of feature maps to be fused, K; is i-th kernel
for convolution, and then, the “add” fusion can be defined as

C

C C
Zoa= ) (X;+Y)xK;= Y X; %K+ Y Y, %K. (6)

i=1 i=1 i=1

3.5. Loss Function. Loss function plays a significantly impor-
tant role in optimizing a machine learning model. Cross-
entropy loss is one of the most used loss for classification
problem, and as a binary classification problem, we can use
the binary cross-entropy (BCE) loss [40] between ground
truth and the predicted saliency map in pixel level. The
BCE loss function is defined as follows:

Y, 0,, be denoted as the covariance of X and Y, and C;

and C, be the two constant. Then, the SSIM loss function
of X and Y is defined as

(20, +C) (20, +C,)
(‘uﬁ +‘u§ + Cl) (ch +o§ + C2> .

Lssm=1-

(8)

IoU loss function, which is an image-level metric, was
originally proposed to measure the similarity of two sets
[42] and later used as a standard evaluation measure for
object detection and segmentation. In this study, we use
IoU loss to evaluate the predicted saliency result in image-
level, and it is defined as follows.

ZZIZZZIS(r’ )G(r, )
S X S(r ) + G(ry0) = S(r, 0)G(r, €)]

Zou=1- > (9)

where G(r, ¢) and S(r, ¢) are the ground truth label and pre-
dicted probability of saliency of pixel at (r, c).

Finally, we use the weighted sum of the above losses as
the total loss ! for a saliency map, and it can be defined using

I=MFpcp + L Zssim + A3 L1005 (10)

Loy = _z [G(r, ) log (S(r, ¢)) + (1= G(r, ) log (1= S(r c))], where A, A,, and A, are weights for BCE loss, SSIM loss, and

(o)
(7)

where G(r, ¢) € {0, 1} is the ground truth label of the pixel at
(r,c) and S(r, ¢) is the predicted probability of the pixel at
(r, ¢) be saliency.

Although pixel-level loss is suitable for computer pro-
cessing, high-level cues (e.g., texture and shape) are more
important for human beings to understand an image. In
addition to BCE loss, we employed two other losses, which
are SSIM loss and IoU loss. The SSIM loss function, which

IoU loss, and throughout our implementation, we set A, =
AL=A=1

To achieve a better training effect, we use the sum of the
losses of all side outputs as the final training loss Z, which is
defined as

K
F= Z o ™),
k=1

(11)

where ) is the loss for the k-th side output saliency map of
the decoder, K represents the total number of output losses,
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FIGURE 4: MAE of the baseline backbone and PFAU-Net on six test datasets; a smaller MAE value indicates a better performance.

TaBLe 3: MAE values for the proposed model and three
comparison FCN-based models on five test datasets. The results
for RFCN, DCL, and UCF are from literature [35]. A smaller
MAE value indicates a better performance, and the best result is
highlighted in bold.

DUT-  PASCAL- HKU- DUTS-
ECSSD OMRON S IS TE Average
RFCN 0.109 0.111 0.133  0.089 0.090 0.106
DCL 0.151 0.157 0.181  0.136 0.149  0.155
UCF  0.080 0.132 0.127  0.074 0.117  0.106
Ours  0.089 0.095 0.115  0.076 0.080 0.091

and a is the weight of each loss. The image saliency detec-
tion model used in this paper is supervised by six side
outputs.

4. Results and Discussion

4.1. Datasets and Evaluation Metric. To verify the perfor-
mance of the proposed model, six widely used public bench-
mark datasets, including SOD [43], ECSSD [17], DUT-
OMRON [16], PASCAL-S [44], HKU-IS [27], and DUTS
[45], are selected for performance evaluation. Each dataset
has its own characteristics; for example, SOD is an earlier
one, and many images in it contain multiple salient objects
similar to the background; HKU-IS consists of 4447 images
with discontinuous and different spatial distribution salient
objects. It should be noted that DUTS, which is currently
the largest dataset, is composed of two subsets DUTS-TR
and DUTS-TE with 10553 and 5019 images, respectively.
More details of the six benchmark datasets are shown in
Table 1. As the six used public datasets provide varied test
images and pixel-level ground true, they can comprehen-
sively evaluate the performance of saliency detection
algorithms.

In order to objectively evaluate the performance of the
proposed model, mean absolute error (MAE) is adopted as

the evaluation metrics. MAE is the average pixel-wise abso-
lute difference between the predicted visual saliency map
and the ground truth, and a smaller MAE value indicates a
better result. Given a predicted saliency map S and ground
truth G, MAE can be defined as follows:

MAE(S, G) = Hi WZZ|S(r, ¢) - G(r,¢)|, (12)

where H and W are the height and width of the image,
respectively, S(r, c) represents the saliency value of pixel at
(r,c) in the predicted visual saliency map, and G(r,¢) is
the ground truth. For a test set, 2={(S,, G;)[i=1,---,N}
contains N test images, and its MAE is the average MAE
of all test images defined as

MAE(2) =

] MAE(S, G). (13)

(5,G)eD

4.2. Implementation Details. The proposed network is imple-
mented based on the Pytorch framework. We train and test
the proposed model using a Tesla P100 GPU with 16 GB
video memory. The DUTS-TR dataset, which is a subset of
DUTS [45, 46] and contains 10553 images, is used as the
training set throughout the experiments. Please note that
we augment the training set by horizontal flipping each
image in DUTS-TR, which doubles the amount of training
images to 21106. In addition, before feeding into the net-
work, training images are resized to 256 x 256 and then
cropped to 224 x224 during training. To optimize the
model, the Adam optimizer with default hyperparameter
values is adopted. Other optimization parameters such as
learning rate (Ir) and betas are listed in Table 2. We train
the network for about 400 K iterations to make the loss con-
verge. When we test an image using the trained network, we
first resize it to 256 x 256 before input into the network, and
the predicted saliency map is resized back to its original size
using bilinear interpolation.
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F1Gure 5: MAE of RFCN, DCL, UCF, and the proposed model on five test datasets and the average MAE of each method over the five

datasets. A smaller MAE value indicates a better performance.

