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In recent years, the modern information society has entered the era of big data. Big data has rapidly developed into a popular
category favored by academia and industry and has been widely used. This paper is aimed at studying the application of the
3D modeling technology of mobile big data to the monitoring of the state of electric vehicles. It proposes related concepts of
big data algorithm and 3D modeling technology, introduces the trajectory matching algorithm based on mobile big data, and
finally introduces the related concepts of electric vehicles and the design of the big data analysis platform for condition
monitoring of substation equipment. On the basis of discussing the application of the three-dimensional modeling technology
of mobile big data in the electric vehicle condition monitoring system, the experimental research was carried out with the big
data in the condition monitoring of the intelligent substation. The experimental results of this paper showed that the storage
overhead of the NJLS model was reduced by 34% to 40% compared with the conventional star schema, which could reduce the
space overhead.

1. Introduction

Big data is the most popular direction of information science
research nowadays. Relevant technology has gradually devel-
oped into a database system since the mid-1980s. It revolves
around all the data and continuously excavates some data
information with potential value, which has great applica-
tion value. This is a dynamic and interactive process. With
the rapid popularization of automobiles and the increase in
the number of automobiles, energy consumption and envi-
ronmental pollution are becoming increasingly serious. Elec-
tric vehicles are attracting more and more attention due to
their low pollution, clean, and efficient characteristics. The
electric vehicle drive system is mainly composed of a high-
efficiency motor, a controller, and an energy storage device.
The development goal of electric vehicles is zero emissions.

Compared to conventional cars, electric vehicles are still
in their infancy. The working environment and the control
technology of electric vehicles are more complex. If an elec-
tric car breaks down, it will not work properly and heavy
electric vehicles will cause serious road accidents. Therefore,

mobile big data is needed to monitor the status of electric
vehicles. The main purpose of monitoring this data is to pro-
vide early warning of impending motor failures, to perform
preventive regular maintenance on possible future problems,
and to provide a diagnostic plan. Therefore, it is of great
practical significance to apply the 3D modeling technology
of mobile big data to monitor the status of electric vehicles.

The innovations of this paper are as follows: (1) The use of
big data to monitor the state of electric vehicles is innovative
and practical. (2) The monitoring of the state of electric vehi-
cles can effectively protect people’s lives, health, and safety.

2. Related Work

With the advancement of economy and innovation, portable
large information has continuously assumed a significant part
and numerous researchers have done investigation on it.
Qing-Chao et al. installed spark on the THREAD platform,
built a more complete macroanalysis model based on mobile
data, and used the monthly data of more than 29 million users
for ETL and mining processing, proving that the model could
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be applied to the mining of urban macrotraffic characteristics
[1]. Mobile cloud computing (MCC) and IoT technology
based on wireless network technology are developing rapidly.
Stergiou and Psannis combined the above two technologies
(i.e., MCC and IoT) with big data technologies to examine
their common characteristics and found the advantages of
MCC and IoT that could improve the use of big data applica-
tions [2]. In order to study how to mine valuable information
in low-complexity multimedia big data, Guo et al. proposed a
big data object detection method with a compressed measure-
ment domain under a mobile distributed computing architec-
ture [3]. In recent years, the research field of mobile big data
has risen rapidly but somewhat fragmented. Xiang et al. aimed
to provide a complete picture of this emerging field, build mul-
tidisciplinary bridges, and hopefully inspire future research
[4]. Using big data analysis technology, Parwez et al. contrib-
uted in two ways. First, mobile network data (big data)—call
detail records—was used to analyze the abnormal behavior
of the mobile wireless network. Second, a neural network-
based predictive model was trained using anomalous and
non-anomaly data to highlight the impact of anomalies in
the data while training/building an intelligent model [5]. Qiao
et al. proposed a mobile big data framework, called FMBD,
which provided massive data traffic collection, storage, pro-
cessing, analysis, and management functions to cope with
massive data traffic [6]. Hu and Yan solved the private dot
product calculation problem for mobile big data applications,
and the calculation efficiency was very ideal [7]. However, the
shortcoming of these studies is the uncertainty of the data
quality; the calculation and analysis of massive data are very
complicated, so the construction of the model still needs to
be improved.

