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Accurate indoor visual localization has been a challenging task under large-view scenes with wide baselines and weak texture
images, where it is difficult to accomplish accurate image matching. To address the problem of sparse image features
mismatching, we develop a coarse-to-fine feature matching model using a transformer, termed MSFA-T, which assigns the
corresponding semantic labels to image features for an incipient coarse matching. To avoid the anomalous scoring of sparse
feature interrelationship in the attention assigning phase, we propose a multiscale forward attention mechanism that
decomposes the similarity-based features to learn the specificity of sparse features, the influence of position-independence on
sparse features is reduced and the performance of the fine image matching in visual localization is effectively improved. We
conduct extensive experiments on the challenging datasets; the results show that our model achieves image matching with an
average 79.8% probability of the area under the cumulative curve of the corner point error, which outperforms the related
state-of-the-art algorithms by an improvement of 13% probability at 1m accuracy for the image-based visual localization in
large view scenes.

1. Introduction

Obtaining an accurate indoor location is a key for location-
based services such as seamless indoor-outdoor integrated
navigation and multimedia information push in smart cities
and augmented/virtual reality applications [1]. The demand
for the high-precision location-based services in large indoor
spaces is also becoming increasingly urgent.

Visual indoor localization is currently the mainstream
solution under the premise of high precision location [2].
The localization accuracy estimated with visual information
exceeds that with wireless radio frequency (RF) signals,
IMU, and geomagnetic signals. The RF signal is affected by
multipath effects and signal fading, while IMU suffers from
error accumulation, and they cannot compete with robust
visual localization. Visual localization, i.e., estimating the
camera pose by query image matching to the scene model,
is a core problem under a large-view condition in computer

vision. In the absolute pose estimation of a camera, it is nec-
essary to estimate the pose in an indoor coordinate system
using the information provided by the image database and
3D point clouds. The main challenge for the image-based
[3–5] or structure-based [6, 7] indoor visual localization
methods is to obtain the exact image feature matching (i.e.,
find the feature points corresponding to the query image
from the candidate images) and complete the homography
constraint in optimal camera pose estimation [8, 9]. How-
ever, in complex indoor scenes, especially images in large-
view scenes with long viewing distances and wide baselines,
which contain the visual information with sparse features,
feature distortion or partially occluded makes it difficult to
accomplish accurate feature matching of the visual local-
ization. Similarly, some viewpoint changes in a wide range
of viewing conditions lead to acute perspective distortion,
which results in a little scene structural overlap between
the query and the candidate images. Because image matching
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focuses on the small part of an image [10], the variability of
the scale and rotation of local features makes feature match-
ing in large view scenes highly ambiguous and unable to
accomplish accurate visual localization.

The precise correspondence of image features between
the query and the database is a key to visual localization
under a wide range of viewing conditions. The accuracy of
image matching in such scenes can be improved by visual
semantic information and spatial context [11]. The works
[12, 13] extracted scene semantic information for consistency
matching and used the geometric and semantic understand-
ing of the scene to learn the new generative descriptors for
positioning under failed scenes. These methods are able to
eliminate the influences of illumination and occlusion for
visual long-time localization. However, the accuracy of geo-
metric descriptors [14] and semantic segmentation models
[15] needs to be further improved for getting accurate geo-
metric features and semantic annotation of the large-view
indoor scene 3D model. For the image sparse feature match-
ing of visual localization in large view scenes, the attention-
based matching algorithm provides a promising approach
[16, 17], the translational and rotational invariance of
features is learned to enhance the expression of sparse fea-
tures, and the different matching strategies are accomplished
through different attention weights assignment, which can
solve the ambiguous problem of feature matching in a large
view scene with crossviewpoint. In the existing methods of
self-attention weights and crossattention weights [17–19],
the anomalous attention weights of the sparse feature points
under weak texture scenes are prone to occur for location-
independent feature points (i.e., feature points prone to
distortion) because they are not subject to any constraints,
leading to the pervasive weak texture image matching errors
in large view and increasing visual localization errors.

