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Satellite-terrestrial integrated networks (STINs) are considered to be a new paradigm for the next generation of global
communication because of its distinctive merits, such as wide coverage, high reliability, and flexibility. When the satellite
associates with different base stations (BSs) and adopts different channels for communication, the utility of offloading data to
BSs is different. In our work, we study how to jointly associate satellites with appropriate BSs and allocate channels to
satellites. Our purpose is to maximize the utility of the data offloaded from satellites to BSs while considering the load balance
of BSs. However, some satellites are often unable to connect to BSs because of their periodic flight characteristic, which makes
the joint satellite-BS association and channel allocation more challenging. To solve the problem that satellites sometimes
cannot connect to BSs, we abstract the communication model between satellites and BSs into a bipartite graph and add a
virtual BS to ensure that all satellites can connect to at least one BS. Then, in the constructed joint optimization problem, we
solve the assignment of satellites and channels simultaneously. Considering that the joint optimization problem is nonconvex,
we use double deep Q-Network (DDQN) for achieving the optimal strategy of satellite association and channel allocation.
Furthermore, the reward value in most state transition information generated by satellites is 0, which leads to the low learning
efficiency of DDQN. Aiming at enhancing the learning efficiency of DDQN, the priority sampling-based DDQN (PSDDQN)
algorithm is proposed. Experimental results demonstrate that PSDDQN gets better utility and achieves the load balance of BSs
compared with other algorithms.

1. Introduction

Recently, 5G technology has developed rapidly, and many
5G base stations have been deployed at the same time.
Therefore, 5G network communication services can be pro-
vided in many places, such as urban and metropolitan areas.
However, for those remote areas without communication
facilities, such as deserts, oceans, and other places, it is diffi-
cult to provide people with communication services. LEO
satellite network has attracted researchers’ attention due to
its characteristics of wide coverage, low delay, and high

bandwidth, and it can provide communication services for
those places which are not covered by base stations [1].
Therefore, the STINs become a new paradigm for providing
seamless communication. Meanwhile, people’s demands for
high quality video, voice, and other multimedia services
grow explosively. Therefore, how to efficiently manage
resources in STINs for providing people with better Internet
services has become a new challenge [2, 3].

Resource allocation is a key technology that affects the
performance of STINs. But most of researches focus on
radio spectrum allocation [4, 5], power allocation [6, 7],
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and other issues. And there is little research that studies the
joint satellite association and channel allocation. Hu et al. [8]
proposed a competitive market scheme to solve user associ-
ation issue of satellite-drone networks. To address the user
association issue of heterogeneous networks, a distributed
belief propagation method was proposed [9]. Khalili et al.
[10] investigated user association of the uplinks in heteroge-
neous networks and used maximization-minimization the-
ory and augmented Lagrange method to guarantee users’
data transmission rate. Zhao et al. [11] used multiagent RL
approach for achieving the optimal user association strategy
while considering the service requirements of users in het-
erogeneous cellular networks. However, these approaches
are not suitable in STINs. The main reasons are as follows:
(1) In the network scenarios mentioned above, when opti-
mizing user association problem, users are within the com-
munication range of BSs. That is, users are covered by at
least one BS at any time. However, in STINs, many satellites
cannot connect to BSs because satellites communicate with
BSs by the Line-of-Sight (LoS) way. (2) Because of the peri-
odic movement of satellites, the communication process
between satellites and BSs is discontinuous rather than con-
tinuous. (3) The load balance of BSs seriously affect the per-
formance of STINs. If the load balance of BSs is not
considered, the capacity of some BSs will be exhausted in
advance. And this degrades the performance of STINs. How-
ever, the above literature ignores the load balance of BSs.

In our research, the joint satellite scheduling and
resource allocation in STINs are investigated. When satel-
lites communicate with BSs, allocating appropriate BSs
and channels to satellites for transmitting data has a great
impact on the utility of STINs. Because the problem of
joint satellite association and channel allocation is coupled
and nonconvex, conventional methods cannot effectively
obtain the optimal satellite association and channel alloca-
tion strategy.

Fortunately, in recent years, artificial intelligence algo-
rithm such as reinforcement learning (RL) has developed
rapidly and applied to many fields. RL has been used to solve
system control problems [12]. Moreover, it has been applied
in combinatorial optimization [13, 14], capacity manage-
ment [15], resource management [16, 17], etc., especially
in games and chess. Furthermore, RL also has good perfor-
mance in dynamic network environment. Inspired by this,
we try to use RL approach to achieve the optimal strategy
in STINs.

This paper mainly studies the joint satellite scheduling
and resource allocation in STINs. Our purpose is to maxi-
mize the utility of data offloaded from satellites to BSs as
much as possible while considering the load balance of
BSs. The joint optimization problem of the satellites and
channel assignments is constructed. Then, a priority
sampling-based double DQN (PSDDQN) method is used
to address the aforementioned problem. We give the main
contributions in the following:

(1) We focus on the joint satellite association and chan-
nel allocation while considering the load balance of
BSs in STINs. We formulate the problem of joint sat-

ellite association and channel allocation as a joint
optimization problem. And, we use RL approach to
solve it

(2) We propose a bipartite graph with virtual BS to
describe the communication model between satel-
lites and BSs. By adding a virtual BS, we ensure that
the action space of all satellites is the same. So we can
easily determine the action space of our proposed RL
model

(3) Considering that the reward value in most state tran-
sition information is 0, we propose a priority
sampling-based DDQN (PSDDQN) to enhance the
performance of DDQN. Moreover, to reduce the
consumption of computing resources caused by sort-
ing state transition information, we use SumTree
structure to store state transition information.
Experimental results demonstrate that PSDDQN
can converge quickly and get better performance
than the selected baseline approaches

The rest of our paper unfolds below. The recent research
developments are summarized in Section 2. In Section 3, the
system framework and problem formulation are illustrated.
Section 4 describes our PSDDQN method. Section 5 evalu-
ates our PSDDQN method and discusses the experimental
results. We conclude this article and give the future research
in Section 6.