TaBLE 4: MAE values for each method. A smaller MAE value
indicates a better performance, and the best result is highlighted
in bold.

ECSSD DUT-OMRON PASCAL-S SOD  Average
GS 0.206 0.173 0.221 0251  0.213
BD 0.171 0.144 0.199 0.230  0.186
RC 0.301 0.290 0.312 0326  0.307
MR 0.189 0.187 0.221 0.259  0.214
HS 0.228 0.229 0.262 0.283  0.251
WMR  0.191 0.201 0.234 0.265  0.223
MC 0.169 0.142 0.195 0.230  0.184
Ours 0.089 0.095 0.115 0.181  0.120

4.3. Experimental Results and Discussion. In this section, we
evaluate the performance of the proposed model both quan-
titatively and qualitatively. Firstly, we conduct experiments
to compare the performance of the baseline U-Net-like
backbone network [22] and the proposed PFAU-Net. MAE
values of the baseline backbone network and the proposed
PFAU-Net are shown in Figure 4. The comparison results
indicate that PFAU-Net improves the performance of the
baseline backbone network on all the six test datasets.
PFAU-Net reduced the MAE of the baseline by an average
of 11.98% on the six datasets, with the largest reduction of
16.04% on ECSSD and the least on SOD (8.59%).

We further compare the results of the proposed model
with some FCN-based networks including RFCN [11],
DCL [12], and UCF [13]. MAE values for each comparison
model are reported in Table 3. From the results, we can
see that our proposed model outperforms the comparison
methods on DUT-OMRON, PASCAL-S, and DUTS-TE;

the MAE values of our model are much smaller than the sec-
ond smallest MAES. On datasets ECSSD and HKU-IS, our
model can obtain competitive results that the MAE values
on both datasets (0.089 on ECSSD and 0.076 on HKU-IS)
are only larger than those of UCF (0.080 on ECSSD and
0.074 on HKU-IS). In addition, we compute the average
MAE of each model on the five test datasets, and our model
achieves the best average MAE value (0.091). The results are
also presented in Figure 5, from which we can obviously find
that the proposed method outperforms the comparison
algorithms according to average MAE value.

To further evaluate the model, we compared our pro-
posed model with several nonneural network methods
including GS [10], BD [14], RC [15], MR [16], HS [17],
WMR [18], and MC [19]. MAE values of all the comparison
methods are the results reported in literature [19], and
Table 4 presents the results of the proposed model and all
comparison methods. From Table 4, we can see that our
proposed FCN-based model outperforms all the comparison
methods on the four test datasets, and the average MAE of
our model on the four test datasets is 0.120, which is signif-
icantly better than that of the best nonneural network
method MC (0.184). The results not only verify the effective-
ness of our proposed model but also further show the great
advantages of neural network-based method over traditional
approaches in visual saliency detection task.

In addition to objective evaluation, we also present some
predicted saliency maps of the backbone network and our
model in Figure 6 for qualitative evaluation. Images in the
first and second row of Figure 6 are input original images
and the corresponding ground truth saliency maps, respec-
tively. The third and fourth rows are predicted saliency maps
of the U-Net-like backbone network and our model. The
results indicate that our model generates saliency maps more
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FIGURE 6: Saliency maps of our proposed PFAU-Net model and the U-Net-like backbone network. GT represents the ground truth.

accurately for different challenging scenes. For example, the
third and fifth rows contain more than one salient objects,
and while our model predicts all the salient objects; the base-
line method misses part of the salient objects (third and fifth
columns of the saliency maps results of the U-Net-like back-
bone). Moreover, for the second and the sixth test images,
the salient objects detected by the U-Net-like backbone are
seriously incomplete as shown in third row of Figure 6.
However, our model can produce more accurate results
compared to the backbone network. Meanwhile, we should
also pay attention to the limitations of the proposed method
in some special cases. Taking the fifth and sixth saliency
maps of our model as an example, the legs of the animals
are not detected as they are thin and long, and an incomplete
body region is detected for the sixth image due to the color
similarity to background.

From the above objective and qualitative results, we can
find that the improved U-Net-like network can produce
competitive results on saliency detection problem. The
results also indicate the importance of improving feature
representation as the proposed model is mainly focusing
on extracting more representative features. In addition, the
comparison results with nonneural methods further verify
the great advantages of neural network models in saliency
detection task. Although the proposed method has achieved
competitive results, the limitation of the proposed model is
also obvious that the boundary of the salient objects in the
generated saliency map is not accurate and fine enough,
and more efforts are needed in the future research.

5. Conclusion

In this paper, we propose an improved U-Net-like model
PFAU-Net for visual saliency detection task. A U-shaped

encoder-decoder network is used as backbone, and in order
to make the network be able to capture more useful features,
a CFE module followed by a channel attention module is
added to the backbone to capture multiscale features. In
addition, a feature pyramid path is introduced to the
decoder part to take advantages of multilevel information.
To evaluate the performance of the proposed model, we
compare our method with some FCN-based and nonneural
methods using six widely used public datasets, and the sub-
jective and objective results show that our proposed model
has achieved competitive results, which verifies the effective-
ness of the proposed method.
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