To tackle the above challenges, we investigate the prob-
lems of ambiguous matching of sparse features and anomaly
weights for visual feature correlation under large view
scenes. We develop a coarse-to-fine feature matching model
to remove the dependence on appearance-based reliable fea-
ture matching and reduce the effects of the large view and
viewpoint changes. As shown in Figure 1, a key insight of
our method is to learn the self-correlation among the image
sparse features and crosscorrelation among the features on
different image patches through semantic correlation and
forward multiscale attention mechanism, which reduces
the influence of image distortion and improves the matching
accuracy of sparse feature points under a wide range of view-
ing conditions. The key contributions are summarized as
follows:

(1) We develop a novel coarse to fine feature matching
network with a transformer, termed MFSA-T, which
solves the problem of sparse feature matching in large
view scenes. Meanwhile, semantic match consistency
and position correlation are exploited to improve the
robustness of the refined matching model

(2) We propose a multiscale forward attention mecha-
nism to solve the anomaly score of sparse feature

point interrelationship and the attention weight on
different image patches. This mechanism enables
our network to decompose the similarity features to
learn the specificity, which improves the matching
accuracy of the sparse features in weak texture
regions and refines the visual localization in large
view scenes

(3) We achieve an average correct matching rate of
79.8% in large view scenes and reduce the localiza-
tion error by 9.5% in wide baseline scenes of the
public datasets, which outperforms the state-of-the-
art image matching algorithms. The performance of
image-based visual localization algorithms using
the MFSA-T model in large-view scenarios is suc-
cessfully improved

The rest of the paper is organized as follows. Section 2
discusses the existing studies related to this research and
Section 3 illustrates the method regarding the developed
sparse feature matching network in large views scenes.
Finally, the experiment results along with their analysis
and the summarization of the developments are discussed
in Section 4 and Section 5, respectively.

2. Related Work

Robust visual localization in large view scenes is an essential
problem in computer vision. The solution of this problem in
difficult situations is not only a challenging task but also
highly relevant in practice, such as augmented reality, multi-
media information push, and autonomous robots. Large
view scenes with extreme viewpoint changes, a wide baseline
of view, and weak textures lead to acute perspective distor-
tion and frequently bring on the few common matching
parts between the query and the database. These challenges
in visual localization attract a large number of researchers
to investigate different visual problems [20]. In this section,
we review and summarize the research on issues related to
visual localization in a large view scene.

2.1. Feature-Based Localization. The mainstream visual
localization algorithms for large-scale complex indoor
scenes use local feature matching of the query image with
the 3D model from the structure from motion (SFM) [21]
of the scene, such as SIFT [22] and FREAK [23]; the homo-
graphy matrix formed by the corresponding features after
RANSAC filtering is solved by perspective-n-point (PnP)
[24] to estimate the pose of the query image [9]. To elimi-
nate the influence of viewpoint changes and weak textures
in large-view scenes, the geometric features of the scene are
utilized in [25] to complete the regional correspondence of
the scene and the multiple scales local correspondence of
the same ratio. This type of traditional descriptor matching
usually uses region priority matching or efficient sparse
feature association, which is typically a direct matching
scheme. But the robustness of this type of method decreased
dramatically due to visual distortion occurring in large-view
scenes; the localization performance is substantially reduced.
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Camposeco et al. [26] proposed geometric outlier filtering
to remove the mismatching relationship of features caused
by a viewpoint change in large view scenes. The optimal
camera pose estimation result in a large scene is the one
with the most votes [27, 28], searching for the covisibility
information between a query image and database images
[7, 29, 30], retrieving the structural overlap region to elim-
inate the influence of the wide baseline scenes, and seeking
the key frames and local matching features of query
images [31], which can effectively remove the influence
of viewpoint changes in the visual localization. To ensure
the credibility of visual localization results, Taira et al.
[10, 32] proposed the pose verification and incorporated
scene geometric and semantic information for a trained
pose verification model that generates a pose-score similar
to the query image by a fractional regression convolutional
neural network (CNN).