3. Method of 3D Modeling Technology for
Mobile Big Data

3.1. Big Data Algorithms

3.1.1. Data Mining and Machine Learning Framework. Data
mining refers to the process of using certain algorithms to
automatically search for information and laws with special
relationships in a dataset from a large amount of data. Today’s
data not only is huge but also has incomplete and ambiguous
characteristics [8]. Finding out the relevant patterns is the task
of data mining. It has two main characteristics: one is that it
can obtain valuable information in large-scale data. The sec-
ond is that it can respond according to the changes in the data
and adapt and collect the changes in the data in real time.
With the rapid improvement of computer computing and
data processing capabilities, more and more machine learning
algorithms are applied in practice. The corresponding weight
parameters are obtained through the training data, the accu-
racy is obtained by inputting the model with the test dataset,
and the final output result is obtained by making a decision
based on the experience generated by the historical training
data [9]. As the technical support and theoretical basis of arti-
ficial intelligence, machine learning not only can process and
analyze data to obtain laws and parameters quickly but can
also classify and predict related data problems. In the current

trend of increasing data volume, machine learning is particu-
larly important. Today, there are numerous frameworks,
libraries, and tools available for machine learning, which facil-
itate the use of machine learning techniques.

As per Wikipedia’s definition, huge information alludes
to informational indexes that surpass the capacity, the board,
and handling abilities of conventional programming or con-
sume additional time than OK. With respect to idea of large
information, it is for the most part accepted that there are
4Vs, to be specific volume, speed, assortment, and worth.
At the present transformative phase, giving a compelling
and exact meaning of large data is remarkably difficult.
And when a new technical concept is proposed, it usually
needs to go through a process [10].

The first is volume. This is the biggest feature that distin-
guishes big data from traditional data, that is, the amount of
data is large. This feature is inseparable from the development
of technology. First of all, the data storage capacity in the past
was very limited. According to the development of Moore’s
law, the performance of hardware has been continuously
improved and the price has gradually decreased, making
large-scale data storage possible. In addition, the proliferation
of technologies such as social networking, e-commerce, and
the Internet of things has created a flood of data.

The second is velocity. It refers to the constant influx of
data flow at an unprecedented rate and must be processed
within an acceptable time frame. This is the main challenge
faced by big data. Traditional data storage and processing
methods simply cannot achieve the efficiency that can be used.

The third is variety. It refers to the variety of forms of
data, mainly because of the abundance of data sources. The
storage and analysis of these data are also two of the main
challenges faced by big data.

3.1.2. Big Data Storage. In the earliest days, information was
straightforwardly put away in records. Such a file storage
method has many defects, cannot be stored for a long time,
and has a small amount of storage. With the development of
disseminated record frameworks, information can be put
away as appropriated documents, which enjoys the accom-
panying benefits: It can oblige a lot of information [11].
The distributed file system represented by HDFS can store
a large file in multiple machines, and let each machine store
a part of the file to dissipate the pressure of a single machine.
And redundant backup of data is supported. By default,
HDFS saves three copies of each data and distributes them
to different machines in the cluster, so that even if a machine
in the cluster goes down or is completely destroyed, the data
will not be lost. It has good scalability. When the amount of
data increases gradually, the data storage capacity can be
improved by adding cluster machines. There are three key
components in HDFS, namely, DataNode, NameNode, and
Clié. The DataNode sends the information of the data block
to the NameNode [12], and the Clié is responsible for initi-
ating read and write requests.

3.1.3. Correlation Analysis. Correlation analysis is an explor-
atory attempt before data analysis, which aims to explore the
relationship and nature of input parameters and variables.
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The results of correlation analysis can effectively guide what
method to take in the next step. For instance, in displaying,
the information overt repetitiveness of the model can be dimin-
ished by the consequences of relationship investigation, which
is the essential work before information mining. During the
time spent information demonstrating, there are many sorts
of boundaries and the connection between every information
is unique. All kinds of parameters are directly used as model
input, which increases model redundancy and reduces model
calculation efficiency. In order to simplify the model input
and improve the calculation efficiency of the model, it is urgent
to perform a correlation analysis on the original parameters and
eliminate the variables with greater correlation [13].

The commonly used correlation analysis methods are as
follows:

(1) Covariance and the covariance matrix

Covariance can be utilized to gauge the general mistake
of two factors. In the event that it is positive, the two factors
are decidedly corresponded; in any case, they are adversely
related; assuming that the factors are free of one another,
the covariance is 0.