2. Related Work

Many works investigated user association in wireless net-
works. Feng et al. [18] proposed a repeated game-based user
association scheme while considering spectrum allocation to
maximize users’ data transmission rate of the MIMO system.
Liu et al. [19] used Lagrange dual decomposition approach
to address the user association issue in two different access
schemes. Liu et al. [20] jointly optimized user association
and power control and designed a semidistributed solution
to obtain the optimal results. Considering that users’ mobil-
ity affects the performance of heterogeneous networks,
Cheng et al. [21] introduced the users’ mobility and pro-
posed a multiagent RL approach to maximize the system
capacity. Based on users’ preferences information, Zalghout
et al. [22] proposed a priority-based user association
approach to maximize user’s QoS in heterogeneous wireless
networks.

There are many works on the resource allocation of sat-
ellite networks. Zhu et al. [23] used multidimensional knap-
sack theory to minimize energy consumption while
considering user’s delay constraint. To improve the spec-
trum utilization of satellites, Zuo et al. [24] jointly optimized
allocation of time, spectrum, power, and beam and solved it
by heuristic algorithm. Mai et al. [25] used Stackelberg game
method to reduce the transmission delay of remote sensing
data. Deng et al. [26] jointly optimized virtual machine
assignment and power allocation to minimize energy con-
sumption in cloud-based satellite communication networks.
Shahid et al. [27] used radio utilization as load metric and
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proposed a load balancing-based resource management
method for improving STINs’ performance. Ji et al. [28] pre-
sented a data offloading method for solving the energy over-
head issue in multicell STINs. Deng et al. [29] designed a
satellite constellation deployment solution with minimum
number of satellites while meeting backhaul requirements
of users in STINs. However, none of them paid attention
to the joint satellite association and channel allocation.

In recent years, researchers have used artificial intelligence
algorithms to solve network problems. He et al. applied deep
learning algorithm to memory optimal detection [30] and
optimal strategy search [31] in MIMO system. Lai [32] used
federated learning to select outdated access point in MEC net-
works. Tang and Chen [33] designed a federated edge learning
framework to reduce the computational latency of tasks in IoT
networks. RL has been applied to ubiquitous computing [34],
network security [35], and resource allocation. For reducing
the task execution time, the Q-learning approach was adopted
to manage computing resources in IoT [36]. The Q-learning-
based task offloading scheme was used to maximize the utility
of system [37]. The designed deep RL-based radio resource
management method was used to improve the radio utiliza-
tion [38]. Zhang et al. [39] adopted deep RL approach to allo-
cate resource while meeting users’ reliability requirements.
The multiagent RL-based hierarchical task management strat-
egy can satisfy users’ communication requirements [40].
Luong et al. [41] jointly optimized UAV position and trans-
mitted beamforming and UAV-UE association in UAV-
assisted wireless networks. Considering that this optimization
problem was nonconvex, a method based on deep Q-learning
was proposed for allocating resources.

3. System Model and Problem Formulation

3.1. Network Model. Figure 1 shows the structure of STINs.
The STINs consist of N satellites and L BSs. For the terres-
trial networks, it can connect to LEO satellite networks
through BSs with satellite gateways. Because the LEO satel-
lite network topology changes dynamically over time, we
use snapshot method to discretize the satellite network
topology according to reference [42]. During a snapshot,
the network topology is fixed. The whole operation time is
T , and the number of snapshots is NT ; then, we can easily
get

〠
NT

t=1
Tt = T: ð1Þ

The more snapshots, the higher the precision of the repre-
sentation of satellite network topology. But extensive storage
resources and computing resources are needed to deal with
these snapshots. To ensure the precision of satellite network
topology and reduce the consumption of storage resources,
the duration of the snapshot should be less than the commu-
nication time between satellites and BSs. We define it as

Tt ≤min ti,j
� �

,∀i ∈ 1, 2, 3,⋯,Nf g, j ∈ 1, 2, 3,⋯,Lf g, ð2Þ

where variable ti,j expresses the communication time between
ith satellite and jth BS. The structure of STINs is expressed by
G = ðV , EÞ. And graph G is undirected graph. The node set in
STINs is denoted by V . And E represents the communication
links between satellites and BSs.

3.2. Communication Model. When BSs are not within the
coverage of satellites, satellites cannot communicate with
BSs. Moreover, each satellite may cover many BSs some-
times. Therefore, the communication model between satel-
lites and BSs can be abstracted into a bipartite graph. We
show the structure of bipartite graph.

In Figure 2, grey nodes represent satellites, and orange
nodes represent BSs. The grey lines indicate the communica-
tion links between satellites and BSs. From Figure 2, we
observe that only four satellites can connect to BSs, and
other satellites of the satellite networks cannot connect to
any BSs. Considering the BSs covered by different satellites
are different, the action space of different satellites is differ-
ent. Therefore, the RL method cannot be directly applied
to STINs. To solve this problem, we introduce the virtual
BS. By adding a virtual BS, each satellite can be connected
to a BS, and the action space of each satellite is same. We
show the bipartite graph with virtual BS.

