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Existing studies of mobile edge computing resource allocation strategy problem merely optimize delay and energy cost, seldom
considering the benefit of edge servers. So, a two-way update strategy based on game theory (TUSGT) was proposed. TUSGT
converts the task competition relationship among edge servers into a noncollaborative game issue and adopts a potential
game-based joint optimization strategy, allowing edge servers to determine task selection preference by maximizing their own
benefit as the objective. At mobile device side, the EWA algorithm of online learning was used to update parameters, exerting
impact on edge server’s task selection preference from a global perspective and improving overall deadline hit rate. The
simulation test results show that, compared to BGTA, MILP, greedy strategy, random strategy, and ideal strategy, TUSGT
promotes deadline hit rate by up to 30% and increases edge server’s average benefit by up to 65%.

1. Introduction

With the increased network bandwidth and popularized
mobile smart devices, the number of computation intensive
applications based on mobile devices is also growing rapidly
[1]. These applications have large computational work and
high requirement for real time [2, 3]. But restricted by com-
putation capability and energy cost, it is difficult to complete
computing tasks solely on mobile devices. So the mobile
cloud computing architecture emerges, aimed at using cloud
resources to carry out computation-intensive tasks, so as to
optimize user experience [4, 5] and relieve insufficient compu-
tation capability of mobile device. However, due to long dis-
tance between cloud resources and mobile devices, the
transmission of large amount of data leads to time delay
requirement hard to bemet. Thus, in 2014, the European Tele-
communication Standards Institute put forward a Mobile
Edge Computing (MEC) architecture [6], providing nearby
computing resource-edge server for mobile devices. These
edge servers own more computing resources compared to

mobile devices, so mobile devices download computation-
intensive tasks to nearby edge server, greatly reducing task
completion delay and mobile devices’ energy cost [7].

Nevertheless, MEC’s computing resources are not
unlimited, and an edge server is also hard to meet the com-
puting need of all mobile devices surrounding it; thereby, the
studies on task offloading and resource allocation strategy
are of great significance to promote overall MEC perfor-
mance [8–10] and it is also one of the hot spots in MEC
research field [11]. Most of existing task offloading and
resource allocation strategies take task delay and mobile
devices’ energy cost as the primary optimization objective,
rarely considering the benefit of edge servers, i.e., the cost
benefit of edge servers. It is an idealized hypothesis to let
edge server complete mobile devices’ computing tasks
regardless of benefit, and this is impossible to realize in real
application scenarios. As letting edge server to perform a
task will inevitably produce energy cost overhead, if an edge
server is made to perform a task without any benefit, it will
choose to not perform any task so as to reduce overhead.
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By introducing benefit factor into MEC system, edge
servers will only make the best choice for themselves, since
their goal is to maximize their own benefit. But for mobile
devices, MEC system is expected to ensure that more tasks
can be completed on time by task offloading and resource
allocation. Therefore, how to guarantee edge server benefit
while getting more mobile device tasks to be completed on
time as possible is a crucial target.

In this paper, a two-way update strategy based on game
theory (TUSGT) was proposed to solve the above problem.
The main work of this paper is as follows:

(1) In a multiuser and multiedge server MEC system, a
new TUSGT resource allocation strategy was raised.
It converts task competition relationship between
edge servers into a noncollaborative game problem
and designs a corresponding strategy according to
the game characteristics to solve the problem, in
which every edge server takes maximizing its own
benefit as objective to determine task selection pref-
erence. Meanwhile, the system uses exponent weight
algorithm (EWA) and integrates with task comple-
tion condition to update parameters, so as to further
increase overall deadline hit rate; that is to say, make
more mobile device tasks be completed on time

(2) We analyzed and proved the existing of unique Nash
equilibrium in noncollaborative game problem of
edge server, enabled different edge servers to eventu-
ally reach to Nash equilibrium steady state through
strategy design, and testified its convergence

(3) Through a simulation test, we verified the conver-
gence of TUSGT strategy and proved its validity by
comparing the deadline hit rate of five datum strate-
gies and the average benefit of edge servers

In this paper, Section 2 introduces the related work of
resource allocation in MEC; Section 3 describes the system
model in MEC; Section 4 provides the idea and relevant cer-
tificate of TUSGT; Section 5 shows the result of simulation
test and evaluates TUSGT performance in details.

2. Related Work

In existing studies of resource allocation strategies, the main
optimization objectives are task delay and systematic energy
cost.

Regarding the research of task processing delay optimi-
zation, the literature [11] designed a vertically and horizon-
tally synergistic network architecture based on vehicle-
mounted edge computing network architecture. Then, by
analyzing the relationship between communication, cache,
and computing resources, a joint optimization model of
the three was proposed, and the asynchronous distributed
reinforcement learning was used to realize the solution to
task offloading and resource management strategy. This
model can obviously reduce overall time delay. The litera-
ture [12] expresses the heterogeneous task offloading prob-
lem in distributed edge computing environment as a

multiperson game problem, and every participator makes
offloading decision according to incomplete information.
Based on this, the authors designed a heterogeneous edge
computing task offloading strategy based on minority game.
In this strategy, subtasks are grouped to compete with other
tasks for resources. This strategy can reduce more task pro-
cessing delay.

Regarding the research of systematic energy cost optimi-
zation, the literature [13] put forward a convex optimization
problem and used offloading priority function to solve the
problem. This function sets priority for users, which relies
on their own channel gains and local computing energy cost.
The author also proposed a low-complexity suboptimal
strategy, utilizing average subchannel gains to solve the cor-
responding mixed integer optimization problem. This strat-
egy can significantly optimize energy cost. The literature
[14] considered two different resource allocation strategies
for joint optimization: the first strategy paid attention to
fairness between users, and the second one paid attention
to systematic energy efficiency. Besides, the author expressed
energy cost optimization problem as a nonconcave fraction
programming problem in collaborative strategies and used
a low-complexity optimization strategy to realize optimal
allocation. This scheme improves the energy efficiency of
wireless mobile edge computing system. According to the
problems of high time delay, high energy cost, and low
reliability, the literature [15] proposed an offloading model
considering time delay and energy cost as well as a dynamic
game allocation model based on mobile terminal’s reputa-
tion value. The improved particle swarm optimization algo-
rithm and Lagrange multiplier method were used to solve
this model, respectively. This scheme can effectively reduce
total systematic energy cost and enhance offloading and
allocation reliability.

