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Combining multiaccess edge computing (MEC) technology and wireless virtual reality (VR) game is a promising computing
paradigm. Offloading the rendering tasks to the edge node can make up for the lack of computing resources of mobile devices.
However, the current offloading works ignored that when rendering is enabled at the MEC server, the rendering operation
depends heavily on the environment deployed on this MEC serve. In this paper, we propose a dynamically rendering-aware
service module placement scheme for wireless VR games over the MEC networks. In this scheme, the rendering tasks of VR
games are offloaded to the MEC server and closely coupled with service module placement. At the same time, to further
optimize the end-to-end latency of VR video delivery, the routing delay of the rendered VR video stream and the costs of the
service module migration are jointly considered with the proposed placement scheme. The goal of this scheme is to minimize
the sum of the network costs over a long time under satisfying the delay constraint of each player. We model our strategy as a
high-order, nonconvex, and time-varying function. To solve this problem, we transform the placement problem into the min-
cut problem by constructing a series of auxiliary graphs. Then, we propose a two-stage iterative algorithm based on convex
optimization and graphs theory to solve our object function. Finally, extensive simulation results show that our proposed
algorithm can ensure low end-to-end latency for players and low network costs over the other baseline algorithms.

1. Introduction

Wireless virtual reality (VR) games are becoming more and
more popular, and it is reported that the global VR gaming
market size is projected to reach 45 billion dollars by 2025.
A wireless VR game application is generally composed of
two parts: a collection module and a service module. The
collection module is used to collect the geographic location
and actions of players and then delivers the collected infor-
mation to the service module. The service module encapsu-
lates all the necessary environments to perform logical
calculations, render the scene, and synchronize the game
information among players [1]. Players of different VR
games need different service modules to perform their
respective rendering tasks. Players of the same VR game
use the same service modules and need to synchronize the
information of this VR game with each other (such as char-

acter position and score). However, offering low-latency and
high-quality VR gaming services to mass wireless players at
any time and anywhere is always a major challenge [2–8].

Recently, introducing multiaccess edge computing
(MEC) technology to wireless VR games has been a promis-
ing computing paradigm to address the above challenges
[9–14]. By offloading the rendering tasks from the mobile
devices (e.g., VR headsets) to the proximal MEC servers,
the players’ requirements for ultrahigh computational
capacity and strict response latency would be satisfied. Ren-
dering refers to the process of generating images from a
model, which is a representation of a 3D object or virtual
environment defined by a programming language or data
structure. Specifically, since the MEC server has higher com-
puting power than the mobile device, the delay of rendering
VR tasks on the MEC server is less than the delay of render-
ing the same VR tasks on the mobile device [15–19].
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However, edge rendering inevitably introduces the
edge computing delay and the transmission delay caused
by the rendered VR game video stream back to the mobile
terminal. Especially, since the data volume of VR video
streams is generally huge, the increase in delay will be
even more pronounced. Therefore, it is particularly impor-
tant to optimize the routing of rendered VR game video
streams and reasonably allocate the edge resource includ-
ing wireless spectrum and computation. In addition, it
should be noted that deploying service modules on MEC
servers increases placement costs, and limited by the stor-
age capacity, service modules of all kinds of VR games
cannot deploy on each MEC at the same time [20–23].
But the premise of performing the rendering task of the
player on the MEC server is that the service module of
the VR game that this user participates in has been
deployed on this MEC server [24–26]. Based on the above
discussion, the service module placement optimization and
the computation resource allocation should be closely
coupled to jointly optimize the wireless VR game delivery
performance [27–29].

Moreover, in a MEC network scenario of concurrent
multiple kinds of wireless VR games, the geographical posi-
tion of players may change with time, and their access base
stations (BSs) may change as they move. To ensure the low
routing cost of the rendered VR video streams of one group,
the corresponding VR service module serving this group
may need to migrate to a new base station. The above situa-
tion would increase migration costs [30–34] including hard-
ware wear-and-tear costs and data migration delay costs.
Dynamically optimizing the trade-off between the routing
cost and migration cost is necessary.

In this paper, we propose a dynamically rendering-
aware service module placement scheme. In this scheme,
the rendering tasks of VR games are offloaded to the
MEC server and closely coupled with service module place-
ment. At the same time, to further optimize the end-to-end
latency of VR video delivery, the rendered VR video stream
routing delay and service module migration costs are con-
sidered with the proposed placement scheme. Specifically,
the strategies jointly consider the bandwidth, computing,
and storage resource allocation scheme within each time
slot and the service module migration cost optimization
between different base stations in the adjacent time slot.
The goal of this scheme is to minimize the sum of the net-
work costs over a long time under satisfying the delay con-
straint of each player.

(i) In this paper, we propose a dynamically rendering-
aware service module placement scheme, which
jointly optimizes service module placement and
the associated rendering computation allocation.
The goal of this scheme is to minimize the whole
network cost based on satisfying the players’ low
end-to-end delay and high-computing requirements

(ii) We study the problem of how to dynamically place
the VR service module to achieve a good balance
between the routing delay cost of the rendered VR

video stream and the migration cost of the corre-
sponding service module

(iii) We transform our placement problem into the
minimal cut problem by developing algebraic con-
versions and constructing a series of auxiliary
graphs. Then, we propose a two-stage iterative algo-
rithm based on convex optimization and graphs
theory to solve our objective function within poly-
nomial time

The rest of this paper is organized as follows. Section 2
introduces the system model. Section 3 presents the problem
formulation. The proposed solution is presented in Section
4. In Section 5, simulation results are presented and dis-
cussed. Finally, the conclusion is given in Section 6.

1.1. Related Work. At present, most of the research on place-
ment strategy focuses on reducing network delay and net-
work overhead for the user by reasonably deploying the
services, data, or virtual machines in a suitable location with
limited network resources. But the current works ignore
considering the dependency relationships between comput-
ing and storage. Paper [24] proposes a two-time scale frame-
work that jointly optimizes service placement and request
scheduling considering system stability and operation cost.
Paper [1] provides a mix of cost models to optimize the
deployment of collaborative edge applications to achieve
the best overall system performance. Paper [25] proposes a
distributed algorithm based on games theory to optimize
virtual machine placement in mobile cloud gaming through
resource competition to meet the overall requirements of
players in a cost-effective manner. Paper [35] proposes a
novel offline community discovery and online community
adjustment schemes to reduce the internode traffic and the
system overhead, which solve the replica placement problem
in a scalable and adaptive way. Paper [36] has some similar-
ities with our work, which studies the joint optimization of
service placement and request routing in the MEC networks
with multidimensional (storage-computation-communica-
tion) constraints. In paper [5], the author proposes a
MEC-based dynamic cache strategy and an optimized
unload strategy to minimize system delay and energy. Paper
[27] proposes a rendering-aware tile caching scheme to
optimize the end-to-end latency for VR video delivery over
multicell MEC networks. Paper [28] designs a view
synthesis-based 360 VR caching system to meet the require-
ments of wireless VR applications and enhance the quality
of the VR user experience, which supports MEC and hierar-
chical caching.