In Figure 3, the blue node is the added virtual BS. When
a satellite cannot connect to any BS, we connect this satellite
to the added virtual BS. Then, each satellite in STINs can be
connected to at least one BS at any snapshot. Hence, the sat-
ellite can select one BS from L + 1 BSs to establish a commu-
nication link at any time. This operation ensures that the
action space of each satellite is same, which is convenient
for the definition of action space of RL in subsequent
section.

3.3. Channel Model. Considering that we have added a vir-
tual BS to STINs, we use set L = f0, 1, 2, 3,⋯, Lg to repre-
sent the BSs of STINs. And the index of the added virtual
BS is 0. Only when the satellite is associated with one BS
and occupies one channel of this BS can the satellite commu-
nicate with this BS. We use binary decision variable si,lðtÞ
that indicates whether satellite i associate with BS l at time
t. If satellite i is assigned to BS l, then si,lðtÞ = 1; otherwise,
si,lðtÞ = 0. For convenience, the satellite can only connect to
one BS during one snapshot. So we can get

〠
L

l=0
si,l tð Þ ≤ 1,∀i ∈ 1, 2, 3,⋯,Nf g: ð3Þ

Moreover, we assume that each BS has M channels, and
each channel can only be assigned to one satellite at any
time. Therefore, each BS can connect at most M satellites
simultaneously; we can get

〠
N

i=1
si,l tð Þ ≤M,∀l ∈ 1, 2, 3,⋯,Lf g: ð4Þ

Here, we assume that the number of satellites connected
to the virtual BS is not limited. So the added virtual BS can
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connect to all satellites. Considering that the index of the vir-
tual BS is 0, we can get

〠
N

i=1
si,0 tð Þ ≤N: ð5Þ

Assigning different channels to satellites has an impor-
tant impact on the data transmission rate between satellites
and BSs. Assumed that different channels of the BS are
orthogonal. Here, we use binary channel-allocation variable

ci,mðtÞ that indicates whether satellite i communicate with
BS on channel m. If satellite i uses channel m for communi-
cation at time t, ci,mðtÞ = 1; otherwise, ci,mðtÞ = 0. Here, one
channel can only be allocated to one satellite. We can easily
get

〠
M

m=1
ci,m tð Þ ≤ 1,∀i ∈ 1, 2, 3,⋯,Nf g: ð6Þ

Considering that the satellite may cover many BSs, when
satellite i communicates with BS l, other BSs will also inter-
fere with the communication process. Therefore, the
cochannel influence of other BSs should be considered. We
obtain the SINR by

SINRi,l,m tð Þ = pi,l,m tð Þgi,l,m tð Þsi,l tð Þci,m tð Þ
∑L

b∈L\ 0,lf gpi,b,m tð Þgi,b,m tð Þsi,b tð Þci,m tð Þ + BN0
:

ð7Þ

The virtual BS does not interfere with the communica-
tion process of other BSs. Variable pi,l,m represents the trans-
mit power operating on channel m between satellite i and BS

Internet

D
ownlink

D
ownlink D

ownlink

LEO Satellite network

Terrestrial network

LEO Satellite network

Figure 1: The structure of STINs. The dotted lines (including red and blue) indicate that the satellite is capable of connecting to the BSs
under its coverage. The blue dotted line means the communication link established between the satellite and the BS. And each satellite is
able to associate with one BS for communication in a time slice.

BS1 BS2 BS3

S1 S2 S3 S4

Figure 2: Structure of bipartite graph.
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l, and variable gi,l,m indicates the channel gain of channel m.
The channel m is between ith satellite and lth BS. The vari-
able N0 indicates Gaussian white noise. B expresses the
channel bandwidth.

Let the longitude and latitude of BS l be λl and φl,
respectively. And λi and φi represent the longitude and lati-
tude of satellite i. The height of satellite orbit is h, so the dis-
tance between satellite i and BS l is given by

di,l = RE + hð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

RE

RE + h

� �2
− 2

RE

RE + h
cos λl − λið Þ cos φi cos φl + sin φi sin φlð Þ

s
,

ð8Þ

where variable RE denotes the earth’s radius. Thus, we can
get the path loss of the signal in the atmosphere

Li,l tð Þ = 32:44 + 20 log di,l + 20 log f , ð9Þ

where variable f represents the carrier frequency. Thus, we
can get the channel gain of satellite i

pi,l,m tð Þ = Ai,m − Li,l tð Þ, ð10Þ

where variable Ai,m represents the antenna gain operating on
channel m of satellite i. Based on the computed SINR, we
can get the data transmission rate by

ri,l,m tð Þ = B log2 1 + SINRi,l,m tð Þð Þ: ð11Þ

Variable B represents the channel bandwidth. Considering
that the communication time between satellite i and BS l is
different in a time slice, we can obtain the valid communica-
tion time between satellite i and BS l

