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Count-based exploration algorithms have shown to be effective in dealing with various deep reinforcement learning tasks.
However, existing count-based exploration algorithms cannot work well in high-dimensional state space due to the complexity
of state representation. In this paper, we propose a novel count-based exploration method, which can explore high-
dimensional continuous state space and combine with any reinforcement learning algorithms. Specifically, by introducing the
embedding network to encode the state space and to merge the states with similar key characteristics, we can compress the
high-dimensional state space. By utilizing the state binary code to count the occurrence number of states, we generate
additional rewards which can encourage the agent to explore the environment. Extensive experimental results on several
commonly used environments show that our proposed method outperforms other strong baselines significantly.

1. Introduction

Reinforcement learning (RL), which was aimed at learning
an optimal control strategy to maximize the reward from
the environment, has achieved great success in various com-
plex tasks, such as video games [1] and robot controlling [2].
One of the core problems of RL methods is how the agent
should take trade-off decisions between the exploration of
new actions and the selection of the best action based on
existing knowledge. Although there are simple and theoreti-
cally guaranteed heuristic exploration methods for tabular
RL algorithms, such as the ε-greedy strategy [3] and entropy
regularization [4], these methods cannot be easily extended
to a high-dimensional space environment due to the large
state space and the complexity of state representation.
Therefore, developing a common and simple exploration
method is an important research direction.

In this paper, we propose a novel count-based exploration
method via embedded state space for reinforcement learning.
The core idea is to compress the high-dimensional state space
by extracting the embedded representation of the state space
andmerging similar states. We use an action predictionmodel

to train the state embedding network for obtaining a better
state feature space. Take our human agent as an example.
Assume someone is playing a racing game where the screen
changes as the car goes ahead, as shown in Figure 1. The track
changing in the yellow box will affect the next move, while the
sky changing in the red box will not. We should focus on the
state characteristics that affect the choice of actions. In sum-
mary, the contributions of this paper are as follows: (1) we
propose a new count-based exploration method which is suit-
able for high-dimensional state space. And our method can be
directly applied tomost different RL algorithms. (2)We design
a general mechanism for optimizing feature representations
by introducing the embedding network and the action predic-
tion model. (3) We conduct experiments on several games
from the Atari [1] and achieve near state-of-the-art results,
especially with fewer training epochs.

The rest of this article is organized as follows: in Section
2, we review the related work. In Section 3, we introduce
some definitions and propose our novel exploration method.
In Section 4, we show the experimental results on different
kinds of environments. Finally in Section 5, we conclude
the paper and point out the future work.
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2. Related Work

Many different approaches have been proposed in recent
years to address the balance between exploration and exploi-
tation. These methods can be divided into two types: count-
based exploration methods and curiosity-based exploration
methods. The former methods count the occurrence number
of states and convert this number into a reward to encourage
exploring states with higher rewards. One of the best-known
approaches is the UCB bandit algorithm [5], which selects
an action at at time t to maximize the upper confidence
bound r̂ðatÞ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log t/nðatÞ

p
, where r̂ðatÞ is the estimated

reward and nðatÞ is the occurrence number of action at
being previously chosen. Model-Based Interval Estimation-
Exploration Bonus (MBIE-EB) of [6] has similar structure.
It counts state-action pairs nðs, aÞ with a table and adds a
bonus reward of the form β/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðs, aÞp

to encourage exploring
less-visited pairs. It is proved by [7] that square root inverse
correlation is optimal. Tang [8] uses hash functions to
encode the state space, subsumes similar states into a single
counter, and explores based on the counter’s value. Martin
et al. [9] generalize a probability density model by the char-
acteristic representation of the state space and use this model
to pseudocount. Curiosity-based exploration methods offer
additional rewards based on the principle of optimism in
the face of uncertainty [10]. These methods encourage the
agent to choose actions that increase uncertainty about the
value estimate. Classical examples utilize upper confidence
bound [11] and Thompson sampling [12] for the stochastic
sampling of actions. Recent algorithms combine these ideas
with finer uncertainty, making them suitable for large state
spaces that require deep exploration [13–15]. Dynamic auto-
encoder (Dynamic-AE) [16] is proposed to compress the
state space. The distance between predicted state and real
state is computed in this compressed state space. And intrin-
sic rewards are defined by this distance. Pathak et al. [17] use
a self-supervised inverse dynamics model to predict the next
state based on the current state-action pair. Then, they use
the error between prediction and reality to generate curios-
ity. Savinov et al. [18] propose a new curiosity definition that
marks the novelty of states by reachability. The episodic
curiosity module (ECO) uses an episodic memory pool to
store part of visited states. To compute the state novelty,
ECO compares each state with states in memory. If the cur-
rent state is far from the states contained in memory, the
agent is rewarded an intrinsic reward.