All the above research work assume that edge servers
would complete any computing tasks from mobile devices
unconditionally, without considering their own benefits.
This is an idealistic situation and cannot be realized in real
application scenarios.

In recent years, some researchers have started to take the
edge server benefit into consideration. The literature [16]
put forward an auction-based edge computing resources
market. This auction mechanism can guarantee authenticity
and computing efficiency while maximizing overall benefit,
and edge servers will be allocated to the device willing to
pay the highest cost. This auction strategy can effectively
solve the problem of maximizing the benefit of edge com-
puting service provider. The literature [17] developed a deep
learning-based optimal auction strategy for edge resource
allocation. It utilized neural network to convert bids and
used their own estimation as training data to adjust neural
network parameters, so as to optimize loss function. Finally,
edge servers were allocated to corresponding devices accord-
ing to obtained allocation strategy and acquired correspond-
ing benefits. This strategy can effectively promote total
benefit of system. The literature [18] designed multi-item
auction and data offloading strategy based on congestion
game, aiming to maximize the income of mobile operator
and reduce the payment of mobile users. This strategy can
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effectively increase total income of mobile operator and
bring down the payment of mobile users to a certain extent.
Though above research work have considered the benefit of
edge server, they have not taken task delay requirement into
full account.

The current research focuses on optimization of delay
and energy consumption, but not enough consideration for
the benefits of edge servers. Therefore, the starting point of
this paper is to optimize the benefits of edge servers. The
delay is an important performance evaluation index of the
MEC system. Because the mobile device unloads the task,
it must return the calculation result within a certain period
of time. And while optimizing the revenue of the edge server,
it will have a certain impact on the delay, so this paper
selects these two indicators as the optimization goals.

The benefit includes a delay factor, which is to allow the
edge server to choose the tasks that it can complete as soon
as possible. However, if the strategy is only determined
according to the initial conditions, limited by the incomplete
information of the edge server, there must be a lot of selec-
tion conflicts. At this time, the adjustment of the penalty
coefficient is to balance the conflict and the benefits of the
edge server. And solving the conflict of choice of tasks can
significantly improve the overall task completion rate and
the overall average benefit of the MEC system. The proposed
TUSGT considers task delay requirement and edge server
benefit need simultaneously, converts the natural competi-
tion relationship between edge servers into a noncollabora-
tive game problem, and designs a game theory-based
strategy to solve the problem, maximizing edge server bene-
fit and making more computing tasks be completed as
possible.

3. System Model

3.1. Network Architecture. The proposed MEC network
architecture is shown in Figure 1. Mobile devices transmit
task information require to offload into management server;
edge server obtains task information from management
server and then sends its choice to the latter. Management
server takes charge in collecting edge server choice, updating
resource allocation strategies, and updating subsequent
parameters. After resource allocation strategy is determined,
an edge server starts to perform tasks and transmits the
results to corresponding mobile devices.

3.2. Task Model. In the proposed system model, a group of
M mobile devices is represented by MD = fMD1,MD2,⋯,
MDMg; a group of N edge servers is represented by ES =
fES1, ES2,⋯, ESNg. Therein, every mobile device only
holds one atomic task, and all mobile devices’ task set is
expressed as Task = fT1, T2,⋯, TMg. Set the information
cell group of the mth task as Tm = fVIm, VOm, Lm,Ωm, Rmg,
in which VIm denotes to the input data size of task m, VOm
denotes to the output data size of task m, Lm denotes to the
required operand of task m, Ωm denotes to the time delay
requirement of task m, and Rm denotes to the reward paid
by task m.

3.3. Communication Model. The paper supposes a mobile
device only communicates with one edge server, so when
uploading or downloading data, there is no interference
from other device transmission. Define the transmission rate
between mobile device m and edge server n as shown in
Equation (1) [19]:

dm,n = B log2 1 +
pmgm,n
σ2

� �
, ð1Þ

in which B is the bandwidth, pm is the transmission rate,
gm,n represents the channel gains, and σ2 is the noise power.
The calculation formula of channel gain gm,n is shown in
Equation (2) [19]:

gm,n =G
3 × 108

4πFcdistm,n

� �PL

, ð2Þ

in which G is the antenna gain, Fc is the carrier frequency,
distm,n represents the distance between mobile device m
and edge server n, and PL is the path loss factor. According
to Equations (1) and (2), the data transmission rate can be
calculated by the distance between mobile device and edge
server.

3.4. Time Delay and Energy Cost Model. The local comput-
ing delay of task is shown in Equation (3), in which f m is
the computing rate of mobile device m.

Dlocal
m =

Lm
f m

: ð3Þ

In case that task m is offloaded to edge server n, then the
corresponding task delay is shown in

Doff
m,n =Du

m,n +Dd
m,n +Dc

m,n, ð4Þ

Du
m,n =

VIm
dm,n

, ð5Þ

Dd
m,n =

VOm

dm,n
, ð6Þ
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Figure 1: MEC network architecture.
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Dc
m,n =

Lm
f n

, ð7Þ

in which Du
m,n is the task uploading time, Dd

m,n is the result
downloading time, Dc

m,n is the task computing time on edge
server, and f n is the computing rate of edge server.

On account of the benefit of edge server, it is necessary to
figure out the energy cost overhead of edge server, and the
greater the energy cost overhead is, the smaller the benefit
will be. The energy cost overhead of edge server is shown in

cm,n = Pcom,n ×Dc
m,n + Ptra,n × Du

m,n +Dd
m,n

� �
, ð8Þ

in which Pcom,n is the computing power of edge server n and
Ptra,n is the transmission power of edge server n.