τi,l =min Tt , ti,lð Þ: ð12Þ

3.4. Problem Formulation. Each satellite wants to get its
maximum utility. Our object is to obtain the maximum util-
ity of the data offloaded from satellites to BSs while consid-
ering the load balance of BSs. The utility of the data
offloaded by satellite i is ui. And it consists of the utility gen-

erated by the offloaded data and the cost of the BS storing
these offloaded data. We define it as

ui tð Þ = ωpi − ξf lð Þri,l,m tð Þτi,l, ð13Þ

where variables ω and ξ are weight coefficients. Variable f l
represents the cost of storing unit data in BS l. As the storage
capacity of BSs is consumed, the storage cost will gradually
increase. Here, we define it as

f l =
1

Cl −∑N
i=1ri,l,mτi,l +Q

, ð14Þ

where variable Cl represents the remaining capacity of BS l
and variable Q is a constant. Based on the abovementioned,
we can get the utility generated by the data offloaded from all
satellites to BSs in a time slice,

Γ tð Þ = 〠
N

i=1
〠
L

l=0
〠
M

m=1
ui tð Þ: ð15Þ

The running time T of satellites is composed of a series
of time slices. Therefore, we can get the utility generated
by the data offloaded from all satellites to BSs during the
whole operation time T . We define it as

ϒ =max 〠
NT

t=1
Γ tð Þ

 !
,

s:t:〠
L

l=0
si,l tð Þ ≤ 1,∀i ∈ 1, 2, 3,⋯,Nf g,

〠
N

i=1
si,l tð Þ ≤M,∀l ∈ 1, 2, 3,⋯,Lf g,

〠
N

i=1
si,l tð Þ ≤N , l = 0,

〠
M

m=1
ci,m tð Þ ≤ 1,∀i ∈ 1, 2, 3,⋯,Nf g,

ð16Þ

S1 S2 S3 S4

BS2 BS3BS1 BS0

S5 S6 SN

Figure 3: Bipartite graph with virtual BS.
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where variable NT denotes the number of snapshots. Con-
sidering that this problem is nonconvex, traditional
approaches cannot be directly used to obtain the optimal
results. Therefore, we adopt deep RL for achieving the opti-
mal satellite association and channel allocation strategy.

4. Priority Sampling-Based DDQN
Algorithm for Joint Satellite Scheduling and
Resource Allocation

4.1. Reinforcement Learning Model

4.1.1. State Space. The state space mainly includes the real-
time status of all satellites and the status of BSs. For the sat-
ellite, the status information includes its position at time t
and valid communication time with different BSs. For the
BS, the status information includes its remaining storage
capacity and channel allocation state. We get the state space
of satellite i by

Si =
λi, φi, τi,0, τi,1, τi,2,⋯, τi,L, si,0, si,1, si,2,⋯, si,L, ci,1, ci,2,⋯, ci,M ,

C0, C1, C2,⋯, CL

( )
,∀i ∈

1, 2, 3,⋯,Nf g,
ð17Þ

where variables λi and φi are introduced in Equation (8).
Variable Cl represents the remaining capacity of BS l. Vari-
able si,l indicates whether satellite i is associated with BS l.
Variable ci,m indicates whether satellite i adopts channel m
for communication.

4.1.2. Action space. When the satellite communicates with
the BS, the satellite must be associated with one BS and
occupy one channel of this BS. Therefore, the action of sat-
ellite mainly includes two parts: satellite association and
channel allocation. We define the action space of satellite i as

Ai = si,0, si,1, si,2,⋯, si,L, ci,0, ci,1, ci,2,⋯, ci,M
� �

,∀i ∈ 1, 2, 3,⋯,Nf g:
ð18Þ

From Equation (18), we can see that satellite association
and channel allocation are coupled. For convenience, we use
matrix E that represents the action space of the satellite

E =

e0,1, e0,2, e0,3,⋯, e0,M

e1,1, e1,2, e1,3,⋯, e1,M

⋮ ⋮ ⋮

eL,1, eL,2, eL,3,⋯, eL,M

2
666664

3
777775,∀l ∈ 0, 1, 2, 3,⋯,Lf g,m ∈ 1, 2,⋯,Mf g:

ð19Þ

We use binary variable el,m that represents the joint sat-
ellite association and channel allocation of the satellite. For a
satellite, when BS l and its channelm are assigned to this sat-
ellite simultaneously, el,m = 1; otherwise, el,m = 0.

4.1.3. Reward value. Reward value seriously affects the per-
formance of RL, and the agent use it to obtain the optimal

strategy. When satellites are associated with different BSs
and adopt different channels for communication, the utility
of data offloaded from satellites to BSs is different. Moreover,
the storage cost of the BS also changes with the consumption
of its capacity. In our research, our purpose is to obtain the
maximum utility of offloaded data while considering the
load balance of BSs. The reward value consists of the utility
generated by the offloaded data and the cost of BS for storing
these data. We define it as

ri = ωp − ξf lð Þri,l,m tð Þτi,l, ð20Þ

where variables ω and ξ are the weight coefficients, which are
initialized by analytic hierarchy process method. And vari-
able ri,l,mðtÞ denotes the downlink data transmission rate
between satellite i and BS l operating on channel m. Variable
τi,l denotes the communication time between satellite i and
BS l. Furthermore, we also normalize the utility of offloaded
data and the cost of BSs.