Several recent studies have discussed the generalization
of reinforcement learning and designed procedurally gener-
ated environments to test the generalization of reinforce-
ment learning [19–21]. More recent papers show that
traditional exploration methods fall short in procedurally
generated environments and address this issue with new
exploration methods [22, 23]. [24] proposes a new perspec-
tive of exploration bonus in episode-level data and achieves
significantly SOTA performance on procedurally generated
benchmarks. In the field of multiagent reinforcement learn-
ing (MARL), the study on exploration is roughly at the pre-
liminary stage. Most of these exploration methods extend
the ideas in the single-agent setting and propose different
mechanisms by integrating the characteristics of deep
MARL. Compared to the RL exploration, the dimensions
of the state-action space increase rapidly as the number of
agents increases in MARL. Zhou et al. [25] propose to treat
the Q-function as a high-order high-dimensional tensor.
Then, they approximate the Q-function with factorized pair-
wise interactions. [26] adopts a similar factorization
approach in the search space to solve this problem.

3. The Proposed Method

In this work, we propose a novel count-based exploration
method via embedded state space for deep reinforcement
learning. Our method can be divided into two major parts:
(1) Embedding Network and Action Prediction Model and
(2) Count-Based Extra Bonus Generator. For different RL
tasks, we first collect state information by agents randomly
interacting with the environment. These data will be used
to train the embedding network that can represent state fea-
tures better. Then, we count the occurrence number of states
based on the embedded feature representation. Finally, we
generate extra bonus and add it to RL algorithms for training
the agent.

3.1. Notations. Reinforcement learning (RL) [3] addresses
the task of learning from interactions to achieve goals. It is
usually formulated as an MDP hS, A, P, R, γi, where S is the
set of states of the environment, A is the set of available
actions, P : ðS × AÞ × S⟶ ½0, 1� is the state transition distri-
bution, R : ðS × AÞ × S⟶ R is the reward function, and γ is
the discount factor. The agent is formally a policy π : S
⟶ A that maps a state to an action. At timestep t, the agent
is in a state st ∈ S, receives a reward rt , and takes an action

Figure 1: F1-race game screen. Red box line: state features that do not affect the choice of actions. Yellow box line: state features that affect
the choice of actions.
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at ∈ A. We seek a policy π that maximizes the expected sum
of future rewards. The action-value Qπðs, aÞ of a state-action
pair ðs, aÞ under a policy π is the expected discounted sum of
future rewards and follows π thereafter: Qπðs, aÞ = Eπ½∑∞

k=0
γkrt+k+1jst = s, at = a�.
3.2. Embedding Network and Action Prediction Model.When
MDP states have complex structures, as in the case of image
observations, directly measuring their similarities in pixel
space does not provide effective metric. Previous works in
computer vision [27–29] introduce manually designed feature
representations of images. These representations are suitable
for semantic tasks including detection and classification. More
recent methods learn complex features directly from data by
training convolutional neural networks [30–32]. Considering
these researches, it may be difficult to combine similar states
using raw pixels or the general state space.

As mentioned in the previous F1 racing game example,
some features in the state space are invalid for the agent,
so we need to extract the valid features in the state space.
To achieve this, we first divide the features of the state into
three parts: (1) something that can be controlled by the
agent (e.g., the car in the game), (2) things that the agent
cannot control but that can affect the agent (e.g., the track),
and (3) things out of the agent’s control and not affecting the
agent (e.g., the sky). We need to find a good feature space
that includes the features of (1) and (2) and excludes the fea-
tures of (3).

Our goal is to come up with a general mechanism for
learning feature representations rather than manually
designing for each environment. We propose that such a fea-
ture space can be learned by training a deep neural network
with two submodules: the first submodule (embedding net-
work) encodes the raw state st into a feature vector φðstÞ.
The second submodule (prediction network) takes the fea-
ture encoding φðstÞ, φðst+1Þ of two consequent states as
inputs and predicts the action at taken by the agent to move
from st to st+1. The whole model is illustrated in Figure 2.
Training this neural network is equivalent to learning func-
tion f defined as

bat = f st , st+1 ; θeð Þ, ð1Þ

where bat is predicted estimate of the action at and the neural
network parameters θe are trained to optimize

min
θe

L bat , atð Þ, ð2Þ

where L is the loss function that measures the discrepancy
between the predicted and actual actions. In order to facili-
tate the subsequent processing of the state encoding, the
embedding network takes the state s as the input and con-
tains one special dense layer comprised of D sigmoid func-
tions. By rounding the sigmoid activation bðsÞ of this layer
to their closest binary number bbðsÞe ∈ f0, 1gD, any state s
can be binarized. A problem with this architecture is that if
bðstÞ near 0.5 at a particular dimension, the error will
increase while rounding. A solution is forcing the binary
code layer to take on binary values. Therefore, we add
another loss term into L, and the complete loss function is
defined as