The goal of the recent research on wireless VR mainly
focuses on improving the quality of service (QoS), reducing
network overhead, or both by proper resource allocation,
transcoding technology, introducing edge networks, and
etc. Insufficient consideration is given to players’ mobility
and the network scenario of concurrent multiple kinds of
wireless VR games. Paper [4] proposes a blockchain-
supported task offloading scheme to resist malicious attacks,
which reduces the computing load of virtual machines and
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satisfy the high QoE of VR users. Paper [10] proposes a
wireless VR network that supports MEC. The network uses
a recurrent neural network (RNN) to predict the field of
view of each VR user in real-time and transfers the render-
ing task of VR from the VR device to the MEC server
through the rendering model migration function. Paper
[16] proposes an adaptive MEC-assisted virtual reality
framework, which can adaptively assign real-time virtual
reality rendering tasks to MEC servers. Meanwhile, the cach-
ing capability of MEC servers can further improve network
performance. Paper [37] proposes a task offloading, and
resource management scheme based on wireless virtual real-
ity is proposed. The scheme comprehensively considers the
factors of cache, computing, and spectrum allocation and
minimizes the content delivery delay while guaranteeing
quality. Paper [38] studies a multilayer wireless VR video
service scenario based on a MEC network. Its main goal is
to minimize system energy consumption and delay and to
find a balance between these two indicators. Paper [11]
proposes to minimize the long-term energy consumption
of MEC systems based on THz wireless access by jointly
optimizing viewport rendering offloading and downlink
transmission power control to support high-quality immer-
sive VR video services. Paper [39] proposes a novel
transcoding-enabled VR video caching and delivery frame-
work for edge-enhanced next-generation wireless networks.
Paper [40] investigates the optimal wireless streaming of a
multi-quality-tiled VR video from a server to multiple users
by effectively utilizing characteristics of multi-quality-tiled
VR videos and computation resources at the users’ side.

2. System Model

The MEC server is a microdata center that is typically
deployed with a cellular base station or WiFi access point.
Some lightweight virtualization technologies are used to vir-
tualize the hardware resources in the MEC server to realize
the flexible sharing of resources.

In this section, as illustrated in Figure 1, we consider a
scenario of concurrent multiple kinds of VR games under
the cellular network equipped with MEC servers. In this net-
work scenario, there are U players and M base stations
(BSs), where each BS is deployed with a MEC server. We
represent the set of BSs asU = f1, 2, 3,⋯,u,⋯,Ug and repre-
sent the set of users as M = f1, 2, 3,⋯,m,⋯,Mg. The base
stations are connected to each other in a wired way. We
assume that there are H kinds of VR games in this scenario,
denoted by the set H = f1, 2, 3,⋯,h,⋯,Hg. Therefore, H
different service modules are required to support these VR
games. In addition, to make dynamic decisions, we model
our problem as a time-slotted system, where we use T = f1,
2, 3,⋯,t,⋯,Tg to denote the set of consecutive time slots
under consideration. We assume that each time slot is much
larger than the delay caused by transmission and processing.

In the remaining subsections, the mathematical models
for communication, dynamic placement, rendering compu-
tation, and whole network cost are discussed. Some impor-
tant notations are summarized in Table 1.

2.1. Placement Cost. In this section, we investigate the
dynamic placement scheme of all VR service modules in
the system.

We assume that the set of service module placement strat-
egies can be denoted as Δ = fδtmhjm ∈M, h ∈H , t ∈T g,
where δtmh = 1 represents that the VRmodule service h is stor-
aged in the BS m; otherwise at the time t, δtmh = 0.

The cost for using the storage resources when placing
service module h on edge node m is characterized by λmh.
The cost of the placement VR service module can be
expressed by the following formula:

CosttP = 〠
M

m=1
〠
H

h=1
λmhδ

t
mh: ð1Þ

We assume the storage capacity of BS m is Πm, and the
size of VR service module h is wh. Due to the total size of the
VR service modules deployed in BS m should not exceed the
maximum storage capacity of BS m, the constraint should be
expressed as

〠
H

h=1
δtmhwh ≤Πm,∀m ∈M: ð2Þ

2.2. Migration Cost. When the players move, due to the
changes in the geographical location, the BS that transmits
the rendered data to the players may change. At the same
time, the BS that originally provided the rendering service
for the game group may no longer be the best choice to pro-
vide service. The group may need to select a suitable new BS
to perform rendering and even may need to deploy the cor-
responding VR service module on the new selected BS. That
is to say, the data information of the service module may
need to be migrated from the old MEC server to the new
MEC server and built the environment on the new MEC.
However, the migration of the VR service module will cause
hardware wear-and-tear costs and impose data migration
latency costs. The migration delay of each player belonging
to the same group is equal and can be expressed as

Dmig
u,t = 〠

M

m=1
〠
H

h=1
phug δtmh, δt−1mh

� �
: ð3Þ

In addition, the all migration costs can be expressed as

CosttM = 〠
M

m=1
〠
H

h=1
f δtmh, δt−1mh

� �
+ g δtmh, δt−1mh

� �� �
, ð4Þ

where f ðδtmh, δt−1mh Þ and gðδtmh, δt−1mh Þ can be, respectively,
defined as

f δtm,h, δt−1m,h
� �

=
f h, δtmh > δt−1mh ,
0, δtmh ≤ δt−1mh ,

(
ð5Þ
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g δtm,h, δt−1m,h
� �

=
υgh, δtmh > δt−1mh ,
0, δtmh ≤ δt−1mh ,

(
ð6Þ

where gh represents the migration delay of the VR service
module h and f h represents the cost of reconfiguring the
VR service module h. To be reasonable, we make the values

of f ðδtmh, δt−1mh Þ and gðδtmh, δt−1mh Þ to the same order of magni-
tude by adjusting the parameter υ.

2.3. Rendering Cost. Players in the same group may have
overlapping computational tasks; in this section, we assume
that the MEC server computes centrally after collecting all
the information of the players in the group. Therefore, we
allocate the computing resources on each server by the group.

In the MEC network, when the MEC server is serving
only one group, that group can certainly get more comput-
ing resources to perform rendering, resulting in a low pro-
cessing latency experience. However, in general, each MEC
server needs to serve multiple groups at the same time,
which can lead to competition for computation resources.
In particular, if too many groups render on the same MEC
server, the delays for all groups connected to this server will
increase dramatically.

phu ∈ f0, 1g is the indicator, to represents whether the
players u join in the VR game h. Due to one player can only
join in one kind of game, so the corresponding constraints
can be, respectively, formulated as

〠
H

h=1
phu = 1,∀u ∈U: ð7Þ

We use S = fstmhjm ∈M, h ∈H , t ∈T g to denote the set
of the rendering base station selection strategies. When the
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Figure 1: System model. Players 1 and 5 belong to the same VR game and need VR service module 1 to perform rendering. Players 2–4
belong to the same VR game and need VR service module 2 to perform rendering. Among them, the player 1 migrates from the
coverage of BS 4 to the coverage of BS 5, and the player 2 migrates from the coverage of BS 2 to the coverage of BS 3. Player 3 access to
BS 1 and offload the task 3 from BS 1 to BS 2.

Table 1: List of key notations.