4.2. Double Deep Q-Network (DDQN) Method. DQN is used
widely in discrete scenarios. Meanwhile, the Q value is
approximated by deep neural network. After the iterative
training process, the obtained Q value is close to the true
Q value

Q∗ s, að Þ ≈Q s, a ; θð Þ: ð21Þ

Moreover, the experience relay buffer scheme and gradi-
ent descent method are used for updating the parameter θ of
neural network

L θð Þ = yi −Q s, a ; θð Þð Þ2, ð22Þ

∇θL θð Þ = yi −Q s, a ; θð Þð Þ∇θQ s, a ; θð Þ, ð23Þ
where variable yi represents the Q value obtained by DQN;
we can get it by

yi =
ri , is endi is true

ri + γ maxa′Q s′, a′ ; θ
� �

, is endi is false

8<
: : ð24Þ

Because greedy strategy is adopted for selecting action
in DQN, the Q value obtained by DQN is over estimated.
To solve this problem, double DQN (DDQN) selects
actions and calculates the target Q value by two indepen-
dent network structures. These two independent network
structures are online Q-Network and target Q-Network,
respectively, and they have the same network structure.
The target Q-Network is used to decouple the action selec-
tion and the Q value estimation, which can solve the over
estimation problem of Q value in DQN. When updating
the parameters of DDQN, we select the action with the
largest Q value by

amax s′ ; θ
� �

= arg max
a′

Q s′, a ; θ
� �

: ð25Þ
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Then, the target Q value in DDQN is calculated by
target Q-Network

yi
DDQN =

ri , is endi is true

ri + γQ′ s′, amax s′ ; θ
� �

; θ′
� �

, is endi is false
,

8><
>:

ð26Þ

where ri is the instant reward value. Variable γ denotes
the discount rate. And the discount rate indicates the
importance of instant reward and future reward. γ = 0
indicates that the agent is myopic, and the agent only con-
siders the instant reward. When the discount rate is 1, the

agent is farsighted and only considers the future reward.
In practice, the value of γ is generally between 0 and 1.

Then, we use the target Q value to calculate the TD-
error. Finally, we calculate the gradients according to the
obtained TD-error and update the weights of online Q-
Network. In the process of training, online Q-Network
assigns its weights to target Q-Network every certain num-
ber of training steps to update the parameters of target Q-
Network.

The last layer of DDQN is a fully connected layer. How-
ever, the action space of the satellite is a two-dimensional
matrix. In order to train DDQN, we transform the action
space of the satellite into a one-dimensional vector with size
ðL + 1Þ ∗M. The specific transformation process is shown in
Figure 4.

e0,1 e0,2 e0,3 e0,4 eL,M

0 1 2 3 L
Transform

0

1

2

L

1 2 3 4 M

e0,1

e1,1 e1,2 e1,3 e1,4

e0,2 e0,3 e0,4 e0,M

e1,M

e2,1 e2,2 e2,3 e2,4 e2,M

eL,1 eL,2 eL,3 eL,4 eL,M

···

···

···

···

⁎M

Figure 4: Action space transformation process.

Loss function of double DQN

Online network Target network

Gradient
descent

Copy parameters
after certain steps

Priority sampling method rt

st+1

Sumtree structure

(st,rt,at,st+1)

(st,rt)

Environment

Figure 5: Structure of PSDDQN.
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We assume the index of action el,m is indexðel,mÞ, and we
can get the location of el,m in the last layer of DDQN

index el,mð Þ = l ∗M +m,∀i ∈ 1, 2, 3,⋯,Lf g,m ∈ 1, 2, 3,⋯,Mf g:
ð27Þ

By transforming the action space into a one-dimensional
vector, we can use the state transition information to train
DDQN.

4.3. Priority Sampling-Based DDQN Algorithm for Joint
Satellite Scheduling and Resource Allocation. In DDQN, the

Input: number of episodes, Num_Episodes; number of time slices, Num_Timeslices; number of leaves of Sumtree structure, B; explo-
ration rate, ε; update frequency, F; learning rate, α ; number of satellites, N;
Output: the weight of online Q-Network, θ;
1. Initialize the state of STINs, including the capacity C of BSs, antenna model, channel model, satellite orbit parameters, and the
initial positions of satellites;
2. Randomly initialize the weight θ of online Q-Network; for the weight in target Q-Network, θ'=θ;
3.For episode =1 to Num_Episodes do
4. For time =1 to Num_Timeslices do
5. For i =1 to N do
6. Get the state information of satellite i from the ground control centre at time t, si;
7. End for
8. Get the sate information of BSs from the ground control centre at time t, H;
9. Obtain the state information of STINs at time t, S=(s1,s2,s3,…,sN , H);
10. Get the next state of STINs S’ from the ground control centre at t+1 and its termination flag;
11. For i =1 to N do
12. Use ε-greedy strategy to select an action, ai;
13. The agent execute action ai and obtain the instant reward ri by Equation (20);
14. Store state transition information (si, ai, ri, si’ ) in the Sumtree structure;
15. End for
16. S= S’;
17. The BSs and satellites send their state information to the ground control centre for updating the state information of STINs;
18. Sample samples from the Sumtree structure, and compute the loss of Q-value of each sample according to Equation (29);
19. Compute the gradient of each sample according to Equation (30);
20. Update the weight of online Q-Network according to the back propagation algorithm;
21. Compute the TD-error value of each sample according Equation (32) and update its priority by Equation (33);
22. Update the parameters of target Q-Network every frequency F, let θ'=θ;
23. End for
24.End for

Algorithm 1: PSDDQN for joint satellite association and channel allocation.

Table 1: Parameters of simulation.