2.2. Visual Semantic Localization. Visual semantic features
have richer scene information and object class information
than traditional features, which is more robust to visual
information distortion in large views [33]. In recent years,
visual semantic information has been used in indoor posi-
tioning with promising results [34]. An extended structure-
based method was proposed in [12] by combining image
features and semantic understanding of the scene in the
camera pose estimation stage of the query image. The
method uses the geometric outlier filtering [27] and scene
semantic labels to deal with the wide range of viewing sce-
narios where it is hard to seek the correct correspondences
of image features. Toft et al. [35] proposed a sparse 3D point
cloud model composed of scene curves and pixel-wise
semantic labellings of the query image to enhance the image
features discrimination for visual localization. Another
semantic localization strategy is to include the image seman-
tic information in the feature matching process of the visual
localization algorithm [13, 36, 37], i.e., detecting and match-

ing semantic features of the scene images. The latter type of
semantic localization method only provides an additional
weak semantic feature information does not solve the prob-
lem of seeking enough correct matches in wide baseline
scenes, which motivates our work.

In contrast to the approaches previously discussed, our
method focuses on the image feature matching stage of
visual localization. Our model combines the sparse features
in large-view scenes and the corresponding semantic infor-
mation into a single confidence feature and learns discrimi-
native and crosscorrelation of features, which completes
accurate image matching to improve visual localization
accuracy in wide baseline and long-range view scenes.

2.3. Learning-Based Feature Matching Network. Recent
works show that the learning-based image matching net-
work significantly improves matching performance [17].
Learning-based feature matching models can be divided into
two categories. A common strategy of the first category is to
learn the translation invariance and rotation invariance of
feature descriptors [16, 38, 39] to enhance the representation
of image features. A trainable single-image matching CNN
was proposed in [40], which is a dense feature descriptor
as well as a feature detector. The obtained keypoints by
trainable CNN are more robust and stable than their tradi-
tional counterparts. The second category of approaches
mainly focuses on different matching strategies for image
features; for instance, a universal dense correspondence net-
work was proposed [41] for geometric and visual semantic
matching of images. Sarlin et al. [18] proposed a sparse fea-
ture matching model with GNN (graph neural network),
which completes feature matching by self-attention and
crossattention. A pixel dense matching network with a
transformer was proposed in COTR [19], which selects
query interest points and retrieves sparse counterparts
between images to obtain local and global prior information
by iteratively estimating scaling around the points. The same
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Figure 1: Schematic of sparse feature matching in weak texture scene with viewpoint change.
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self-attention and crossattention layers are used in LoFTR
[17], a coarse-to-fine image matching model, where the steps
of sequentially performing image feature detection, descrip-
tion, and matching are replaced by a pipeline using coarse-
to-fine image feature matching. This algorithm conducts
pixel dense matching at the coarse granularity and then
refines the matching at fine granularity, which improves
the image matching accuracy for weak texture scenes. How-
ever, if feature points are position-independent, they have
similar background features (e.g., walls with weak texture
or untextured corridors); some models [17–19] miscalculate
the image attention weights and cannot complete accurate
matching.

In contrast to the above, we focus on the precise corre-
spondences of image features of the matching stage in visual
localization. We propose multiscale forward attention to
improve the self-correlation and crosscorrelation of sparse
features for the anomalous scores of attention weighting of
sparse feature points in large view scenes. We establish a
coarse-to-fine feature matching model using a transformer
network to better the image feature matching accuracy in
extreme viewpoints.

3. Method

To address the matching ambiguity in the image matching
phase of visual localization under large-view scenes, we pro-
pose a novel coarse to fine sparse feature matching network
using a transformer, named MSFA-T, which is also suitable
for other applications based on image matching such as
object tracking and object retrieval. The structure of our
model is shown in Figure 2, ε is the D2-Net [40] model used
to extract the CNN features and the positions, I − I ′ are the
input images, and M is the mapping of feature map F and
semantic segmentation map S.

Our goal is to train a coarse-to-fine sparse feature
matching model that can output optimal geometric con-
straints for the visual localization algorithm in large-view
scenes. First, we obtain the semantic features of the query
image and candidate images by SETR [15], which can per-
ceive the large view scene with failed localization in scene
recognition. The scene semantic features are embedded into
the sparse feature points of the image for coarse feature
matching. Our model obtains the spatial locations of the fea-
ture points with similar semantics to learn the interrelation-
ship of different feature points and decompose the similarity
features, which completes a coarse matching of image fea-
tures and the division of image patches with semantic classes
and solves the problem of the misclassification of feature
points under distorted view. We propose a multiscale for-
ward attention mechanism (MSFA) embedded into a trans-
former to compute the attention weights of sparse features at
different positions and to motivate the model to learn the
self-correlation of features with the same semantic informa-
tion and the crosscorrelation of features with different
semantic information. MSFA module deals with the prob-
lem that the image distortion at a long-viewing distance pro-
duces anomalous scores on the attention weights of image
features. The main specific constraints derived from the

computation of feature vectors by the neural network (NN)
are also executed. Finally, the transformer output vector is
decoded by a multilayer perceptron (MLP) to obtain a con-
fidence feature matrix for accurate image matching. Our
model provides the optimal geometric constraints for visual
localization.