Notation Definition

M Set of BSs

U Set of users

H Set of VR games

T Set of consecutive time slots

δtmh Placement indicator

Πm The maximum storage capability of BS m

σ2 The variance of additive white Gaussian noise

Bt The maximum bandwidth of BS at time t

Km The maximum computing capability of BS m

atmu The access indicator at the time t

stmh The BS selection indicator at the time t

dm,m′ The delay of routing one bit of data from BSm to BSm′
phu The indicator of player u whether joining in grouph
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group h selects the MEC server m to perform the rendering
task, stmh = 1 at the time t; otherwise, stmh = 0.

In order to ensure the information synchronization
between users in the same group, we assume that a group
can only select one MEC server to process tasks at a time
slot, so the corresponding constraints can be formulated as

〠
M

m=1
stmh = 1,∀h ∈H , t ∈T : ð8Þ

Since the cost of putting the VR service module on the
server is high, we put the VR service module on the BS,
which has been selected to process the groups’ tasks. So,
we can get the following formula:

δtmh = stmh,∀t ∈T , h ∈H ,m ∈M: ð9Þ

We assume that the maximum computing capability of
the MEC server m is Km (Hz) and the computing resource
of the BS m allocated to group h at time t is ktmh. We use
K = fktmhjm ∈M, h ∈H , t ∈T g to represent the computing
resource allocation scheme. Ct

h represents the computing
resource needed for group h at time t. The rendering delay
of players belonging to the same group is equal. So, the ren-
dering delay of player u at time slot t can be expressed as

Drend
u,t = 〠

M

m=1
〠
H

h=1
stmhp

h
u
Ct
h

ktmh

, t ∈T : ð10Þ

So, the rendering cost can be denoted by the sum of the
rendering latency of all groups, which can be expressed by

CosttR = 〠
M

m=1
〠
H

h=1
stmh

Ct
h

ktmh

, t ∈T : ð11Þ

At the same time, a MEC server cannot allocate more
computing resources to the groups; it serves than its maxi-
mum computing resources. Therefore, the corresponding
computing resources constraints can be formulated as

〠
H

h=1
ktmh ≤ Km,∀m ∈M, t ∈T : ð12Þ

2.4. Communication Cost. In this section, we present the
communication model in the mobile edge computing net-
works based on mmWave, which concentrates on the down-
link transmission. At the same time, we introduce the
routing transmission delay.

2.4.1. Downlink Delay. We use A = fatmujm ∈M, u ∈U, t ∈
T g as the access scheme, where the atmu = 1 means that
players u is associated with BS m at the time t to obtain
the rendered game video stream, while atmu = 0 denotes that
players u is not served by BS m at the time t.

Moreover, players cannot connect to multiple base sta-
tions at the same time, and we need to ensure that each

player can connect to a suitable one. So we get the following
constraint formula:

〠
M

m=1
atmu = 1,∀u ∈U: ð13Þ

We adopt the orthogonal spectrum reuse scheme in this
system; i.e., all BS share the total frequency bandwidth, and
there is no interference between the users served by the same
BS. The data amount of the uplink transmission is small,
only including some players' information, such as com-
mands and actions. So, the delay and cost of this process
are ignored in this paper.

The downlink transmission is used to transmit the ren-
dered VR video stream, in which the amount of data is
larger. Therefore, millimeter Wave technology with large
bandwidth is adopted for downlink transmission. Assume
that all channels are subject to independent identically dis-
tributed quasistatic Rayleigh block fading. The path loss
can be expressed as follow:

Ltmu = ηt dtmu

�� ��−ςt� �
, ð14Þ

where ηt is the downlink constant related to frequency, ςt is
the downlink path loss exponent at time t, and jdtmuj is the
distance between the players u and BS m at time t.

Millimeter wave has the characteristics of short wave-
length, small power, and directional antenna. The interfer-
ence between the same frequency beam can be reduced
well by millimeter wave interference cancelation technology.
As the interference cancelation technology is not the focus of
this paper and the millimeter transmission tends to be noise-
limited and weak-interference, the interference in the trans-
mission process of millimeter waves is ignored in this paper
by referring to papers [16, 41, 42]. So, the signal-to-interfer-
ence-plus-noise ratio received by the players u from the BS u
is expressed as follows:

SINRt
mu =

pmug
t
muL

t
mu

σ2 , ð15Þ

where gtmu is the downlink antenna gain using direction
beamforming between players u and BS m at the time t,
pmu is the transmission power between players u and BS m,
and σ2 is the variance of additive white Gaussian noise
(AWGN).

We assume that the spectrum bandwidth allocated to
players u from BS m at time t is Bt

mu and use B = fBt
mujm

∈M, u ∈U, t ∈T g as the bandwidth allocation scheme.
Since the total bandwidths that the BS m allocates to its
access players do not exceed the whole bandwidths in the
wireless access network at time t, which is Bt , corresponding
bandwidth constraints can be formulated as

〠
U

u=1
Bt
mu ≤ Bt ,∀m ∈M, t ∈T : ð16Þ
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Then, the uplink transmission rate between the players u
and the BS m at time t is

rtmu = Bt
mulog2 1 + SINRt

mu

� �
: ð17Þ

We assume that the size of the video images needed to
transmit to the players u at time t is otu, so the delay of down-
link transmission for players u at time t is

Ddown
u,t = 〠

M

m=1
atmu

otu
rtmu

: ð18Þ

The delay of downlink transmission for all players at
time t, i.e., the downlink communication cost of the net-
work, is

Et
1 = 〠

U

u=1
Ddown
u,t : ð19Þ

2.4.2. Routing Delay. In this section, we divided the players
into H groups based on the differences in VR games they
participate in. Different groups need different service mod-
ules to perform rendering. We need to select an appropriate
MEC server to perform rendering for group h and route the
rendered video stream quickly to the access base station of
the user belonging to the group h. The selected MEC server
needs to have deployed the corresponding VR service mod-
ules and has sufficient computing resources to perform ren-
dering tasks.

According to the above assumption, at the time slot t,
the delay of routing the rendered VR content requested by
user u from the working (rendering) BS m to this user’s
access BS m′ can be expressed as

Drout
u,t = 〠

M

m=1
〠
H

h=1
〠
M

m′=1
phua

t
m′us

t
mhd m,m′
� �

otu, ð20Þ

where dðm,m′Þ is the delay of routing one bit of data from
BS m to BS m′, when m =m′, dðm,m′Þ = 0.

The routing delay of all players at time t, i.e., the routing
cost of the network, is

Et
2 = 〠

U

u=1
Drout

u,t : ð21Þ

So, the communication cost at time t can be expressed as
the sum of downlink transmission delay and routing delay.

CosttC = Et
1 + Et

2, t ∈T : ð22Þ

3. Problem Formulation

Our goal is to develop dynamical service module placement
strategies based on rendering-aware. The goal of those strat-
egies is to minimize the sum of the whole network costs over

a long time under satisfying the delay constraint of each
player. The strategies jointly consider the resource allocation
scheme within each time slot and the service module migra-
tion scheme between different base stations in the adjacent
time slot.