Parameters Value

Channel bandwidth B 41.67 kHz

Transmitter EIRP p 51.6 dBW

Antenna gain g 53.7 dBi

Antenna diameter of BS D 3.5m

Carrier frequency f 20GHz

Path loss model Loss 32:44 + 20 log d + 20 log f (f:MHz)

Noise power N0 -174 dBm/Hz

Number of satellites N 120

Number of BSs L 6

Number of channels M 4

Number of time slices Num_timeslices 30

Weight of utility ω 0.7

Weight of storage cost ξ 0.3
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uniform sampling method is used to select samples when
calculating the gradient and updating the model’s parame-
ters. If samples in experience replay buffer are evenly distrib-
uted, uniform sampling method is effective. However,
because satellites communicate with BSs by LoS, few satel-
lites can communicate with BSs at any time. Moreover, most
satellites are connected to virtual BS. Therefore, most of state
transition information generated by satellites is from virtual
BS to virtual BS because the communication time between
satellites and BSs is short. At this time, the reward received
by the satellite is 0. Thus, the reward of most state transition
information in experience replay buffer is 0. If these samples
are uniformly sampled, the learning performance of DDQN
model will be degraded. Therefore, we use priority sampling
method to enhance the performance of DDQN.

For a sample, the greater its priority, the greater the
probability of being sampled. We define the sampling prob-
ability of the sample as

P jð Þ = p jð Þ
∑ip ið Þ , ð28Þ

where pðjÞ and PðjÞ are the priority and sampling probabil-
ity of sample j, respectively. Considering that sorting these
samples wastes extensive computing resources, we use Sum-
Tree structure to store these samples. The specific structure
of PSDDQN is shown in Figure 5.

When training PSDDQN model, we firstly selectM sam-
ples from SumTree structure and compute their loss func-
tions and gradients,

Loss θð Þ = 〠
M

j=1
wj yj

DDQN −Q sj, aj ; θ
	 
� �2

, ð29Þ

∇θLoss θð Þ =wj yj
DDQN −Q sj, aj ; θ

	 
� �
∇Q sj, aj ; θ
	 


, ð30Þ

wj =
N ∗ P jð Þð Þ−β
maxi wið Þ =

N ∗ P jð Þð Þ−β
maxi N ∗ P ið Þð Þ−β

=
P jð Þð Þ−β

maxi P ið Þð Þ−β
,

ð31Þ

where wj represents the weight of priority of sample j for
calculating the loss value. And variable β represents the
hyperparameter, which is determined by empirical value.

Then, the weights of DDQN are updated according to
the calculated gradients. Moreover, we also need to update
the priorities of samples in the SumTree structure. For the
sample, the greater the TD-error, the better the effect of
training the DDQN model. Here, we use TD-error value to
represent the priority of the sample. We get the TD-error
value of the sample and update its priority by

TD − error j = yj −Q sj, aj ; θ
	 


, ð32Þ

p jð Þ = TD‐errorj: ð33Þ

The ground control centre has rich computing resources
and can directly obtain the real-time state information of
BSs and satellites. In the process of communication, BSs
and satellites send their real-time state information to the
ground control centre for updating their state information.
The agent is able to obtain the latest state information of
STINs from the ground control centre in real time. In our
research, we deploy PSDDQN algorithm in the ground con-
trol centre. The specific details of PSDDQN is described in
the following:

5. Experimental Results and Analysis

We firstly introduce the experimental environment. Then,
we validate PSDDQN algorithm in the simulation data and
analysis the experimental results.

5.1. Experimental Environment. The communication system
of STINs in this paper is mainly composed of 120 LEO sat-
ellites and 6 BSs with satellite gateways. The index of virtual
BS is 0. And we use Walker delta model to construct satellite
constellation by satellite tool kit (STK). The satellite constel-
lation has 12 orbits, and each orbit has 10 satellites. The
inclination and height of each orbit are 45 degrees and
550 km, respectively. Moreover, every satellite is equipped
with same antenna. The specific parameters of simulation
are described by Table 1.

Table 2: Parameters of PSDDQN algorithm.

Parameters Value

Batch size 32

Learning rate α 0.005

Number of leaves of SumTree structure 2000

Number of neurons in input layer 156

Number of neurons in hidden layers 64, 32

Number of neurons in output layer 24

Discount rate γ 0.9

Activation function ReLU

Optimizer Gradient descent optimizer
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Considering that the estimated CSI is inaccurate and
there is feedback propagation delay during the information
transmission, the CSI information obtained by BSs is imper-
fect. Therefore, it is inaccurate to use the obtained CSI infor-
mation to calculate the data transmission rate between
satellites and BSs. To solve this problem, in practice, we
use the estimated CSI value and the error value which fol-
lows circular symmetric complex Gaussian distribution to
approximate the CSI value.

We conduct experiments on a computer with Win 10
OS, 16G RAM, and 3.2GHz CPU. The programming lan-
guage used is Python, and we select TensorFlow framework
to construct PSDDQN model. Additionally, each BS con-
tains 4 channels in this paper. Therefore, each BS can con-
nect to 4 satellites simultaneously. Considering that the
number of BSs is 6, the fully connected layer of PSDDQN
has 24 neurons. Moreover, the two independent network
structures of PSDDQN are same. And each neural network
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structure consists of the input layer, two hidden layers, and
the output layer. In addition, the number of neurons in the
input layer, hidden layer, and output layer is 156, 64 and
32, and 24, respectively. The specific parameters of
PSDDQN are given by Table 2.