3.5. Benefit and Overhead Model. The cost overhead that an
edge server n completes the offloading task of mobile device
m is shown in

πm,n =
cm,n, dm,n > 0,

∞,dm,n < 0:

(
ð9Þ

That is to say, when the communication rate between
edge server n and mobile device m is normal, the overhead
is the cost of edge server; when edge server n cannot com-
municate with mobile device m, the overhead of edge server
is infinite.

Edge servers compete for task according to overhead
function (9), and ever edge server attempts to find the opti-
mal strategy, minimizing its overhead. This causes all edge
servers do not receive any task to save overhead (not receiv-
ing any task means no cost overhead to be paid). However,
this result clearly contradicts the purpose of MEC system,
and it makes no sense for mobile device to offload task, so
mobile devices need to provide certain rewards. The specific
benefit obtained by an edge server can be calculated by the
initial reward Rm of mobile device task and a penalty function
punishm,n [20]. The computing method of penalty function is
shown in

punishm,n =

λmΩm

Ωm −Doff
m,n + ω

, Doff
m,n ≤Ωm,

∞, Doff
m,n >Ωm,

8><
>: ð10Þ

in whichΩm is the required deadline of taskm and Doff
m,n is the

completion time for the server n to complete the offloaded
task. ω is a very small nonzero positive number, used to pre-
vent denominator as zero when offloading task completion
delay just satisfies task delay requirement. λ is the penalty
coefficient, used for dynamic adjustment by reverse update
method (see details in Section 4.2). This penalty function is
set to give different penalties based on the speed at which edge
server completes the task; i.e., the more time intervals left for
edge server to complete task, the smaller the penalty will be.
Next, it is needed to set a benefit indicator function um,n, by

computing which an edge server can make its decision. The
benefit indicator function um,n is defined as shown in

um,n =
Rm × Ωm −Dof f

m,n + ω
� �

λm ×Ωm ×N mð Þ × cm,n
, πm,n ≠∞,

0, πm,n =∞,

8><
>: ð11Þ

in which NðmÞ represents the number of edge servers choos-
ing the task m; i.e., the more tasks are selected, the lower the
value of the reward indicator function. Benefit refers to what
the edge server can ultimately get. The benefit contains multi-
ple factors; the purpose is to allowmultiple factors to affect the
edge server comprehensively. These factors are of similar
importance and can affect the selection of edge servers.

3.6. Task Offloading Model. The system model in this paper
is referred to [21, 22]. In order to verify the effect of the
scheme, it is considered that the task of the mobile device
is inseparable; that is, the task cannot be divided into multi-
ple edge servers for completion. And if the edge server
selects the mobile device task, it uses all its computing
resources for computing, so one edge server can receive at
most one task at the same time. On the basis of above agree-
ment, the paper expresses the allocation strategy of mobile
device m as am = fam,0, am,1,⋯, am,Ng, in which am,n = f0,
1g; the value of am,0 represents whether to calculate locally.
Therefore, the total strategy configuration of MEC system
can be obtained as A = fa1, a2,⋯, aMg, satisfying ∑M

i=1ai,n
≤ 1, ∀n ∈ ES and∑N

i=1am,i ≤ 1, ∀m ∈ Task.

3.7. Objective Function. In the competition game on edge
server side, the objective of every edge server is to maximize
its own benefit. So, the general objective on edge server side
is shown in

benefitm,n =
Rm × Ωm −Doff

m,n + ω
� �
Ωm × cm,n

, πm,n ≠∞,

0, πm,n =∞,

8><
>: ð12Þ

maximize : 〠
N

i=1
〠
m∈Si

benefitm,i, ð13Þ

in which Si represents the task set selected by edge server i,
which is the subset of Task, and benefitm,i represents the
benefit obtained by edge server i to complete mobile device
m task. This objective function represents maximizing the
total edge server benefit on the edge server side.

On mobile device side, every mobile device needing to
offload tasks expects its task to be completed. Thus, the total
objective function on mobile device side is shown in

maximize : 〠
M

i=1
θi: ð14Þ

θi is a binary variable. If the task of mobile device i can
be completed within required time delay, then its value is
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1; otherwise, it is 0. This objective function represents
making more offloading tasks to be completed on time as
possible.

4. Two-Way Update Resource
Allocation Strategy

The TUSGT designed in this paper optimizes resource allo-
cation strategies from objective functions (13) and (14),
respectively. One is to optimize on edge server side, and
the other is to update parameters on mobile device side, as
shown in Figure 1.

On edge server side, the edge servers do not know each
other’s configuration and state information, which is a non-
collaborative game problem. Since a large number of edge
servers may not belong to the same manufacturer in prac-
tice, each of them needs to consider their own interests, so
it will not be a complete cooperative game problem. In order
to obtain higher benefits for itself, the edge server will not
hand over all its configuration information to the manage-
ment server but will only select the most suitable task
according to its own configuration. The management server
only receives the task selection of the edge server but does
not have the configuration information of the edge server.
So, the paper designed a game-based joint optimization
strategy (GBJOS) to solve this problem. When the GBJOS
converges, all edge servers will not actively apply for strategy
modification. On mobile device side, the classic EWA algo-
rithm [20] in online learning can be used for updating, to
satisfy the objectives on mobile device side.

4.1. Game-Based Joint Optimization Strategy

4.1.1. Game Model. This paper established a game model of
multiuser and multiedge server resource allocation in MEC
and then made definition for it, as so to analyze this game
model.

Definition 1. The offloading task set is Task = fT1, T2,⋯,
TMg. When mobile device m does not have enough local
resources to complete the task, i.e., Dlocal

m ≥Ωm, the mobile
device m will decide to offload the task. At this moment, this
mobile device will be added to MD set; its task and task-
related information will be added in the Task set.