After expanding the feature patches obtained by coarse
matching to one-dimensional vector, we add positional
encoding. We use the general linear positional encoding in
transformers following DETR [42]; the positional encoding
gives each feature patch unique position information to
ensure that the transformed vectors of the sparse features
become position dependent. This process enables our model
to resist the influence of weak texture regions. The fused
position-encoded feature vectors are fed into the trans-
former, and their weights are obtained according to our pro-
posed multiscale forward attention module for computing
confidence features.

3.1. Semantic Mapping for Coarse Matching. The mapping of
semantic maps to image patches assigns different semantic
labels to the sparse features of images, which facilitates
the calculation of the self-correlation of feature points with
the same semantic information and the crosscorrelation
between different semantic feature points (as shown in
Figure 1); meanwhile, it provides a priori information for
coarse image matching. The incorrect matching of image
features in weak texture scenes is significantly reduced.
The specific computational details are as follows.

Semantic class labels are constructed by performing
pixel-level semantic segmentation on all images [33],
semantic label Sc is assigned to its same semantic class
of image patches. The feature map after semantic mapping
is defined as:

M = Fi,j, Sc, i,jð Þ
� �n oN

i=1,j=1
, ð1Þ

where each feature point and its image coordinates are
defined as Fi,j, its semantic label class and corresponding
semantic label position are defined as Sc,ði,jÞ, and N is the
total number of feature patches.

As each feature patch is given a semantic label, we com-
pare the observed feature patches and the corresponding
semantic labels between the query and the database for scor-
ing semantic consistency to obtain a coarse region where the
feature patches are located. The semantic matching score is
defined as

YFi, j↔Fi, j′
= Sc ∈ℝ

2, Sc ⊖ SC′
�� ��−1n o

: ð2Þ

For the retrieved coarse match region, we crop it out
with a partial window of size m × n, as shown in the blue-
boxed area in Figure 1. Coarse matching outputs of the same
semantic region can be used with the dual-softmax operator,
which is also the optimal transport layer in SuperGlue [18],
as the output results can all be matched differentiable. The
local window of a coarse matching region is refined to a
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subpixel level, the center of the query window is fixed as the
query feature, and then, the distance between the feature in
the window of the candidate image and the center of the fea-
ture in the query window is calculated; the image patches
with highest scores are used as the accurate predicted match
prediction of final image feature.

3.2. Multiscale Forward Attention Module. Feature matching
models with a transformer calculate the attention weights of
different feature points to enhance the correlation and
uniqueness of feature points [17, 18], which reduces the fea-
ture matching errors in weak texture scenes. However, the
type of methods are prone to abnormal scores in the process
of local attention weights, which makes the larger deviation
of relevant scores between neighboring feature points and
leads to position-independent feature point matching errors
in weak textures. We propose the multiscale forward atten-
tion module, MSFA, as shown in Figure 3. This module uses
the self-attention weights at previous moment to smooth the
anomaly scores at current moment and constrains the previ-
ous moment attention weights to optimize the forward
attention model for the purpose of adaptive smoothing. A
multiscale model, then, is introduced to different feature
units for obtaining the target feature vectors with different
characteristics, which solves the problem of attention weight
anomaly scores.

We use different scale convolution filter (S-CF) on the
basis of the multiheaded self-attention model to obtain fea-
ture units at different positions. We then model the feature
units with different weights and calculate the interrelation-
ships between different feature units. In addition, the target
feature vectors with different weights are spliced and fused
by a NN. Finally, the transformer output vector is decoded
by a multilayer perceptron to obtain the confidence feature
matrix. The specific calculation process is formulated as
follows.

By smoothing the self-attention weights from the previ-
ous moment to the current moment, the new attention score
of the current moment is �Ai,j.