L st , at , st+1ð Þ = NLLLoss bat , atð Þ + λ〠
D

i=1

min 1 − bi stð Þð Þ2, bi stð Þ2� �
+

min 1 − bi st+1ð Þð Þ2, bi st+1ð Þ2� �
 !" #

:

ð3Þ

The tuple ðst , at , st+1Þ is obtained while the agent inter-
acts with the environment using its current policy πðsÞ.
3.3. Count-Based Extra Bonus Generator. We get embedded
state space ϕðsÞ through the embedding network. An explo-
ration bonus rc : S⟶ℝ is added to the reward function,
defined as

rc sð Þ = βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ϕ sð Þð Þp , ð4Þ

where β ∈ℝ≥0 is the bonus coefficient. Initially, the counts
nð∙Þ are set to 0 for the whole range of ϕ. For every state st
encountered at time step t, nðϕ ðstÞÞ is increased by 1. The
agent is trained with rewards ðr + rcÞ, while per performance
is evaluated as the sum of rewards without bonuses.

We represent the policy πðst ; θpÞ by a deep neural
network with parameters θp. Given the agent in state st , it

St

St+1

Figure 2: Left submodule encodes st into a feature ϕðstÞ. Right submodule predicts the action at .
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executes the action at ~ πðst ; θPÞ sampled from the policy.
θP is optimized to maximize the expected sum of rewards:

max
θp

Eπ st ;θpð Þ 〠
t

rt + rctð Þ
" #

: ð5Þ

Because the code dimension often needs to be large for
correctly predicting the action, we apply a downsampling
procedure to the resulting binary code bbðsÞe, which can be
done through random projection to a lower-dimensional
space via SimHash:

ϕ′ sð Þ = sgn Aϕ sð Þð Þ ∈ −1, 1f gk, ð6Þ

where A is a k ×D matrix drawn from a standard Gaussian
distribution N ð0, 1Þ. The value for k controls the granularity:
higher values lead to fewer collisions and clearly distinguish
states. Algorithm 1 summarizes our method.

4. Experiments

4.1. Experimental Setup. We test our method in multiple
environments from Rllab to Arcade Learning Environment
(ALE) [19]. The experiments in Rllab verify that our method
can be used in continuous control tasks. The experiments in
ALE have recently become a standard high-dimensional
benchmark for RL. The reward signal is computed from
the game score. The raw state is a frame of video (a 160 ×

210 array of 7-bit pixels). There are 18 available actions.
The ALE is a particularly interesting testbed in our context,
because the difficulty of exploration varies greatly among
games. We choose six of these games where exploration is
hard. Trust Region Policy Optimization is chosen as the
RL algorithm for all experiments, because this algorithm
can handle both discrete and continuous action spaces and
is relatively insensitive to hyperparameter changes. The
hyperparameter is β = 0:01 and λ = 0:1. All image curves
are smoothed.

4.2. Rllab Environment. The Rllab benchmark consists of
various control tasks to test deep RL algorithms. We selected
several variants of the basic and locomotion tasks that use
sparse rewards, as shown in Figure 3. These tasks are all
highly difficult to solve with naive exploration strategies,
such as adding Gaussian noise to the actions.

Figure 4 shows the results of TRPO (baseline), TRPO-
SimHash [8], VIME [34], and our method on the classic
tasks CartPoleSwingup, the locomotion task HalfCheetah,
and the hierarchical task SwimmerGather. Using count-
based exploration with embedded state space is capable of
reaching the goal in all environments (which corresponds
to a nonzero return), while baseline TRPO with Gaussian
n control noise fails completely. Although our method picks
up the sparse reward on HalfCheetah and receives better
reward than other count-based exploration algorithm, it
does not perform as well as VIME. In contrast, the

Initialize A ∈ Rk×D with entries drawn i.i.d. from the standard Gaussian distribution Nð0, 1Þ;
Initialize a hash table with values nð·Þ ≡ 0;
Initialize policy network with parameter θp and embedding network with parameter θc;
for each iteration j do {

Collect a set of state-action samples ðst , at , st+1ÞMm=0 with policy π;
Add the state samples to replay buffer;
if j mod jupdate = 0 then {

Update the embedding network with loss function in Eq.(3). using samples drawn from the replay buffer;
}
Compute ϕðstÞ = bbðstÞe, the D-dim rounded hash code for st learned by the embedding network;
Update the hash table counts ∀m : 0 ≤m ≤M as nðϕ′ðsmÞÞ⟵ nðϕ′ðsmÞÞ + 1;

Update the policy π using rewards frðsm, amÞ + ðβ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðϕ′ðsmÞÞ

q
Þg

M

m=0
with any RL algorithm;

}

Algorithm 1: Count-based exploration via embedded state space.