We assume that the maximum tolerance delay of the
group u is Du. According to the above formula, the actual
end-to-end delay of player u at time slot t can be expressed
by the following:

Du,t ′ =Ddown
u,t +Drout

u,t +Drend
u,t +Dmig

u,t : ð23Þ

We define ε1 − ε4 as the weight coefficients, which repre-
sent the proportion of communication cost, rendering cost,
placement cost, and migration cost in the objective function,
respectively. So, the optimization problem can be formulated
as follows:

Γ1 : min
A ,S ,B,K ,Δ

〠
T

t=1
ε1CosttC + ε2CosttR + ε3CosttP + ε4CosttM

s:t: C1 : 〠
M

m=1
atmu = 1,∀u ∈U, t ∈T

  C2 : 〠
M

m=1
stmh = 1,∀h ∈H , t ∈T

  C3 : 〠
U

u=1
Bt
mu ≤ Bt ,∀m ∈M, t ∈T

  C4 : 〠
H

h=1
ktmh ≤ Km,∀m ∈M, t ∈T

  C5 : 〠
H

h=1
δtmhwh ≤Πm,∀m ∈M

  C6 : D′u,t ≤Du

  atmu, stmh, δtmh ∈ 0, 1f g:
ð24Þ

Constraint C1 ensures that a player cannot connect to
multiple base stations at the same time; meanwhile, each
user can connect to a BS. Constraint C2 ensures that a group
can only select one MEC server to perform rendering tasks
at a time slot. Constraint C3 ensures that the total band-
widths that the BS m allocates to its access players do not
exceed the whole bandwidths in the wireless access network
at time t. Constraint C4 ensures that a MEC server cannot
allocate more computing resources to the groups; it serves
than its maximum computing resources. Constraint C5
ensures that the total size of the VR service modules storage
in BS m should not exceed the maximum storage capacity of
BS m. Constraint C6 ensures the total delay of each group
cannot exceed its maximum tolerance delay.
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4. Solution

In this section, in order to solve the original problem effi-
ciently, we decompose the original problem into two sub-
problems including dynamic access and service module
placement scheme and the quasistatic resource allocation.
Then, we use minimum cut theory and convex optimization
to solve the above subproblems, respectively.

4.1. Problem Reformulation. Firstly, to get rid of constraint 1
and constraint 2, we redefine sets A = fatmujm ∈M, u ∈U, t
∈T g and S = fstmhjm ∈M, h ∈H , t ∈T g as A∗ = fatu∗, u
∈U, t ∈T g and S∗ = fsth∗, h ∈H , t ∈T g, respectively,
where A t

∗ = fatu∗, u ∈Ug is the set of access decisions at time
t and atu∗ ∈M represents the BS accessed by the players u,
and there is a one-to-one mapping relationship between it
and the set A t

u = fatmu,m ∈Mg. That is, atmu = 1 and fatiu
= 0ji ∈M, i ≠mg when atu∗ =m. This way of coding can sat-
isfy the constraint C1 that a player can only access one base
station at the same time.

In the same way, S t
∗ = fsth∗, h ∈Hg is the set of BS selec-

tion scheme at time t. sth∗ ∈M represents BS serving group h
at time t, and there is a one-to-one mapping relationship
between it and the set S t

h = fstmh,m ∈Mg. This way of cod-
ing can satisfy the constraint C2 that a group can only select
one MEC server to perform editing tasks at a time slot.

So, the δtmh can be redefined as

δtmh =
1, sth∗ =m,∀h ∈H ,
0, otherwise:

(
ð25Þ

Moreover, Bt
∗ = fBt

u∗, u ∈Ug is the set of bandwidth
allocation scheme at time t. Bt

u∗ = Bt
atu∗u

∈ ½0, Bt� is the band-
width that BS atu∗ allocate to the players u at time t. K t

∗ =
fkth∗, h ∈Hg is the set of computing resources allocation
scheme at time t. kth∗ = ktsth∗h ∈ ½0, Km� is the computing

resources that BS sth∗ allocate to the group h at time t.
Thus, we transform the original problem into the follow-

ing problem:

Γ2 : min
A∗ ,S∗ ,B∗ ,K∗

〠
T

t=1
ε1 〠

U

u=1

otu
Bt
atu∗u

log2 1 + SINRt
u∗

� �
 

+ ε1 〠
H

h=1
〠
U

u=1
phud sth∗, atu∗
� �

+ ε2 〠
H

h=1

Ct
h

ktsth∗h

+ ε3 〠
M

m=1
〠
H

h=1
λmh1 sth∗ =m

� �
+ ε4 〠

H

h=1
f sth∗, st−1h∗
� �

+ g sth∗, st−1h∗
� �� �!

 

 C4′ : 〠
h∈Ht

m

kth∗ ≤ Km,∀m ∈M, t ∈T

 C5′ : 〠
H

h=1
δtmhwh ≤Πm,∀m ∈M

 C6′ : D′ut ≤Du

 atu∗, sth∗,∈M,

ð26Þ

where Ht
m represents the set of all the groups that ren-

der on the BS m and Ut
m represents the set of all the players

that access the BS m at time t. Constraint 5 can be satisfied
by the k-size minimum cut algorithm. 1ð:Þ is a binary func-
tion that equals 1 if the specified condition holds and 0 oth-
erwise, where A is the penalty function, which can be
expressed as D′ut :

D′ut = 〠
H

h=1
phu g sth∗, st−1h∗

� ��
+ Ct

h

ktsth∗h
+ d sth∗, atu∗
� �" #

+ otu
Bt
atu∗u

log2 1 + SINRt
u∗

� � :
ð27Þ

Due to our objective function containing dynamic opti-
mization and quasistatic optimization, we divide the target
function into two parts.

For the part one,

CostI = 〠
T

t=1
ε1 〠

H

h=1
〠
U

u=1
phud sth∗, atu∗
� �

+ ε3 〠
M

m=1
〠
H

h=1
λmh1 sth∗ =m

� � 

+ ε4 〠
H

h=1
f sth∗, st−1h∗
� �

+ g sth∗, st−1h∗
� �� �!

:

ð28Þ

We design an iterative algorithm to update the access
decisions of players and the placement schemes of the VR
service module in each round by performing an operation
called α expansion. Furthermore, we optimize the expansion
by minimizing graph cuts.

For the part two,

CostII = 〠
T

t=1
ε1 〠

U

u=1

otu
Bt
u∗log2 1 + SINRt

u∗
� � + ε2 〠

H

h=1

Ct
h

kth∗

 !
:

ð29Þ

We use convex optimization to solve the resource alloca-
tion problem at each time slot.

4.2. Optimizing Dynamic Access and Placement Strategies by
Graph Cuts. In this section, we introduce the α expansion
algorithm and how to construct a helper graph and encode
the costs of part I into weights on the graph edges. Then,
we demonstrate that the min-cut of the graph corresponds
to the optimal decisions for the α expansion.

4.2.1. α Expansion. An α expansion can be defined as a
binary optimization and reflects the trend of moving the
module served for group h from the current base station
to the base station α and the trend of users accessing base
station α from the current base station. As shown in
Figure 2, when we selected BS α as the expansion, atαu∗ has
a binary choice to stay as atαu∗ = atu∗ or change to atαu∗ = α.
In the same way, stαh∗ has a binary choice to stay as stαh∗ =
sth∗ or change to stαh∗ = α.
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For the sake of calculation, the resultant after expansion
also can be expressed by two indicator vectors with binary
decision variables. (1) x′t = fx1′ t,⋯, xu′tg, where for all u
∈U , we define xu′t = 1 if atαu∗ = α; otherwise, xu′t = 0. (2) x
= fxt1,⋯, xthg, where for all h ∈H, we define xth = 1 if stαh∗
= α; otherwise, xh = 0. Note that, if the module served for
group h is already on BS α, xth = 1, if the players u is already
access BS α, xu′t = 1.