Definition 2. After completing the task m, if edge server n′
obtains higher benefit than edge server n, then task m will
be allocated to edge server n′.

Definition 3. If in current resource allocation strategy of
MEC system, the task m has been allocated to edge server
n, then edge server n calculates the value of benefit indicator
function (11) for task m; its NðmÞ value is 1. Otherwise,
when this server performs calculation, the NðmÞ value
should be a normal accumulated value.

Definition 4. Task selection threshold N TO. When the
number of mobile device m task selected reaches to the

threshold N TO, that’s to say, NðmÞ ≥N TO, other edge
servers are not allowed to choose the task.

From Definition 1, it is known that now all tasks in Task
set need to perform offloading computing, and edge servers
will compete for tasks in Task set to gain benefit. Definition
2 ensures to maximize the total benefit of edge servers, that’s
to say, if the selection of different edge servers conflicts, the
task will be allocated to the one with greater benefit. Defini-
tion 3 is set to increase the cost of selection conflict between
different edge servers, so that the selection of edge servers
can be dispersed as possible. Definition 4 is to prevent this
game from falling into an infinite loop and guarantee every
edge server must complete the final selection within a certain
number of times. The specific value of threshold N TO 的
shall be adjusted according to real data setup.

According to the above definitions, the following lemma
is given:

Lemma 5. After all edge servers hold tasks, they will tend to
keep the currently selected task in subsequent selections.

Proof. Suppose that the server n currently chooses task k and
have held it. In the next round of selection, if the server n
selects the task k′, then there must be:

uk,n < uk′,n ð15Þ

Combined with Eq.(11) and Definition 3, it is obtained that:

Rk × Ωk −Dof f
k,n + ω

� �
λk ×Ωk × 1 × ck,n

<
Rk′ × Ωk′ −Dof f

k′,n + ω
� �

λk′ ×Ωk′ ×N k′
� �

× ck′,n
ð16Þ

Since the current selection is task k, it is proved the fol-
lowing result appears in the last round of calculation:

max ∀m ∈ 1, 2,⋯,Mf g Rm × Ωm −Dof f
m,n + ω

� �
λm ×Ωm ×N mð Þ × cm,n

�����
( )

=
Rk × Ωk −Dof f

k,n + ω
� �

λk ×Ωk ×N kð Þ × ck,n

ð17Þ

It is certainly that:

Rk × Ωk −Dof f
k,n + ω

� �
λk ×Ωk ×N kð Þ × ck,n

≥
Rk′ × Ωk′ −Dof f

k′,n + ω
� �

λk′ ×Ωk′ ×N k′
� �

× ck′,n
ð18Þ

in which, NðkÞ ≥ 1, then,

Rk × Ωk −Dof f
k,n + ω

� �
λk ×Ωk × 1 × ck,n

≥
Rk × Ωk −Dof f

k,n + ω
� �

λk ×Ωk ×N kð Þ × ck,n
ð19Þ
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It is obtained that

Rk × Ωk −Dof f
k,n + ω

� �
λk ×Ωk × 1 × ck,n

≥
Rk′ × Ωk′ −Dof f

k′,n + ω
� �

λk′ ×Ωk′ ×N k′
� �

× ck′,n
ð20Þ

Thus, the contradiction between Equations (20) and (16)
is proved.

Based on above lemmas and definitions, the model is
analyzed by game theory. We use a‐n = fa1,⋯, an‐1, an+1,⋯,
aNg to represent all resource allocation strategies for edge
serves other than edge server n. Providing the selection a‐n of
all other edge servers, the edge server n will make current
round of selection according to a‐n and by figuring out the
value of Eq.(11). It can be seen that in Eq.(11), for each edge
server, only the parameter NðmÞ is unknown, so edge servers
can make strategy selection only if they get the value of NðmÞ,
with no need to know the configuration and state information
of remaining edge servers.

4.1.2. Model Analysis. This section firstly defines Nash equi-
librium and potential game, and then uses potential game to
prove the existence of Nash equilibrium in the game [21].

Definition 6. If a resource allocation strategy A∗ = ða∗1 ,⋯,
a∗NÞ is a Nash equilibrium in resource allocation game for
multiuser and multiedge server; then, in the case of resource
allocation strategy A∗, no edge server can further improve its
benefit by unilaterally changing its selection strategy. That is,

un a∗n , a
∗
−nð Þ ≥ un an, a∗−nð Þ, ∀an ∈ Task, n ∈ ES: ð21Þ

Definition 7. If a game has the following properties, it is
called an ordinal potential game: ∃ϕðAÞ, for each n ∈ ES,
an, an′ ∈ Task, if

uy an′ , a−n
� �

> un an, a−nð Þ, ð22Þ

then

ϕ an′ , a−n
� �

> ϕ an, a−nð Þ: ð23Þ

Ordinal potential game has a property, i.e., the existence of
a Nash equilibrium as well as finite improvement properties.
In this way, any asynchronous optimal response updating pro-
cess (no more than one participator maximizes its benefit by
updating strategy) must be finite and will eventually result in
Nash equilibrium [21]. In order to prove that the game in this
paper is an ordinal potential game, the potential function of
the paper is constructed as

ϕ Að Þ = 〠
N

i=1
〠
M

j=1

Rj × Ωj −Doff
j,i + ω

� �
Ωj × cj,i

I aj,i=1f g, ð24Þ

in which IfUg is an indicator function. If U expression is cor-
rect, then IfUg = 1; otherwise, IfUg = 0.

Theorem 8. The resource allocation game model between
edge servers in the paper is a finite ordinal potential game
with potential function (24).