Considering that most operations in PSDDQN are dot
product operations, we use FLOPS to represent its computa-
tion time. Because we use the full connection way to build
the neural network, the FLOPs in the first layer, the second
layer, and the third layer are (2∗156-1) ∗ 64, (2 ∗ 64-1) ∗
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Figure 9: System utility with different number of satellites.
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32, and (2 ∗ 32-1) ∗ 24, respectively. In addition, the activa-
tion function used in the first and second layers is ReLU; the
required FLOPS of ReLU in these two layers are 64 and 32.
The activation function used in the third layer is Softmax;
the required FLOPS of Softmax in the third layer is 24 ∗ 4.
Therefore, the total required FLOPs to execute one sample
is 25672. Considering that the batch size we used is 32, the
total FLOPS of PSDDQN is 25672 ∗ 32. For the parameters
of PSDDQN, the parameters required in the first layer, the
second layer, and the third layer are 156 ∗ 64+64, 64 ∗
32+ 32, and 32 ∗ 24+24. Therefore, the total number of
parameters in PSDDQN is 12920.

The weight of utility ω and storage cost ξ in Equation
(20) is set to 0.7 and 0.3, respectively. The utility of unit data
offloaded by the satellite is 1. Moreover, the duration of each
time slice is 3.5 minutes, and there are 30 time slices in total.

5.2. Experimental Result Analysis. We firstly verify the con-
vergence of PSDDQN. Then, we compare PSDDQN algo-
rithm with random allocation algorithm, greedy allocation
algorithm, DQN [37], DDQN [43], and Dueling-DQN
[44], respectively. Finally, we show the experimental results
and give the discussion.

Random allocation algorithm: for the satellite, one BS is
randomly selected from the BSs within its coverage. Then,
the satellite is associated with the selected BS, and a channel
is randomly selected from the selected BS and assigned to
the satellite.

Greedy allocation algorithm: for the satellite, the BS with
the largest amount of offloaded data is selected from the BSs
within its coverage and associated with the satellite. If the BS
has no free channels, the suboptimal BS is selected.

5.2.1. Evaluation of Reinforcement Learning Model. Figure 6
shows the rewards of PSDDQN algorithm with different epi-
sodes. We note from Figure 6 that in the beginning, the
rewards obtained by PSDDQN algorithm fluctuate sharply.
The reason is that the parameters of PSDDQN algorithm
are initialized randomly. As the number of episodes
increases, the fluctuation of rewards obtained decreases
gradually and finally tends to be stable. It is obvious from
Figure 6 that PSDDQN algorithm converges at about 50
episodes.

Figure 7 plots the loss value of PSDDQN algorithm with
different episodes. We observe that the loss value of
PSDDQN is large in the beginning. With the increasing of
episodes, the loss value of PSDDQN decreases gradually.
Finally, the loss value tends to be stable. In addition, from
Figure 7, we know that PSDDQN algorithm learns useful
knowledge from state transition information.

From Figures 6 and 7, we can see that PSDDQN algo-
rithm converges at about 50 episodes. The convergence
speed of PSDDQN in STINs is relatively fast. In the training
process, the satellite selects one BS from the BSs within its
coverage as an action. Because the communication time
between satellites and BSs is very short, most of state transi-
tion information is from virtual BS to virtual BS. Therefore,
when state transition is from virtual BS to virtual BS, the sat-
ellite can only select virtual BS as an effective action. In
PSDDQN, we directly set that the satellite at this time can
only connect to virtual BS, which effectively reduces the con-
vergence time of PSDDQN. This explains why PSDDQN
converges fast.

When training PSDDQN algorithm, we use gradient
descent method to update its parameters. If the learning rate
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is large, the step of parameter update is large. The conver-
gence speed of PSDDQN is fast, but its performance fluctu-
ates sharply in the convergence process. In addition,
PSDDQN often cannot find the optimal solution. If the

learning rate is small, the step of parameter update is small.
And the convergence speed of PSDDQN is slow. Therefore,
setting an appropriate learning rate in the experiment is very
important for the convergence of PSDDQN.
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Figure 8 depicts the rewards obtained by PSDDQN with
different learning rates. With the increasing of episodes,
PSDDQN algorithm with different learning rates can con-
verge to a steady state. In addition, we also find that when

α = 0:01, the fluctuation of rewards obtained by PSDDQN
is relatively large. However, if the value of α is too large,
the agent often obtains the local optimal result rather than
the optimal solution. When α = 0:001, the convergence
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speed of PSDDQN is slower than that of α = 0:005. There-
fore, in this paper, we set α to be 0.005 to train PSDDQN.

5.2.2. Evaluation of System Utility and Capacity Performance
of BSs. We compare the system utility obtained by different
algorithms with different number satellites in Figure 9. The
increases of satellites number lead to the gradually increases
of utility for all algorithms. This is because that the more sat-
ellites exist, the more connections between satellites and BSs
in a time slice. Therefore, the amount of data offloaded from
satellites to BSs increases, which increases the system utility.
Moreover, we also find that the utility obtained by random
allocation algorithm is the least, and the utility obtained by
PSDDQN is the largest. For random allocation algorithm,
it randomly assigns BSs and channels to satellites without
considering the channel state and their communication
time. As a result, the utility obtained by random allocation
algorithm is the least. For greedy allocation algorithm, satel-
lites prefer to associate with BSs that can offload more data.
Therefore, greedy allocation algorithm achieves better per-
formance than random allocation algorithm.