4.2.2. Transforming the CostI . After performing an “α expan-
sion,” we reconstruct the CostI as CostαI using binary vari-
ables xt′u and xth; at the same time, we define �xu′t = 1 − xu′t
and �xth = 1 − xth. And we can get

ε1 〠
T

t=1
〠
H

h=1
〠
U

u=1
phuo

t
ud sth∗, atu∗
� �α

= ε1 〠
T

t=1
〠
H

h=1
〠
U

u=1
phuo

t
u d sth∗, atu∗
� �

�xth�xu′ t
h

+ d α, atu∗
� �

xth�xu′t + d sth∗, α
� �

�xthx
t ′
u

i
,

ð30Þ

ε4 〠
T

t=1
〠
H

h=1
f sth∗, st−1h∗
� �α = ε4 〠

T

t=1
〠
H

h=1
f sth∗, st−1h∗
� �

�xth�x
t−1
h

�
+ f α, st−1h∗
� �

xth�x
t−1
h + f sth∗, α

� �
�xthx

t−1
h

�
,

ð31Þ

ε4 〠
T

t=1
〠
H

h=1
g sth∗, st−1h∗
� �α = ε4 〠

T

t=1
〠
H

h=1
g sth∗, st−1h∗
� �

�xth�x
t−1
h

�
+ g α, st−1h∗
� �

xth�x
t−1
h + g sth∗, α

� �
�xthx

t−1
h

�
:

ð32Þ
Then, based on the definition of δtmh, we can rewrite it as

ε3 〠
M

m=1
〠
H

h=1
λmh1 sth∗ =m

� �α = 〠
M

m=1
〠
H

h=1
λαhx

t
h + λmh�x

t
h

� �
: ð33Þ

4.2.3. A Simple Example of Graph Cut. Based on the deriva-
tion above, we find that ∑T

t=1∑
H
h=1∑

U
u=1p

h
uo

t
udðsth∗, atu∗Þα and

∑T
t=1∑

H
h=1∑

U
u=1 f ðsth∗, st−1u∗ Þα correspond to the sum of the

products of pairs of binary variables; ∑M
m=1∑

H
h=1λmh1

ðsth∗ =mÞα corresponds to the sum of binary variables.
Taking θ1�xu�sh + θ2�xu + θ3�sh and β1sh + β2�sh as simple

examples, we next will introduce how to minimize them,
respectively, by constructing a graph. The basic idea is to
construct a helper graph to make the sum of the weights
of the min-cut of the graph equal the optimal value of the
objective function. The above cut edges divide the nodes
in the graph into two parts: one part of the nodes is on
the side of node s, and the corresponding value is 0. The
other part of the nodes is on the side of node t, and the cor-
responding value is 1. In addition, the minimum cut can be
computed in polynomial time only if all the edge weights
are nonnegative. Next, we will introduce how to build a dia-
gram for our example.

For θ1�xu�sh + θ2�xu + θ3�sh, we reformulate the expression
to construct each edge in a subgraph.

θ1�xu�sh + θ2�xu + θ3�sh

= θ1
2 �xu�sh +

θ1
2 �xu�sh + θ2�xu + θ3�sh

= −
θ1
2 xu�sh −

θ1
2 �xush +

θ1
2 + θ2

	 

�xu +

θ1
2 + θ3

	 

�sh:

ð34Þ

As illustrated in the first figure in Figure 3, the weight of
edge between node u and node h is −θ1/2, the weight of
edge between node u and node t is θ1/2 + θ2, and the weight
of edge between node h and node t is θ1/2 + θ3, where −
θ1/2 ≥ 0. For example, when we divide the first graph’s
nodes in Figure 3 into two parts by cutting the edge
between nodes s and h, the edge between nodes h and u,
and the edge between nodes u and t, node u and node s
are in the same part, and node h and node t are in the same
part (i.e., xu = 0, sh = 1, and �xu = 1, �sh = 0). The value of the
first graph function is θ1�xu�sh + θ2�xu + θ3�sh = θ2, which is
equal to the sum of the weights of the cut edges. In the last
figure in Figure 3, the weight of edge between node h and
node s is β1, and the weight of edge between node h and
node t is β2.

u3

u2 u3 u5 u4 u6

m3

m2 m3 m3

m2 m2 m3 m3 m4

m4m2

x3 = 1 x6 = 1

u1 u6

𝛼

u1 u2 u3 u4 u5 u6
Before
After

x 1 0 1
𝛼𝛼

𝛼
𝛼

0 0 1

Figure 2: α expansion. The player u3 changes the access base
station from m2 to α, and u6 changes the access base station from
m4 to α, respectively.

u

s
s

t t

h h

0 0
–𝜃1

2

𝜃1+ 𝜃32
𝜃1+ 𝜃22

𝛽1

𝛽2

Figure 3: Graph construction. The first figure correspond to θ1�xu
�sh + θ2�xu + θ3�sh; the last figure corresponds to β1sh + β2�sh:.
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4.2.4. Constructing a Graph to Solve the Subproblem. In this
section, we construct a graph G ≪ ðV ,EÞ to make the sum
of the edges’ weights in the minimal cut set equals the opti-
mal value of our objective function. In this graph, there are
T ∗U vertices corresponding to the players, and T ∗H ver-
tices corresponding to the groups. Moreover, a source vertex
s and a terminal vertex t are also in the vertex set. As a result,
the set of vertices in G is given by fxu′tju ∈U, t ∈T g ∪ fxth
jh ∈H , t ∈T g ∪ fs, tg.

In the next section, we add edges to the graph and give
each edge an appropriate weight. Firstly, based on the exam-
ple of the last figure in Figure 3. The weights of the edges
between node xth and node s can be represented as λαh, and
the weights of the edges between node xth and node t can
be represented as λmh.

Next, we rewrite formulas (30) and (31) to formulas (40)
and (41) based on the example of the first figure in Figure 3.

Therefore, the weight of the edge between the vertex xu′t
and vertex xth is

phuo
t
u
d α, atu∗ð Þ + d sth∗, αð Þ − d sth∗, atu∗ð Þ

2 , ð35Þ

where dðα, atu∗Þ + dðsth∗, αÞ − dðsth∗, atu∗Þ is always satisfied,
which can be proved by the triangle inequality.

In the same way, the weight of the edge between the ver-
tex xt−1h and vertex xth is

f α, st−1h∗
� �

+ f sth∗, αð Þ − f sth∗, st−1h∗
� �

2 , ð36Þ

where f ðα, st−1h∗ Þ + f ðsth∗, αÞ − f ðsth∗, st−1h∗ Þ is always satisfied,
which can be proved by the triangle inequality.