Proof. Assume that a server n ∈ ES changes its selection k to
k′, and the allocation strategy will be updated from A to A′.
This will cause an increase of its benefit indicator function
value, i.e., uk′,n > uk,n. According to the definition of poten-
tial function, it can be discovered this will result in higher
potential function value, i.e., ϕðA′Þ > ϕðAÞ. From the lemma,
it can be obtained when selection update occurs, there must
be k = 0, i.e., not selecting the task uk,n = 0. Thus, there are only
two situations to consider: (1) ak′,n = 0 and (2) ak′,n ≠ 0.

Because k = 0, then uk,n = 0, that is to say,

Rk × Ωk −Dof f
k,n + ω

� �
Ωk × ck,n

= 0: ð25Þ

(1) In case ak′,n = 0, then uk′,n > uk,n = 0, it can be
obtained by Equation (11) that

Rk′ × Ωk′ −Doff
k′,n + ω

� �
λk′ ×Ωk′ ×N k′

� �
× ck′,n

> 0 ð26Þ

As λk′ > 0,Nðk′Þ > 0, the above equation can be reduced to

Rk′ × Ωk′ −Doff
k′,n + ω

� �
Ωk′ × ck′,n

> 0: ð27Þ

According to Definition 7, it is needed to compare the
potential function under different strategies, and their size can
be expressed by the difference of the two. The specific calcula-
tion process is as follows:

ϕ A′
� �

− ϕ Að Þ = 〠
N

i=1
〠
M

j=1

Rj × Ωj −Doff
j,i + ω

� �
Ωj × cj,i

I aj,i′ =1f gI i≠nf g

+ 〠
M

j=1

Rj × Ωj −Doff
j,n + ω

� �
Ωj × cj,n

I aj,i′ =1f g

− 〠
N

i=1
〠
M

j=1

Rj × Ωj −Doff
j,i + ω

� �
Ωj × cj,i

I aj,i=1f gI i≠nf g

− 〠
M

j=1

Rj × Ωj −Doff
j,n + ω

� �
Ωj × cj,n

I aj,i=1f g
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= 〠
M

j=1

Rj × Ωj −Doff
j,n + ω

� �
Ωj × cj,n

I aj,i′ =1f g

−
Rk × Ωk −Doff

k,n + ω
� �
Ωk × ck,n

=
Rk′ × Ωk′ −Doff

k′,n + ω
� �
Ωk′ × ck′,n

> 0:

ð28Þ

(2) In case ak′,n ≠ 0, it can be obtained by Definition 3
that, if strategy update occurs at this time, there must
be the following inequation:

Rk′ × Ωk′ −Doff
k′,n + ω

� �
Ωk′ × ck′,n

>
Rk′ × Ωk′ −Doff

k′,n′ + ω
� �
Ωk′ × ck′,n′

ð29Þ

Integrating with Definition 7, the potential function
under different strategies is compared. The specific calcula-
tion process is as follows:

ϕ A′
� �

− ϕ Að Þ = 〠
N

i=1
〠
M

j=1

Rj × Ωj −Doff
j,i + ω

� �
Ωj × cj,i

I aj,i′ =1f gIi≠nI i≠n′f g

+ 〠
M

j=1

Rj × Ω j −Doff
j,n + ω

� �
Ωj × cj,n

I aj,n′ =1f g

+ 〠
M

j=1

Rj × Ω j −Doff
j,n′ + ω

� �
Ωj × cj,n′

I
a
j,n ′
′ =1

n o

− 〠
N

i=1
〠
M

j=1

Rj × Ωj −Doff
j,i + ω

� �
Ωj × cj,i

I aj,i=1f gI i≠nf gI i≠n′f g

− 〠
M

j=1

Rj × Ω j −Doff
j,n + ω

� �
Ωj × cj,n

I aj,n=1f g

− 〠
M

j=1

Rj × Ω j −Doff
j,n′ + ω

� �
Ωj × cj,n′

I aj,n ′=1f g

=
Rk′ × Ωk′ −Doff

k′ ,n + ω
� �
Ωk′ × ck′ ,n

−
Rk′ × Ωk′ −Doff

k′ ,n′ + ω
� �
Ωk′ × ck′ ,n′

> 0:

ð30Þ

Combing with the results of Equations (28) and (30) as
well as Definition 4, it is concluded that the MEC multiuser
and multiedge server resource allocation game proposed in
the paper is a finite ordinal potential game. Therefore, the
game has the characteristics of a finite ordinal potential
game, including limited improvement properties.

4.1.3. Game Strategy Design. The above section verifies the
MEC multiuser and multiedge server resource allocation
game has Nash equilibrium, and this section introduces the
strategy to solve Nash equilibrium in details. There are some
classical algorithms for finding the existence of Nash equilib-
rium, such as optimum response [18] and reinforcement
learning [22]. However, the problem of finding Nash equi-
librium in the model of this paper is incomplete informa-
tion; that is to say, all configuration information for each
edge server is held only by itself. Thus, an edge server cannot
make its own optimal response according to the optimal
selection of other edge servers. So this paper chose to use
game theory for problem solution. Through the above proof,
this paper designed a game-based joint optimization strategy
(GBJOS) to solve the competition problem of edge server, as
shown in Strategy 9.

Strategy 9. Iteration-based optimal energy efficiency update
algorithm.

Input Mobile device’s task information
Output Resource allocation strategy A
Initialization Initialize the resource allocation strategy

of system, set task selection threshold as N TO =M/2, set
maximum iteration times max Iter = 100

1) while converge ≠ True and iter <max Iter do
2) iter⟵ iter + 1
3) administrative server transmits Task, A, NðmÞ, N

TO, λm to each edge server
receive parameter information

6) based on Definitions 3 and 4, maximize the value
of Eq. (11), select the optimal strategy brn for them

7) transmit the strategy brn to administrative server
8) if brn is not null, and currently do not hold brn

then
9) request strategy change from administrative

server
10) end if
11) end for
12) if administrative server does not receive any

request then
13) converge⟵ True
14) else
15) randomly choose an edger serve and allow it to

update strategy
16) based on this round of received strategy brn,

update A
17) based on this round of strategy update of all

edge servers

18) end if
19) end while
20) Return A

GBJOS mainly includes two parts: strategy selection of
edge server and collection of strategy update information
from administrative server.