�Ai,j = Ai,j∙ 〠
l−1

t=0
�Ai−t,j−1

 !
, ð3Þ

where Ai,j is the self-attention score at position i and
moment j, 0≤Ai,j ≤ 1. The computation of attention weights
is to select relevant information by measuring the similarity
between query (Q) and each key (K); its output vector is
a weighted sum of values with similarity scores. We use
the dot product to weight the input features, which can
be expressed as A = softmaxðQ∙KTÞ ⊙V . l is the one-
dimensional vector expanded by the input vector and
positional encoding, and �Ai−t,j−1 is the forward attention
score at the position i − t of the previous moment.

After normalizing the forward attention weights at dif-
ferent positions using the softmax function, the anomalies
at the current moment are smoothed by the self-attention
weights to eliminate the anomalous scores of the attention
weights, ensuring the continuity between the attention
weights of different feature units at the previous and next
moments. We note that the influence degree of single for-
ward moment attention weight on n forward vectors is not
consistent. It is not consistent for the attention weights of
vectors at different moments; therefore, new constraint
information needs to be added to the forward n vectors to
improve the effect of smoothing anomalous attention score.
We use a NN to generate a constraint factor φj to dynami-
cally control the influence of the attention scores corre-
sponding to different vectors in the previous moment on
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Figure 2: Overview of the proposed method, an image feature extraction, and matching structure.
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the different vectors in the current moment. The constraint
factor φj is:

φj =NN qj−1, vj−1, �Mj−1
� �

, ð4Þ

where qj−1 is the MLP decoder state at the previous moment,

vj−1 is the target vector at the previous moment, �Mj−1 is the
vectors sequence output from the decoder, and NN is a
neural network model containing an implicit layer and a
Sigmoid activation function. The constraint factor φj can
add effective constraint information to the attention weight
score at the previous moment; thus, the importance related
to the vectors with higher attention anomaly scores will be
reduced. By dynamically adjusting the importance of the
attention weight score at the previous moment, one can
optimally smooth that the abnormal attention score at the
current moment is achieved. The smoothing function is
shown by

�Ai,j = Ai,j∙ 〠
l−1

t=0
φj∙�Ai−t,j−1

 !
: ð5Þ

The softmax function is used to normalize �Ai,j so that the
attention weights of vector units important at the previous
moment are better learned at the current moment.
Figure 4 shows the attention weights of the learned image
features. Adaptive smoothing of the abnormal attention
scores at the current moment is achieved by constraint fac-
tors to better align the vector positions of the model.
MSFA-T assigns significant attention weights to the union
distribution of sparse features in weak texture scenarios,
which focuses on significant markings, structure informa-
tion, object types, or feature location to learn the correlation
of sparse feature points within the local regions of semantic
consistency. It learns to ignore dynamic objects like pedes-
trians and repeated patterns like the corridor or wall.

The multiscale forward attention mechanism is used to
solve the problem of anomalous attention weights of some
feature vectors caused by a low degree of the model
representation in weak texture scenes. Different from the
multiheaded attention mechanism, we use different sizes of
convolutional filters to calculate the respective scores of
attention weights for each layer of the multiheaded attention
model. The change patterns of feature vectors at different
moments are obtained to model the vector units at different
scales. Compared to using a single-scale filter in modeling
the fixed vector units, the multiscale attention mechanism
can extract deeper and richer feature information. In the
multiscale model, convolution is computed for the forward
attention score �Aj−1 using different sizes of convolution fil-
ters S-CF as follows.

f j = Ck ∗ �Aj−1, k = 1,⋯, 4
� �

, ð6Þ

where C is the convolution operation and k is the convolu-
tion kernel size. As the image features are expanded as
one-dimensional vectors and the positional encoding is also
one-dimensional data, the one-dimensional convolutional
filtering of different sizes corresponds to sliding windows
of different sizes. Sliding on the vectors ensures that the vec-
tor units included each time can constitute a feature unit,
thus preventing the same feature unit from being assigned
different attention weights. The forward attention score of
the convolution result f j is calculated to obtain the target
vector of K different feature units, which are finally stitched
and integrated by one full connect to obtain the confidence
feature matrix with more discriminative and correlative fea-
ture model representation.