In addition, based on the above derivation, we can also
get that the partial of weight of the edge between vertex xth
and vertex t is

d sth∗, atu∗ð Þ − d α, atu∗ð Þ + d sth∗, αð Þ
2 : ð37Þ

The partial of weight of the edge between vertex xu′t and
vertex t is

d sth∗, atu∗ð Þ + d α, atu∗ð Þ − d sth∗, αð Þ
2 : ð38Þ

Moreover, the partial of weight of the edge between ver-
tex xth and vertex t is

−f α, st−1h∗
� �

+ f sth∗, αð Þ + f sth∗, st−1h∗
� �

2

+ f α, st−1h∗
� �

− f sth∗, αð Þ + f sth∗, st−1h∗
� �

2 :

ð39Þ

Therefore, we can perform the following transformation
of the objective function based on the above analysis:

ε1 〠
T

t=1
〠
H

h=1
〠
U

u=1
phuo

t
ud sth∗, atu∗
� �α

= ε1 〠
T

t=1
〠
H

h=1
〠
U

u=1
phuo

t
u d sth∗, atu∗
� �

�xth�xu′ t
h

+ d α, atu∗
� �

1 − �xth
� �

�xu′t + d sth∗, α
� �

�xth 1 − �xt ′u
� �i

= ε1 〠
T

t=1
〠
H

h=1
〠
U

u=1
phuo

t
u d α, atu∗
� �

�xu′t + d sth∗, α
� �

�xth
h

+ d sth∗, atu∗
� �

− d α, atu∗
� �

− d sth∗, α
� �� �

�xth�xu′t
i

= ε1 〠
T

t=1
〠
H

h=1
〠
U

u=1
phuo

t
u
d α, atu∗ð Þ + d sth∗, αð Þ − d sth∗, atu∗ð Þð

2 �xthxu′ t
�

+ d α, atu∗ð Þ + d sth∗, αð Þ − d sth∗, atu∗ð Þ
2 xth�xu′ t

+ d sth∗, atu∗ð Þ + d α, atu∗ð Þ − d sth∗, αð Þ
2 �xu′ t

+ d sth∗, atu∗ð Þ − d α, atu∗ð Þ + d sth∗, αð Þ
2 �xth

�
,

ð40Þ

ε4 〠
T

t=1
〠
H

h=1
f sth∗, st−1h∗
� �α

= ε4 〠
T

t=1
〠
H

h=1
f sth∗, st−1h∗
� �

�xth�x
t−1
h

�
+ f α, st−1h∗
� �

1 − �xth
� �

�xt−1h + f sth∗, α
� �

�xth 1 − �xt−1h

� ��
= ε4 〠

T

t=1
〠
H

h=1
f α, st−1h∗
� �

�xt−1h + f sth∗, α
� �

�xth + f sth∗, st−1h∗
� ���

− f α, st−1h∗
� �

− f sth∗, α
� �Þ�xth�xt−1h

�
= ε4 〠

T

t=1
〠
H

h=1

f α, st−1h∗
� �

+ f sth∗, αð Þ − f sth∗, st−1h∗
� �

2 xth�x
t−1
h

�

+ f α, st−1h∗
� �

+ f sth∗, αð Þ − f sth∗, st−1h∗
� �

2 �xthx
t−1
h

+ −f α, st−1h∗
� �

+ f sth∗, αð Þ + f sth∗, st−1h∗
� �

2 �xth

+ f α, st−1h∗
� �

− f sth∗, αð Þ + f sth∗, st−1h∗
� �

2 �xt−1h

�
:

ð41Þ
The detail process of the auxiliary diagram construction

is concluded in Algorithm 1.

4.3. Resource Allocation Scheme Based on Convex
Optimization. In this section, we mainly focus on the opti-
mization of CostII , that is, minimizing the total transmission
and editing delay in each time interval through the reason-
able allocation of computing and spectrum resources. When
A ∗ and S ∗ are determined, the original optimization prob-
lem can be expressed in the following form:
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Γ2′ min
K ,B

〠
T

t=1
〠
M

m=1
ε1 〠

U

u=1

atmuo
t
u

Bt
mulog2 1 + SINRt

mu

� � ε2 〠H
h=1

stmhC
t
h

ktmh

 !

+ CostI + 〠
T

t=1
〠
U

u=1
Λt

u

C3′ : 〠
u∈U

Bt
mu ≤ Bt ,∀m ∈M, t ∈T

C4′ : 〠
h∈H

ktmh ≤ Km,∀m ∈M, t ∈T ,

ð42Þ

where Λ is penalty function, which can be expressed as

Z ∗max 〠
H

h=1
phu

atmuo
t
u

Bt
u∗log2 1 + SINRt

u∗
� � + d sth∗, atu∗

� � !" 

+ g sth∗, st−1h∗
� ��

+ stmhC
t
h

kth∗

#
−Du, 0

!
,

ð43Þ

where Z goes to infinity. dðsth∗, atu∗Þ and gðsth∗, st−1h∗ Þ are con-
stants, when A ∗ and S ∗ are fixed.

Since the structure like 1/Bt
mu is a well-known convex

function, the optimization problem can be proved to be a
convex problem.

Since the variable ktmh can affect multiple spectrum allo-
cation variables, we denote those as global variables. Next,
the local copy of the global variables would be introduced.
Each base station can obtain a distributed feasible solution
by decoupling the above problem.

For BS m, we introduce the new variables k̂m = fk̂etmhje
∈M,m ∈M, h ∈H , t ∈T g as the local information.

k̂
et
mh = kteh,∀e ∈M,m ∈M, h ∈H , t ∈T : ð44Þ

B̂m = fB̂t
mujm ∈M, u ∈Ug is the local variation and rep-

resents the bandwidth resource allocation scheme of the BS
m. Thus, the feasible local variables of the BS m can be
denoted as Φm = ðk̂m, B̂mÞ and the constraint set of the
objective function can be denoted as Ω.

LetΨðΦmÞ be the penalty function, when theΦm belongs
to the constraint set Ω, i.e.,Φm ∈Ω, we can get ΨðΦmÞ = 0.
Otherwise, ΨðΦmÞ = +∞. So, the objective functions equiva-
lent to

min
Φm

, 〠
M

m=1
Ξm Φmð Þ +Ψ Φmð Þ + CostI

s:t: k̂
et
mh − kteh = 0,∀e ∈M,m ∈M, h ∈H , t ∈T ,

ð45Þ

where ΞmðΦmÞ =∑T
t=1ðε1∑U

u=1ðotu/Bt
mulog2ð1 + SINRt

muÞÞ +
ε2∑

H
h=1ðCt

h/ktmhÞÞ, and in the above objective function, we
can view CostI as a constant.