(i) Strategy selection of edge server: edge servers obtain
the related parameters of Equation (11) from
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administrative server, for calculating the benefit of
all tasks funðan, a−nÞ, n ∈ ES, an, a′n ∈ Taskg, choose
the task with the largest benefit as this round of
strategy selection. In case an edge server does not
hold the task selected for this round, it can send a
request to administrative server for strategy
modification.

(ii) Collection of strategy update information from
administrative server: in each round of iteration,
the administrative server can receive the current
strategy selection of all edge servers as well as the
request of some edge servers for modification. If no
request for modification is received, it is judged as
convergence; otherwise, administrative server shall
gather current strategies, then randomly choose an
edge server having send request for modification
and permit it to change current resource allocation
strategy [23]. Meanwhile, the administrative server
updates resource allocation strategy and transmits
collected parameters to each edge server.

4.1.4. Convergence Analysis. In Theorem 8, we have proved
this game is a finite ordinal potential game, so this strategy
will converge to Nash equilibrium within in limited number
of iteration times. In practical strategy execution, when the
administrative server does not receive any request for mod-
ification, it is judged as strategy convergence; at this time, the
update of resource allocation strategy will be ended.

Next, the time complexity of GBJOS will be analyzed.
Within each iteration, every edge server performs task selec-
tion in parallel. Therein, some sorting operation and basic
operations are involved, so the time complexity of this part
is OðN log NÞ. It is assumed that this strategy will go
through C times of iteration before reaching to termination,
so the overall time complexity of GBJOS is OðCN log NÞ. It
is clear whether this strategy can converge within limited
times relies on whether iteration time C has a upper bound
or not.

Theorem 10. When for ∀m ∈ f1, 2,⋯,Mg, ∀n ∈ f1, 2,⋯,N
g, Dof f

m,n ≤Ωm, Rm > cm,n occurs, GBJOS will terminate after
iterating for max fðN ∗Q ∗ΩmaxÞ/ω,M ∗N TOg times at
most, i.e., C <max fðN ∗Q ∗ΩmaxÞ/ω,M ∗N TOg.

Proof. During iteration, it is assumed that edge server n
updates current task selection k to k′, and updates allocation
strategy A to A′. Based on Definition 4 and lemma, it is
obtained that k = 0; then there are two main scenarios to
consider: (1) ak′,n = 0 and (2) ak′,n ≠ 0

(1) ak′,n = 0: the theoretical maximal benefit is expressed
as

Q =max ∀m ∈ 1, 2,⋯,Mf g,∀n ∈ 1, 2,⋯,Nf g Rm × Ωm −Dof f
m,n + ω

� �
Ωm × cm,n

�����
( )

ð31Þ

According to potential function (24), it can be obtained
that

0 ≤ ϕ Að Þ ≤ 〠
N

i=1
〠
M

j=1
QI aj,i=1f g <NQ: ð32Þ

According to the nature of potential game, strategy
change will lead to the increase of potential function value.
Suppose the minimal granularity of potential game increase
to be Qmin, that is to say,

ϕ A′
� �

≥ ϕ Að Þ +Qmin: ð33Þ

According to Equation (28), it can be obtained that

ϕ A′
� �

− ϕ Að Þ ≥ ω

Ωk′
: ð34Þ

Define the maximal time delay as

Ωmax = max ∀m ∈ 1, 2,⋯,Mf g Ωmjf g: ð35Þ

There must be

Ωk′ ≤Ωmax: ð36Þ

That is to say,

ϕ A′
� �

− ϕ Að Þ ≥ ω

Ωmax
> 0,

ak′,n ≠ 0:
ð37Þ

If the strategy selection of edge servers contradicts, it can
be known from Definitions 3 and 4 that for a task, whether a
server can successfully snatch it or not, the upper bound of
conflict times is N TO. So, in this case, the upper bound of
strategy conflict times is M ∗N TO.

Through the analysis of above two cases, it can be con-
cluded that: iteration times C <max fðN ∗Q ∗ΩmaxÞ/ω,M
∗N TOg.
4.2. Reverse Update of Parameters. The above-mentioned
GBJOS strategy makes edge server to maximize its benefit;
finally, all edge servers can reach an agreement. In this
section, the penalty coefficient λ in Equation (10) was
dynamically adjusted by setting loss function. The penalty
coefficient is designed to give different significance scoring
to the tasks of different size, and edge servers determine their
own strategy selection by working out Equation (11). So,
penalty coefficient λ plays an important role in guiding edge
server to make strategy selection. If different tasks have great
difference in λ, it would be unfair to some tasks, making λ to
exert large impact on the value of Equation (11), while
ignoring the influence of other parameters; but if different
tasks have too small difference in λ, the gap between task
priority is too small, then edge server would still make
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strategy selection according to the initial condition of a task,
and the updates do not work as it is expected to be.

In the TUSGT of this paper, penalty coefficient is
updated dynamically through online learning framework.
The paper sets a loss function φ; each task will be updated
to varied extent according to its own data characteristics.
By virtue of such automatic dynamic adjustment, tasks are
given different priorities, reaching the purpose of improving
deadline hit rate. The loss function φm for task m is calcu-
lated as shown in

φm =VIm −
∑M

i=1VIi × θi
∑M

i=1θi
, 〠

M

i=1
θi ≠ 0, ð38Þ

in which θi refers to whether task i is completed on time or
not (see details in Section 3.7). The penalty coefficient λ is
updated by EWA algorithm [24], as shown in

λnewm =

λoldm × e−ηφm , 〠
M

i=1
θi ≠ 0,

λoldm ×
1
2
, 〠

M

i=1
θi = 0:

8>>>>><
>>>>>:

ð39Þ

When no task is completed on time, the penalty coeffi-
cient of all tasks is halved, to increase task attraction. It
can be seen from Equation (39) that, in general condition,
the priority of the task with large volume of data will be ele-
vated, while the update extent relies on the task completion
of current strategy. Therein, the update extent of penalty
coefficient also depends on the value of learning rate η,
which should be set artificially according to actual initial task
information. The value of η also decides the update times of
TUSGT; the smaller the update extent is, the more times it
will be updated. While updating too much will result in
unsatisfactory result, so it needs to be weighed against actual
data. The penalty coefficient needs to be adjusted according
to the actual task size and the computing power of the edge
server. It is only necessary to use the parameters expected in
the scene as input and make multiple adjustments. The var-
iation of this coefficient is also affected by the size of the task,
but in general, the edge server can be guided to make a
choice that is more conducive to the overall task completion
rate of the MEC system.