Furthermore, the performance of RL-based methods
(e.g., DQN, DDQN, and Dueling-DQN) is similar. The rea-
sons are as follows. First, RL-based algorithms consider the
load of BSs in joint satellite association and channel alloca-
tion, so BSs can store offloaded data at a lower cost. Second,
when offloading data, they not only consider the utility gen-
erated by satellites in the current time slice but also consider
the utility generated by satellites in the subsequent time
slices. Therefore, RL-based algorithms obtain more utility
than random allocation algorithm and greedy allocation
algorithm. In addition, DQN, DDQN, and Dueling-DQN

algorithms use uniform sampling method to train their
models. And PSDDQN adopts priority sampling method
to train its model, which enhance the learning efficiency of
uniform sampling. This explains why PSDDQN obtains the
best performance.

In Figure 10, we compare the system utility obtained by
all algorithms. We from Figure 10 note that with the increas-
ing of time slices, the utility of all algorithms shows a gradual
upward trend. And PSDDQN algorithm has the greatest
utility, and random allocation algorithm has the least utility.
Moreover, we also find that in the beginning, each algorithm
obtains almost the same utility. However, with the increas-
ing of time slices, the utility obtained by different algorithms
is different. The main reason is that in satellite scheduling
and resource allocation, RL-based algorithms pay more
attention to the expected cumulative utility rather than the
immediate utility. Therefore, they get better performance.
In contrast, random allocation algorithm and greedy alloca-
tion algorithm only consider the utility generated by satel-
lites in the current time slice and ignore the utility
generated by satellites in the subsequent time slices.

Moreover, we can also see that for RL-based algorithms,
the performance of PSDDQN is the best and that of DQN is
the worst. The reason is that DQN is trained by a neural net-
work structure, leading to the over estimation of the Q value.
In addition, the training process of DQN is unstable, while
DDQN adopts two independent network structures to select
the action and calculate the Q value, which alleviate the over
estimation problem. This explains why DDQN performs
better than DQN. When calculating the Q value, Dueling-
DQN pays more attention to the action with large advantage
value. Thus, it achieves better results than DDQN. For
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PSDDQN, it not only adopts two independent network
structures to calculate the Q value but also uses priority sam-
pling method to sample samples with larger TD-error value
for training model. Therefore, compared with DQN, DDQN,
and Dueling-DQN algorithms, PSDDQN algorithm gets bet-
ter performance.

Here, we show the capacity change of BSs. In STINs, BS0
is virtual BS, and its capacity does not change at any time. So
we do not show the change of its capacity.

Figures 11–15 show the capacity of BSs of different algo-
rithms with different time slices. When the time slices
increase, the remaining capacity of BSs decreases gradually.
The reason is that with the increasing of time slices, more
satellites can offload data to BSs. In addition, we find that
the remaining capacity of different BSs is different. Particu-
larly, we observe from Figures 11 and 12 that random alloca-
tion algorithm and greedy allocation algorithm offload most
of data to BS1 and BS2, leading to the significant reduction
in the capacity of BS1 and BS2. The remaining capacities
of BS1 and BS2 are 90 and 128, respectively. From
Figures 13–15, we also note that random allocation algo-
rithm and greedy allocation algorithm offload less data to
BS3, BS4, and BS5. The remaining capacities of BS3, BS4,
and BS5 are 158, 185, and 195, respectively. Therefore, we
know that random allocation algorithm and greedy alloca-
tion algorithm cause the capacities of BSs to be used
unevenly.

Furthermore, we find that when RL-based algorithms are
adopted, the remaining capacities of BS1, BS2, BS3, BS4, and
BS5 are 160, 155, 140, 145, and 150, respectively. These algo-
rithms basically ensure that the capacity of each BS is used
evenly. When satellite association and channel allocation
are performed, greedy allocation algorithm only considers
the amount of offload data and ignores the load of BSs,
which causes the capacity of some BSs to be overused and
the storage cost of some BSs becomes larger. In contrast,
RL-based algorithms consider not only the amount of off-
loaded data but also the capacity of BSs. Therefore, the
results obtained by RL-based algorithms are better than
those of greedy allocation algorithm and random allocation
algorithm. In addition, considering that PSDDQN offloads
more data to BSs, it consumes more capacity compared with
other RL algorithms.

6. Conclusion

In our research, we investigated the joint satellite scheduling
and resource allocation in STINs. We added a virtual BS to
solve the problem that satellites cannot connect to BSs and
reconstructed the communication model between satellites
and BSs. Then, we formulated the joint satellite association
and channel allocation as a joint optimization problem
about utility and proposed PSDDQN algorithm to obtain
the optimal strategy. When assigning appropriate BSs and
channels to satellites, PSDDQN algorithm also considers
the load balance of BSs. The simulation results demonstrate
that PSDDQN obtains the maximum utility generated by
offloaded data and achieves the load balance of BSs.

For some applications, data generated by satellites need
to be transmitted to the terrestrial networks in real time.
However, most satellites cannot communicate with BSs dur-
ing the time of a snapshot. Therefore, it is a challenge to
transmit the real-time data generated by satellites to the ter-
restrial networks. Considering that the satellites connected
to BSs can be used as gateways, in the future work, we
mainly study the traffic scheduling of satellites and try to
design a traffic scheduling scheme for reasonably and
dynamically transmitting the data of satellites to these gate-
ways. Finally, these gateways are used to transmit these data
to the terrestrial networks.
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