We separate the objective function into multiple local
function of the corresponding BS. Each local function can
determine its local variable by using local information. The
Lagrange formula of the augmented problem is

Input: The network delay between BS m and BS m′dðm,m′Þ; The
switching cost of group h at time t f ðsth∗, st−1h∗ Þ; The migration
delay of group h at time tgðsth∗, st−1h∗ Þ;

Output: The value of binary variables xu′t and xth; The auxiliary
graph G = ðE,V Þ ; the variables stαh∗ and atαu∗

1: Initialization V = fxu′tju ∈U, t ∈T g ∪ fxthjh ∈H , t ∈T g ∪ fsource, terminalg; E = 0;
2: for t = 1 : T do
3: for h = 1 : H do
4: u = 1 : U do
5: eðxth, xu′tÞ = phuo

t
uðdðα, atu∗Þ + dðsth∗, αÞ − dðsth∗, atu∗Þ/2Þ;

6: eðterminal, xu′tÞ = dðsth∗, atu∗Þ + dðα, atu∗Þ − dðsth∗, αÞ/2;
7: end for
8: for Algorithm 1 m = 1 : M do
9: eðxth, xt−1h Þ = f ðα, st−1h∗ Þ + f ðsth∗, αÞ − f ðsth∗, st−1h∗ Þ/2;
10: eðterminal, xthÞ = ð−f ðα, st−1h∗ Þ + f ðsth∗, αÞ + f ðsth∗, st−1h∗ Þ/2Þ +

ð f ðα, st−1h∗ Þ − f ðsth∗, αÞ + f ðsth∗, st−1h∗ Þ/2Þ + ðdðsth∗, atu∗Þ − dðα, atu∗Þ + dðsth∗, αÞ/2Þ + λmh;
11: eðsource, xthÞ = λαh
12: end for
13: end for
14: end for
15: Solve the k-size s-t min cut [43] of G = ðV ,EÞ;

Algorithm 1: Auxiliary graph construction and solving algorithm.
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L Φmf gm∈M, k, ξmf gm∈M
� �
= 〠

M

m=1
Ξm Φmð Þ +Ψ Φmð Þ + CostI

+ 〠
M

m=1
〠
M

e=1
〠
H

h=1
〠
T

t=1
ξetmh k̂

et
mh − kteh

� �

+ ζ

2 〠
M

m=1
〠
M

e=1
〠
H

h=1
〠
T

t=1
k̂
et
mh − kteh

� �2
,

ð46Þ

where ξm = fξetmhg are the vectors of the Lagrange multi-
pliers, and the penalty parameter is ζ/2 ∈ℝ + +.

In order to solve the above problems (46), the iterative
process is as follows.

4.3.1. Local Variables.

Φ ι+1½ �
m = arg min

Φm

Ξm Φmð Þ +Ψ Φmð Þ + CostI

+ 〠
M

e=1
〠
H

h=1
〠
T

t=1
ξet ι½ �mu k̂

et
mh − kt ι½ �eh

� �

+ ζ

2〠
M

e=1
〠
H

h=1
〠
T

t=1
k̂
et
mh − kt ι½ �eh

� �2
,

ð47Þ

where ι denotes the iteration times.
Since the updating process of Φm of each BS is indepen-

dent, we can decouple the problem intoM independent sub-
problems. We can update the local variables by solving the
problem as follow:

We solve the above problem by CVX, due to it being con-
vex, and then, broadcast the decision of each BS to other BSs.

4.3.2. Global Variables.

k ι+1½ � = arg min
keh

〠
M

m=1
〠
M

e=1
〠
H

h=1
〠
T

T=1
ξ
et ι½ �
mh k̂

et ι+1½ �
mh − kteh

� �

+ ζ

2 〠
M

m=1
〠
M

e=1
〠
H

h=1
〠
T

t=1
k̂
et ι+1½ �
mh − kteh

� �2
:

ð49Þ

The above problems are strictly convex and uncon-
strained quadratic problems, because we add the quadratic
regular term to the augmented Lagrangian. Let the gradient
of k be zero. We can get the following results:

〠
M

m=1
ξ
et ι½ �
mh + ζ 〠

M

m=1
k̂
et ι+1½ �
mh − kteh

� �
= 0,∀e, h, t: ð50Þ

And then, we can derive

kt ι+1½ �
eh = 1

Mζ
〠
M

m=1
ξ
et ι½ �
mh + 1

M
〠
M

m=1
k̂
et ι+1½ �
mh ,∀e, u, t: ð51Þ

By using ∑M
m=1ξ

et½ι�
mh = 0, we can derive

kt ι+1½ �
eh = 1

M
〠
M

m=1
k̂
et ι+1½ �
mh ,∀e, u, t: ð52Þ

In other words, we can obtain global variables by aver-
aging the corresponding updated local variables in each
iteration.

4.3.3. Lagrange Multipliers.

ξ ι+1½ �
m = ξ ι½ �

m + ζ k̂ ι+1½ �
m − k ι+1½ �

� �
: ð53Þ

At each iteration, we can calculate the Lagrange multi-
pliers directly by using the updated local variables fΦmg
and global variables fkg. The formulation can be repre-
sented as follows:

ξ
et ι+1½ �
mh = ξ

et ι½ �
mh + ζ k̂

et ι+1½ �
mh − xt ι+1½ �

eh

� �
: ð54Þ

4.3.4. Stopping Criterion and Convergence. The above prob-
lem is a convex problem with strong duality. When the
number of iterations approaches infinity, the algorithm sat-
isfies convergence. Therefore, the reasonable stopping cri-
teria are given as follows:

k̂ ι+1½ �
m − k ι+1½ �

 
2
≤ κpri,∀m ∈M, ð55Þ

k ι+1½ � − k ι½ �
 

2
≤ κdual,∀m ∈M, ð56Þ

where ξpri > 0 and ξdual > 0 indicate the primal feasibility and
dual feasibility conditions, respectively, which are the small
positive constant scalars.

The above iteration process based on convex optimiza-
tion is concluded in Algorithm 2.

4.3.5. Two-Stage Iterative Algorithm Based on α Expansion.
Because there are many optimization variables in the origi-
nal problem, the complexity of the algorithm is high. In
order to reduce the algorithm complexity and obtain the

min
Φm

Ξm Φmð Þ +Ψ Φmð Þ + CostI + 〠
M

e=1
〠
H

h=1
〠
T

t=1
ξ
et ι½ �
mh k̂

et
mh − kt ι½ �eh

� �
+ ζ

2〠
M

e=1
〠
H

h=1
〠
T

t=1
k̂
et
mh − kt ι½ �eh

� �2
s:t: Φm ∈Ω:

ð48Þ
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optimal solution to the original problem, we solve the origi-
nal problem in two steps. So, we need to integrate the above
two subalgorithms. Firstly, we input the result of Algorithm 1
as a fixed value into Algorithm 2 to solve Algorithm 2, and
then, we compared the results of Algorithm 2 with the his-
torical optimal results and updated the related variables.
The above process is summarized in Algorithm 3.

Since we traverse for each MEC (Line 3 in Algorithm 3),
the caching size can be restricted under Πα at each round of
α expansion.

4.4. Algorithm Complexity Analysis. Since Algorithms 1 and
2 are the modules invoked by Algorithm 3 for M × ι3 times,
where M is the number of MECs and ι3 is the maximum
number of iterations in Algorithm 3, we, respectively, inves-
tigate the complexity of Algorithms 1 and 2. According to
paper [44], the complexity of the Algorithm 1 can be
expressed as OðjEjjV j2Þ, where jV j is the number of verti-
ces and jEj is the number of edges in the constructed graph.
In our case, jV j = TðU +HÞ + 2 is bounded by OðTðU +HÞ;
jEj = 3HUT +HðT + 1Þ + TH is bounded by OðTUHÞ.