5. Experiment and Result Analysis

In the MEC multiuser and multiedge server resource alloca-
tion scenarios set in the simulation test of this paper, all
mobile devices and edge servers are evenly distributed in a
region of 1000m × 1000m. The performance of different
strategies is evaluated by deadline hit rate and the average
benefit of edge servers. Finally, the convergence of TUSGT
strategy and the growth of operation time are analyzed.

5.1. Experimental Parameter Setting. In the simulation test of
the paper, there are 30 edge servers, and the performance of
TUSGT is evaluated by setting different number of mobile

devices. Both task input volume VIm and computing
amount Lm conform to uniform distribution within the
range of values, and the output data volume VOm of mobile
device tasks is set to be 0.2 times of VIm [25]. This initial
reward value is proportional to the amount of task data.
The reward value will not change during the experiment. If
the mobile device is not allocated computing resources, it
will miss the opportunity to be calculated in this round.
When the edge server completes the calculation of the cur-
rent task, it can update its reward value to participate in a
new round of allocation. This paper refers to the experimen-
tal parameter data in literature [19] to set the CPU process-
ing capacity f m and f n of mobile device and edge server,
which also conform to even distribution within the range
of values, aimed at simulating a real environment with vari-
ous devices of different computing power. The transmission
rate of mobile device conforms to even distribution within
the range of values, and communication-related parameters
such as antenna gain are fixed value [19]. Regarding task
delay requirement Ωm, the time delay requirement of task
set in this paper is consistent with even distribution within
time interval ½Z ± 0:3Z�, in which, Z is the time delay granu-
larity [25]. The smaller the time delay granularity is, the
more strict the time delay requirement of task will be. The
learning rate is affected by the amount of task data. In the
parameter environment of this paper, setting the learning
rate to 0.1 has a better effect. In practical applications, mul-
tiple adjustments need to be made according to the esti-
mated amount of task data, and a value with better effect is
selected. This value is not adjusted during operation. The
specific parameter settings are shown in Table 1.

5.2. Evaluation Metrics. TUSGT considers edge server bene-
fit and deadline hit rate at the same time. Edge server benefit

Table 1: Experimental parameters.

Parameters Value

Number of edge servers N 30

Number of mobile devices M [20, 80]

Input volume of task VIm [20, 100]MB

Calculation amount of task Lm [500, 1500]Mcycles/MB

Delay requirement granularity of task Z [100, 300] s

CPU processing capability of mobile
devicef m

[1, 5]Mcycles/s

CPU processing capability of edge
serverf n

[200, 400]Mcycles/s

Bandwidth B 2MHz

Noise power σ2 10-10 W

Antenna gain G 4.11

Carrier frequency Fc 915MHz

Path loss factor PL 3

Transmission power of mobile device
pm

[0.1, 0.8]W

Learning rate η 0.1
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embodies its initiative to perform task; the higher the benefit
is, the more the edge server is willing to perform task. Dead-
line hit rate embodies the performance of allocation strategy,
because the MEC system is aimed at completing the task off-
loaded by mobile deice; the higher the deadline hit rate is,
the better the performance of allocation strategy is. So this
paper evaluates the performance of different strategies from
two aspects: deadline hit rate of MEC system and average
benefit of edge server. First, these two indexes are defined
as follows:

(1) Deadline hit rate (DHR):

DHR =
M − ∑M

i=1θi
M

, ð40Þ

in which θi represents whether the task i is completed on
time or not and M represents total number of tasks.

(2) Average benefit (AB):

The benefit of edge server n is

〠
m∈Sn

benefitm,n, ð41Þ

in which, Sn represents the final strategy set of edge server n.
The average benefit of edge server is obtained as

AB =
∑N

i=1∑m∈Sibenefitm,i

N
, ð42Þ

in which N represents the number of edge servers.

5.3. Comparison of Strategies. The paper selected five alloca-
tion strategies to compare with the TUSGT strategy pro-
posed. The five comparison strategies are as follows:

(1) BGTA strategy: a game theory-based task allocation
scheme, allowing the player to selfishly compete for
task so as to maximize its own benefit [26].

(2) MILP strategy: adopts mixed integer linear program-
ming (MILP) to formulate joint task offloading and
resource allocation strategy [27].

(3) Greedy Strategy (GS): a greedy resource allocation
strategy, making edge server to always select the task
with highest benefit

(4) Random Strategy (RS): a random allocation strategy,
making edge server to randomly select task for
computing

(5) Ideal strategy: an ideal situation, in which the admin-
istrative server performs a global and integrated allo-
cation based on the information of all edge servers
and mobile device tasks and takes maximizing the
deadline hit rate of system as objective. In this case,
all edge servers and mobile devices completely listen

to the arrangement of administrative server, without
the ability to choose

In the BGTA strategy, the author considers the revenue
problem of edge servers, constructs a revenue function,
allows edge servers to select the task with the highest benefit
at present, and then uses game theory to build an allocation
algorithm to solve the conflict problem of task selection and
finally solves the allocation strategy. In the MILP strategy,
the author takes the monetary cost and task completion
delay of the edge server as the optimization goal, constructs
it as a MILP problem, and then uses the branch and bound
algorithm (The Branch and Bound Algorithm) to solve the
approximate optimal solution of the target problem; namely,
the optimization problem is regarded as a search tree to
search, so as to obtain the final resource allocation strate-
gy.GS adopts the classical greedy algorithm to construct
resource allocation strategy, which is a classical solution
method. RS reflects the performance of resource allocation
problem under unstable strategies, normally the lower
bound of allocation strategy performance. Ideal strategy
assumes all devices follows the management and do not pur-
sue for any self-interest, and the strategy maker owns the
information of all devices and tasks in current environment.
But this is not practical, so the performance of ideal strategy
is only taken as an upper bound in the comparison of dead-
line hit rate, to measure the difference between various strat-
egies and ideal upper bound.