With the MSFA module, not only can we get refined
attention scores by modeling feature units at different scales
but also smooth outliers by using normal attention scores
from the previous moment to effective elimination of abnor-
mal attention scores to complete the exact feature matching.
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Figure 3: Multiscale forward attention module.
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3.3. Refined Matching and Loss Function. We obtain the
exact matching prediction of a query image by selecting
the matching terms based on the confidence threshold θm
and mutual nearest neighbor (MNN) criteria. The matching
process is as follows. We first calculate the score matrix Y
between the output features by

Yi,j = τ−1 Fi,j, Fi,j′
n o

, ð7Þ

where the τ−1 is the scale factor of the matching, then soft-
max and MNN on the two dimensions of the score matrix
Y are applied to predict the matching probability Mc. We
denote the refined matching Mc as:

Mc = ∀ i, jð Þf jMNN softmax Yi, ·ð Þj · softmax Y ·,j
� �

i

h i
>θmg:

ð8Þ

The final loss function includes both coarse-level loss
and fine-level loss, i.e., L = Lc + Lf . In coarse matching, each
feature point Fi,j is directly compared for the score of
semantic label consistency and distance difference; its gener-
ated variance σ2ðiÞ is calculated by the position error to
measure its uncertainty. The weighted loss function of the
coarse-level matching is:

Lc =〠
i,j
σ2 ið Þ−1 Sc ⊖ SC′

�� ��
2: ð9Þ

The fine-level loss function is generated from the
negative log-likelihood loss on matrix Mc obtained by the
dual-softmax operator. The feature matching is performed
using MNN, so that the loss function is:

Lf = −〠
i,j
logMc i, jð Þ: ð10Þ

In the localization phase, the output in feature matching
with MSFA-T model is used to form a homography matrix
using an efficient association algorithm for feature maps
and 3D point clouds [30]. The pose of a query image is
finally solved by PnP-RANSAC [9].

4. Implementation Details and
Experiment Results

In this section, we present the training implementation
details of our model, evaluate the image matching accuracy
of MSFA-T compared with the state-of-the-art methods,
and assess the role of the MSFA-T model in the visual local-
ization systems.

4.1. Datasets. Training data: we train our image matching
model MSFA-T on the ScanNet [43] dataset and the Mega-
Depth [44] dataset. ScanNet is an RGB-D indoor scene data-
set that contains a series of views in 1513 indoor scenes
annotated with 3D camera poses and semantic segmenta-
tions. MegaDepth dataset provides a large number of large-
view images and corresponding dense depth maps generated
by SFM [21], which includes large variations in appearance
of scenes and viewpoint changes of a camera. The above
datasets are required to learn translational invariance and
rotational invariance models to improve the robustness of
the model for large view scenes. Existing accuracy of the
depth maps is sufficient to learn accurate local features
[19] in the large view scenes, reducing the influence of weak
texture scenes.

Testing data for image matching and visual localization:
we used the image matching challenge HPatches dataset [45]
to test the matching accuracy of our model for large-view
scene images, as well as its robustness to viewpoint changes,
long-view distance, and weak texture scenes. HPatches is a
challenging dataset for image matching, which contains
wide-baseline stereo images, long-range views images, and
weak texture images. In addition, we used the InLoc [10]
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Figure 4: Heat maps of sparse feature attention weights in large view scenes.

7Wireless Communications and Mobile Computing



indoor dataset to test the improvement of MSFA-T in the
accuracy of the localization algorithm and also used our pre-
vious work EfiLoc [9] and related localization algorithms,
Image Bimodal Localization [46] and HAIL [47] for com-
parison. We compared only the image localization modules
of the above localization algorithms. InLoc provides the
large-scale indoor data based on two Washington University
buildings, including 356 pieces of 4032 × 3024 query images
and 9972 pieces of 1600 × 1200 database images that contain
the scenes with wide baselines and weak textures. Thus, the
localization based on such a dataset is a challenge consider-
ing the complexity of the indoor wide range of view scenes.