Therefore, the complexity of Algorithm 1 is OðT3U4Þ, due
to H ≤U . For Algorithm 2, the variables atmu and stmu have
been fixed, and the remaining question can be broken down
into solving local optimization problem (48) at each BS by
using ADMM algorithm, whose complexity is OðUHÞ. ιmax
is the number of iterations required for Algorithm 2

Input: M Set of BSs, U Set of players, H Set of groups, T Set of consecutive time slots;
Output: The variable A , S ,B,K , and the minimum value of the objective function Valuebest ;
1: Initialization the variable sth∗ = rand ½0,M�, atu∗ = rand ½0,M�, ktmh, B

t
mu, and Valuebest = +∞

2: for iter=1:ι3 do
3: for α ∈M,∑H

h=1λαhsαh ≤Πα do
4: run Algorithm 1, obtain stαh∗, a

tα
u∗ and CostI

5: for iter=1:T do
6: run Algorithm 2, obtain ktmh, B

t
mu and Valuecurrent

7: end for
8: if Valuecurrent <Valuebest then
9: Valuebset =Valuecurrent ;
10: sth∗ = α, atu∗ = α;
11: else
12: Valuebest =Valuebest ;
13: sth∗ = sth∗, a

t
u∗ = atu∗ ;

14: end if
15: end for
16: end for

Algorithm 3: Two-stage iterative algorithm based on α expansion.

1: Initialization the number of iterations ι = 0, global variables k½0�
and Lagrange multipliers ξ½0�;

2: Set the maximum number of iterations ιmax and the stopping criterion threshold ξdual ;

3: while ι < ιmax, kk̂
½ι+1�
m − k½ι+1�k2 > κpri and kk½ι+1� − k½ι�k2 > κdual

4: Each BS m update Φm by solving problem (48), and share the local solution to other BSs;
5: Update the global variables k according to the formula (52);
6: Update the Lagrange multipliers ξ according to the formula (54);
7: ι = ι + 1;
8: end while
9: Output the optimal solution;

Algorithm 2: Resource allocation scheme based on convex optimization algorithm.

Table 2: The simulation parameters.

Simulation parameters Value

The total bandwidth [0.8–1.2]GHz

The number of players 100

The number of BSs 10

The number of VR service modules 40

The downlink path loss exponent [2.75–4.75]

The power spectral density of noise -174 dBm/Hz

The transmission power of the players 0.1W

The storage capability of the MEC [400–900]G

The computing capability of the BS [30–80]GHz
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convergence; the total computational complexity is Oðιmax
UHÞ. Therefore, the overall complexity of Algorithm 3 is O
ðι3MðT3U4 + ιmaxU

2TÞÞ.

5. Simulation Results and Discussions

In a wireless cellular network, it is assumed that 100 players
and 10 base stations are randomly distributed in a circle with
a radius of 100m; other major simulation parameters are
shown in Table 2.

To evaluate the performance of our proposed approach,
we compare our proposed α expansion-based two-stage
approach to two other approaches: (1) placing each VR ser-
vice module randomly on a MEC at each time slot, as labeled
as “random placement,” and (2) particle swarm optimization

was used to solve the objective function, as labeled as “parti-
cle swarm optimization.”

In Figure 4, we iteratively find the minimum value of the
total network overhead under the condition that the maximiz-
ing computing capacity of each MEC server is 60GHz and the
maximizing storage capacity of each MEC server is 600G,
where total network overhead is the sum of the adjusted place-
ment cost, communication cost, migration cost, and rendering
cost, i.e., this paper’s object function ∑T

t=1ε1CosttC + ε2CosttR
+ ε3CosttP + ε4CosttM . As shown above, the total network
overhead of our proposed scheme and particle swarm optimi-
zation decreases rapidly as the iteration increases at the begin-
ning, and then, the total network overhead converges and
remains at an almost constant value. Moreover, it can be seen
from the iteration diagram that our proposed algorithm
converges in about 18 generations, while particle swarm
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Figure 4: Total network overhead versus iteration times.
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Figure 5: Average delay of user versus computing power of MEC
server.
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Figure 6: Total network overhead versus computing power of
MEC server.
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Figure 7: Average delay of user versus storage capacity of MEC
server.
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optimization converges in about 25 generations. So, compared
with other schemes, our proposed algorithm converges faster
in the iteration process and keeps the lowest total network
overhead.

Figure 5 shows the relationship between the computing
power of the MEC server and the user average latency.
Figure 6 shows the relationship between the computing
power of the MEC server and the total network overhead.
In the above two figures, as the computing power of the
MEC server increases, the average latency and total network
overhead of the user are greatly reduced. This is mainly
because the more computing resources a MEC server can
provide to the player, the less latency it needs to perform
rendering. At the same time, the richer computing resources
on the MEC server, the more MEC servers the system could
be chosen to provide rendering services for a group of VR
players, which saves the network cost of routing.

Figure 7 shows the relationship between the storage
capability of the MEC server and the user average latency.
Figure 8 shows the relationship between the storage capabil-
ity of the MEC server and the total network overhead. As
shown in the above two figures, the placement strategy pro-
posed by us can effectively reduce the total network over-
head. Moreover, with the storage capacity of the MEC
server increasing, the average latency of user and total net-
work overhead is greatly reduced. This is mainly because
the larger the storage capacity of the MEC server, the more
VR service modules can be placed on each edge node, which
can reduce the migration costs between two base stations to
a certain extent. Especially when the number of VR service
modules that can be placed on the MEC server is small, in
order to meet the video processing requirements of the con-
stantly moving player, VR service modules need to migrate
frequently between base stations. As shown in Figure 8, when
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Figure 8: Total network overhead versus storage capacity of MEC server.
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Figure 9: The influence of delay constraint on total network overhead and average delay of user.
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the storage capability of the MEC server is less than 600G, VR
service module migration between base stations becomes fre-
quent, and the total network overhead increases greatly.

In Figure 9, we compare the user average delay and total
network overhead without delay constraint with the user
average delay and total network overhead with delay con-
straint. The network parameter is the maximizing comput-
ing capacity of each MEC server is 60GHz, and the storage
capacity of each MEC server is 600G. When there is no need
to consider satisfying the delay constraint of each user, the
feasible domain of the target problem becomes larger, and
the total network cost is reduced compared with when the
delay constraint is considered, but the average delay of the
user will increase. At the same time, some users cannot com-
plete their corresponding video processing tasks within the
tolerable delay, as shown in Figure 10.

6. Conclusion

In this paper, we develop dynamical service module place-
ment strategies based on rendering-aware to minimize the
sum of the network costs over a long time under satisfying
the delay constraint of each player. The strategies jointly
consider the resource allocation scheme within each time
slot and the service module migration scheme between dif-
ferent base stations in the adjacent time slot. Moreover, we
propose a two-stage algorithm based on graph cut and con-
vex optimization to solve the objective function. In future
work, we will study the online placement strategy of VR ser-
vice modules to further improve user experience and reduce
network overhead in the process of VR video stream delivery
and computing. In addition, we will extend our work to the
security [45] and low-delay delivery of all kinds of superlarge
video streams.
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