5.4. Experimental Results

5.4.1. Deadline Hit Rate. Figure 2 provides the influence of
task number on DHR for different resource allocation strat-
egies. In this experiment, due to the number of edge server
being fixed as 30, in the process of increasing task number,
the overall DHR must show a declining trend, and the fluc-
tuation of effect is caused by the heuristic operation in strat-
egy and the randomness of task generation. It can be seen
from the chart that, for the TUSGT proposed in the paper,
its deadline hit rate is very close to that of ideal strategy
under different number of tasks. But in the case of 60 tasks,
only TUSGT and ideal achieve the highest DHR of 0.5.
Among them, the effect of RS is not stable, but it can be
observed from an overall trend that its effect is far less than
TUSGT. The poorest effect of GS contributes to the short
sight of edge server. Under these five different number of
tasks, as DHR performance is concerned, TUSGT is
improved by 22% on average compared to BGTA and by
27% on average compared to MILP.

Figure 3 shows the impact of changing task delay
requirement on DHR for different strategies. In the experi-
ment as shown in Figure 3, the number of both edge server
and task is set as 30, so DHR is within the range of [0,1].
The increase of delay granularity means the task delay
requirement gradually becomes loose, and overall DHR is
also rising. Similar to the experiment in Figure 2, RS perfor-
mance is not stable and its DHR is lower than TUSGT. It can
be observed from Figure 3 that, in difference scenarios,
TUSGT is slightly lower than Ideal, and the remaining
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strategies are all lower than TUSGT, which is due to the
reverse update penalty coefficient in TUSGT. Under these
five different task delay requirements, as DHR performance
is concerned, TUSGT is improved by 20% on average com-
pared to BGTA and by 30% on average compared to MILP.

5.4.2. Average Benefit of Edge Server. Figure 4 shows the
impact of changing task number on edge server AB for dif-

ferent strategies. In this experiment, there are 30 edge
servers, and the number of task is changed to simulate differ-
ent scenarios. It can be seen from Figure 4 that, in scenarios
with different task number, all average benefits of TUSGT
are the highest, due to that the game theory-based strategy
allows edge servers to compete for task. It is also observed
that ideal strategy lags far behind on AB index, because ideal
only cares about overall DHR of the system, without
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considering the competition relationship and benefit of edge
servers. Both RS and GS have a poor effect. RS effect fluctu-
ates greatly due to its instability, and GS sacrifices much
DHR, resulting in low AB. Under these five different number
of task, as edge server AB is concerned, TUSGT is improved
by 22% on average compared to BGTA and by 65% on aver-
age compared to MILP.

5.4.3. Convergence and Overhead Analysis. Figure 5 displays
the convergence when task number is 20, 40, 60, and 80, and
its vertical axis is the percentage of request instruction num-
ber which represents the convergence of TUSGT. From the
introduction in section 4, it is known that TUSGT conver-
gence mainly lies on the convergence of GBJOS strategy.
When there is edge server requesting for strategymodification,
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it represents convergence. It is observed in the figure that, as
the iteration times increase, all the numbers of edge servers
applying for modifying resource allocation strategy are
decreasing under four scenarios, so TUSGT reaches to conver-
gence state after less iteration times. With the increase of task
number, TUSGT convergence tends to be smooth, because the
more the task number is, the smaller the competition between
edge servers will be, and the easier it is to converge.

Figure 6 shows the change of TUSGT execution time as
the task number in MEC system increases. The main time
overhead of TUSGT is from GBJOS, because the time com-
plexity of reversely updating parameters is very small [25],
while GBJOS requires edge server to iterate many times
and compete for selection task. Therefore, GBJOS with fast
convergence makes TUSGT to have very small time over-
head, as shown in Figure 6, the TUSGT time overhead is
merely 350ms in the case of 80 tasks, which would not pro-
duce too great influence on task execution. It is also observed
from Figure 6 that, as task number increases, the overall
TUSGT time overhead tends to increase smaller and smaller.
This means even if more tasks are added, TUSGT time over-
head would not be elevated too much suddenly.

The above experimental results indicate that the TUSGT
proposed in the paper can effectively promote edge server
benefit and MEC system DHR. TUSGT has a good conver-
gence, and execution time overhead would not affect the
real-time requirement of offloading task in MEC system.

6. Conclusions

This paper built a model for multiuser and multiedge server
resource allocation problem in MEC system at first, consid-
ered the benefit of edge server, and proposed a two-way
update strategy based on game theory (TUSGT) to solve this
problem. It is proved that the task competition relationship
between edge servers is a finite ordinal potential game and
the Nash equilibrium exists; then parameters are updated

reversely to adjust task weight, so as to improve overall
deadline hit rate. Finally, through simulation test, we verified
the convergence nature and time performance of TUSGT.
Compared to other datum strategies, TUSGT significantly
promotes edge server benefit and overall deadline hit rate.
However, TUSGT only solves problem in static scenario,
but does not consider decomposable task or that one edge
server can receive multiple tasks. The further study will con-
sider dynamic offloading strategy and user movability factors
and extend TUSGT solution scenario, to adapt to more gen-
eral situations.
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