4.2. Implementation Details. We used a share backbone
ResNet [48] architecture and a semantic segmentation SETR
model [15] to initialize the CNN feature extraction network
and semantic segmentation network, respectively. We used
the feature map after the fourth downsampling layer of size
16 × 16 × 1024 in the residual network with a convolutional
kernel of size 1 × 1, the initial learning rate of 1 ∗ 10−3 and
a batch size of 64. For the transformer, we used the same
number for layers of encoder and decoder; each encoder
layer contains a self-attention layer and a multiscale
forward-attention layer to ensure that accurate learning
weights are assigned to each feature patch to enhance the
self-correlation of image features. Each decoder layer con-
tains the corresponding encoder-decoder attention layers
without self-attention layers, which prevent the mutual com-
munication between query points in order to enhance the
relevant communication between query points and candi-
date points. Finally, we used 3-layer MLP to decode the vec-
tor output from the transformer and obtain the confidence
matrix for query matching. We evaluate the performance
of image-based visual localization systems [9, 46, 47] that
use our image matching model and compared their localiza-
tion accuracy under different scenarios.

4.3. Experiment Results. Image matching: to evaluate the per-
formance of our model, we compared it with the state-of-
the-art models, D2-Net [40], COTR [19], SuperGlue [18],
Sparse-NCNet [49], and LoFTR [17]. D2-Net is a detector-
based local feature matching network that uses a describe-
and-detect methodology. The detection of D2-Net is
postponed until a more reliable image feature is available
and done jointly with the image description. SuperGlue is
a detector-based local feature matcher, which uses self-
attention and crossattention to improve the matching accu-
racy of image feature points (SuperPoint [16]). COTR,
Sparse-NCNet, and LoFTR are detector-free matchers
models, which have no local feature keypoints and directly
output the dense matching result of the image. In addition,
in order to confirm the important roles in assigning seman-
tic features and multiscale forward attention mechanism to
image CNN features in our model, we trained MS-T model,
i.e., MSFA-T without multiscale forward attention mecha-
nism, and MFA-T model, i.e., MSFA-T without semantic
feature fusion module, respectively. We design ablation
experiments to test their image matching performances in
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Figure 5: Evaluation on HPatches for image matching.

Table 1: Evaluation on HPatches image pairs.

Method
AUC

#matches
3 px 5 px 10 px

D2-net 23.2 35.9 53.6 0.2 K

SuperGlue 53.9 68.3 81.7 0.6 K

COTR 62.8 67.9 80.6 1.0 K

Sparse-NCNet 48.9 54.2 67.1 1.0 K

LoFTR 65.9 75.6 84.6 1.0 K

MS-T 28.5 48.6 52.7 1.0 K

MFA-T 47.7 62.8 73.9 1.0 K

MSFA-T 68.5 76.9 83.5 1.0 K
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comparison with the related state-of-the-art matching
algorithms.

For the matching challenge on the HPatches dataset, we
restricted the number of image keypoints rather than the
correct matching rate. For the image local feature matching
algorithm, we restricted the extraction to a maximum of
2K features with mutual nearest neighbors as the matches
phase. For detector-free methods, which directly output the
matches, we restricted the matches results with a maximum
of 1K outputting matches. Meanwhile, we used the initial
default hyperparameters in the original matching algorithm
implementation for all the baselines. Figure 5 shows the
comparison of image matching results for wide-baseline
view, weak texture, and viewpoint changes. For each
method, we show the mean number of mutual nearest
neighbor matches per image at different matching thresh-
olds. From the comparison results, our method outperforms
the other methods for the matching threshold below 7 pixels,
especially in indoor scenes with weak textures and wide
baseline views. Our approach makes the coarse-to-fine
matching process that from semantic consistency matching
to sparse features with the same semantic labels play an
important role. Our multiscale forward attention overcomes
the problem of anomalous scoring of sparse feature weights
in weak texture scenes, which enhances the self-correlation
and crosscorrelation of these features, improving the overall
performance of the model.

The overall evaluation results on the HPatches dataset
are shown in Table 1. We report the area under the cumula-
tive curve (AUC) of corner error in image matching with the
threshold of corner error being 3, 5, and 10 pixels, respec-
tively. The AUC of the corner error as a function of the
matching threshold in percentage is shown. Bold values in
the table indicate the best results for that particular experi-
ment. Our method has higher matching accuracy, especially
for the error thresholds of 3 and 5 pixels in weak texture
scenes.