Figure 3: Illustrations of the Rllab task used in continuous control experiments, namely, CartPoleSwingup, HalfCheetah, and
SwimmerGather.
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performance of ours is comparable with VIME on CartPo-
leSwingup, while it outperforms VIME on SwimmerGather.

4.3. Arcade Learning Environment. The Arcade Learning
Environment (ALE) [33], which consists of Atari 2600 video
games, is an important benchmark for deep RL due to its
high-dimensional state space and wide variety of games. In
order to demonstrate the effectiveness of the proposed
exploration strategy, six games are selected featuring long
horizons while requiring significant exploration: Freeway,
Frostbite, Gravitar, Montezuma’s Revenge, Solaris, and
Venture. The agent is trained for 500 iterations in all exper-
iments, with each iteration consisting of 0.1M steps (the
TRPO batch size corresponds to 0.4M frames).

We compare our results to double DQN [35], dueling
network [36], A3C+ [37], double DQN with pseudocounts
[37], Gorila [38], DQN Pop-Art [39], and TRPO-SimHash
[8] the “null op” metric. We summarize all results in
Table 1.

As observed in Table 1, our approach has performed bet-
ter on most of the games compared to similar count-based
exploration methods. It means the embedded state space
after feature extraction by using action predict network can
select the part which has more important influence on the
decision-making of the agent. Our method achieves near
state-of-the-art performance on Freeway, Frostbite, and
Solaris. A reason why TRPO+BASS is better than ours on
Montezuma is that BASS is a hand-designed feature trans-
formation for images in Atari 2600 games. The hash codes
generated by our method distinguish between visually differ-
ent states but fail to emphasize that the agent needs to

explore different rooms. But the hand-designed feature
transformation can clearly describe this key information.

4.4. Downsampling. We apply a downsampling process to
the generated binary code in equation (6), which can be
done using SimHash’s random projection to a lower-
dimensional space. However, there may be states that are
distinct but fall into the same group after downsampling.
Moreover, different downsampling dimensions have different
effects on the final experimental results. We conduct more
experiments in different game environments. Figure 5 and
Table 2 show an overview of the results.

As observed in the results, in the case of low-latitude
downsampling, the agent reaches the plateau fastest, but
the reward is relatively lower. Conversely, in the case of
high-latitude downsampling, the speed of convergence is
slower, but the reward obtained is higher. This phenomenon
is well explained because downsampling at low latitudes
greatly compresses the state space, and the novelty to the
agent disappears quickly. And because many different states
are assigned to the same state, the agent’s exploration ability
is greatly affected, and more effective rewards cannot be
obtained. And we found that there is a certain correlation
between the complexity of the environment and the optimal
dimension of downsampling. For complex games such as
Montezuma, a higher-dimensional downsampling represen-
tation can better distinguish different states and achieve
excellent returns. For games with relatively low complexity,
such as Freeway, high-dimensional downsampling will cause
overfitting. Overdistinguishing similar states will lead to
lower overall rewards for the agent.
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Figure 4: Mean average return of different algorithms on Rllab tasks with sparse rewards.

Table 1: Atari 2600: average total reward after training for 50M time steps. Boldface numbers indicate best results. Italic numbers are the
best among count-based exploration methods.

Freeway Frostbite Gravitar Montezuma Solaris Venture

TRPO (baseline) 16.5 2869 486 0 2758 121

Double-DQN 33.3 1683 412 0 3068 98

Dueling network 0 4672 588 0 2251 497

Gorila 11.7 605 1054 4 N/A 1245

DQN Pop-Art 33.4 3469 483 0 4544 1172

A3C+ 27.3 507 246 142 2175 0

TRPO+AE 33.5 5214 482 75 4467 445

TRPO+BASS 28.4 3150 604 238 1201 616

TRPO+OURS 34 5537 712 196 4860 983
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5. Conclusion

In this paper, we propose a novel count-based exploration
method for deep reinforcement learning. By introducing
the embedding network and the action prediction model,

the proposed method tends to extract the state features that
have positive impacts on the agent and encourage the agent
to explore states with higher rewards. Extensive experiments
demonstrate that our proposed method can achieve promis-
ing performance on different tasks. In future work, we plan
to optimize the representation of state features and attempt
to apply the state feature extraction framework to other
kinds of reinforcement learning exploration methods.

Data Availability

Previously reported environment data were used to support
this study and are available at 10.1613/jair.3912. These prior
studies (and datasets) are cited at relevant places within the
text as references. The experiment data used to support the

Table 2: Downsampling experiments in Atari 2600. K represents
the dimension of downsampling. Boldface numbers indicate best
results.

K = 64 K = 128 K = 256
Freeway 25.1 34 28.3

Venture 479 677 983

Montezuma 24 74 196

Frostbite 3043 5537 4983
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Figure 5: The influence of different downsampling dimensions on experimental results.
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