Our MSFA-T matching model achieves the optimal per-
formance with the error threshold values of 3 and 5 pixels,
respectively. LoFTR achieves the optimal matching result
with the error threshold value of 10 pixels because it uses
the good matches at a fine level. In contrast, we fused the
scene semantic features with the image CNN features so that

the model filters out some semantic conflicting sparse fea-
tures to ensure the refined matches of the images in complex
large views.

We also perform ablation experiments on models MS-T
and MFA-T. The MS-T model without the multiscale
forward attention mechanism shows some sparse feature
matching errors in weak texture scenes with wide baselines,
which is due to the attention weight learning anomaly on
position-independent features in this scene, causing the cor-
relation between the features to be misallocated. The MFA-T
model without the semantic feature fusion module shows
the matching errors of some different types of objects due
to the lack of the sparse features with semantic label infor-
mation in wide baseline scenes and viewpoint change scenes.
The MSFA-T model, which uses both the semantic informa-
tion fusion mechanism and the multiscale forward attention
mechanism, shows optimal matching results in large view-
point scenes. The performances of the above models with
the error threshold values of 3, 5, and 10 pixels, respectively,
are shown in Table 1. These experimental results demon-
strate the effectiveness of the coarse-to-fine network (seman-
tic correspondence coarse matching to fine matching of
features with the same semantic information) and multiscale
forward attention mechanism proposed in this paper for
refined image matching and also show the robustness of
our method for large view scenes. The partial image match-
ing schematic of our method with different module on
indoor image pairs is shown in Figure 6. The green color
indicates the correct match with a probability close to 1, in
contrast, the lower the probability, the closer the color to
red. MSFA-T achieves the best matches and fewer mis-
matches, which successfully copes with the image matching
in weak texture areas and wide baseline views.

Indoor visual localization: accurate localization of indoor
vision relies on robust image matching algorithms; therefore,
we used the MSFA-T model in the image matching phase of
indoor localization in indoor large view scenes to evaluate
the localization performance of EfiLoc and related state-of-
the-art visual localization algorithms [46, 47]. Similarly, we
compare these localization algorithms using the MSFA-T
model with original localization algorithms. EfiLoc-MSFA-
T denotes the EfiLoc localization algorithm that uses the
MSFA-T model, the same for others, e.g., IBL-MSFA-T

MS-T MFA-T MSFA-T

Figure 6: Comparison results of image matching in large view scenes.
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denotes the Image Bimodal Localization with MSFA-T and
HAIL with-MSFA-T (HAIL-MSFA-T). The comparison of
the cumulative error function (CDF) of these positioning
methods is shown in Figure 7.

The improvement of the visual localization performance
is achieved by using the MSFA-T model instead of the image
matching module in the original localization algorithm. The
correct localized queries rate of the original localization algo-
rithms (dashed lines in Figure 7) with the MSFA-T image
matching model (solid lines) have different degrees of
improvement with different influencing factors. At a local-
ization error of 1m, the performance improvement rate of
the correct localized queries is 12% and 9% for IBL-MSFA-
T and EfiLoc-MSFA-T, respectively. The general localization
performance is most improved with HAIL. This is because
HAIL uses the filtered SIFT feature keypoints that cannot
accomplish robust image feature matching in the challeng-
ing scenarios described above, especially in indoor scenes
with weak textures and viewpoint changes. This also demon-
strates that our image matching model can successfully
improve the performance of visual localization in large view-
point scenes.

5. Conclusion

In this paper, we propose a model MSFA-T, a robust sparse
feature matching network with a transformer, which accom-
plishes accurate image matching in visual localization in
large view indoor scenes. MSFA-T successfully solves the
problems of viewpoint distortion and weak textures using
the image semantic information and the optimal confidence
features. In addition, to deal with the problems of interre-
lationship and attention weight anomaly score of sparse
feature points on different image patches, we use the
transformer with our MSFA module for learning the spec-
ificity and correlation of the sparse features, which
improves the matching accuracy of the sparse features in
weak textures regions to enhance refined visual localiza-

tion in large view scenes. MSFA-T accomplishes an aver-
age 79.8% probability of the AUC of the corner error in
large view scenes, which outperforms the related state-of-
the-art image matching algorithms. Moreover, our model
improves on average the localization accuracy of image-
based visual localization by 11.2% on the InLoc dataset.
We believe the MFSA-T model takes a promising step
toward refined image matching to improve a practical
smartphone indoor localization services.
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