COV R, Tð Þ = ∑n
i=1 Ri − �R
� �

Ti − �T
� �

n − 1
: ð1Þ

Correlation analysis is performed on the two groups of
data in equation (1). When there are more than two groups
of data, the covariance matrix needs to be used. Taking three
sets of data as an example, the equation for calculating the
covariance matrix is as follows:

D = COV R, Rð ÞCOV R, Tð ÞCOV R, Lð Þ,
D = COV T , Rð Þ COV T , Tð Þ COV T , Lð Þ ,
D = COV L, Rð Þ COV L, Tð Þ COV L, Lð Þ

ð2Þ

(2) Correlation coefficient

The correlation coefficient is a statistical indicator of the
degree of closeness between variables [14].

RRT =
SRT
SRST

: ð3Þ

R is the sample correlation coefficient, SRT is the sample
covariance, SR is the sample standard deviation of R, and ST
is the sample standard deviation of T

(3) Mutual information analysis

When ðR, TÞ ⊂ Pðr, tÞ, the mutual information between
variables R and T is defined as follows:

MI R, Tð Þ = G Rð Þ + G Tð Þ −G R, Tð Þ ð4Þ

In equation (4), GðR, TÞ is the joint entropy of variables
X and Y ; GðRÞ and GðTÞ are the unconditional entropy of
variables R and T , respectively. In order to facilitate the eval-
uation, the mutual information is normalized, which can be
expressed as follows:

NMI R, Tð Þ = 2
I R, Tð Þ

G Rð Þ + G Tð Þ : ð5Þ

The value of NMIðR, TÞ will reflect the magnitude of the
correlation between the variables R and T .

Although the commonly used Pearson coefficient method
and regression analysis method can effectively quantify the
linear relationship between variables, they cannot characterize
the correlation between nonlinear-related variables. In order
to facilitate the numerical representation of the relationship
between nonlinear correlated variables and realize quantitative
statistics, the correlation can be analyzed by applying mutual
information.

3.1.4. Research Status of 3D Imaging Technology. A 3D data
model is an abstract-simulated representation of real things
that connect the computer world and the real world.
Three-dimensional modeling methods mainly include vector
data structure, splicing, mixing, and analysis.

3.2. Basic Concept of Trajectory

3.2.1. Trajectory Data Classification. According to the differ-
ent requirements for collecting trajectory information, the
trajectory sampling method can be adjusted. Trajectory data
can be roughly divided into three categories: time-based
sampling trajectory data, location-based trajectory data sam-
pling, and trigger event-based sampling trajectory data. This
section will introduce these three types of trajectory data.

(1) Sampling Trajectories Based on Time. Trajectory-based
temporal sampling, represented by equation (6), refers to
discrete trajectory points preserved by sampling the
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Figure 1: Hausdorff distance algorithm.
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information of a moving object in the same time period and
recording its position and time information [15].

Traj = s1
!, d1
� �

, s2
!, d1 + Δd
� �

,⋯, sv!, d1 + n − 1ð Þ•Δd� �� �
:

ð6Þ

(2) Sampling Trajectory Based on Location. A location-based
sampling path is an independent trajectory point reserved
for sampling data, and record its position, time, and other
properties as the position of the moving object changes. It
can be represented by equation (7) as follows:

Traj = s1
!, d1
� �

, s2
!, d2
� �

,⋯, su!, du
� �

,⋯, sv!, dv
� �� �

: ð7Þ

(3) Sampling Trajectory Based on Trigger Events. Based on
the trigger event, the sampling path triggers the reception of
sensor information through some specific behaviors of the
moving object by recording the current position, time, and
other attribute information of the moving object. For example,
using mobile phones for daily calls, surfing the Internet, and
swiping credit cards, citizen cards, etc. will trigger the work
of some sensors such as surrounding base stations and card
swiping machines, so that the corresponding data will be
recorded and saved to the database. It can be represented by
equation (8) as follows:

Traj = s1
!, d1
� �

, s2
!, d2
� �

,⋯, su!, du
� �

,⋯, sv!, dv
� �� �

: ð8Þ

Time sampling trajectories are generally used for vehicle
GPS positioning, animal migration research, etc.; location
sampling trajectories are generally used for individual travel
and group migration research; trigger event sampling trajecto-
ries are often used for user check-in and user hotspot research.

When the trajectory points collected based on the time
sampling method express trajectory information, it may
cause the lack of important trajectory features, which is not
conducive to trajectory analysis research. At the same time,
a large amount of redundant trajectory information will
also be collected, which increases the complexity of the later
trajectory analysis. Most of the location-based sampling
methods require manual screening, which not only increases
the labor cost but also makes the trajectory data sorting and
updating cycle longer, and the acquisition process is more
complicated. The collection of trajectory points based on
the trigger event sampling method can obtain a large
amount of trajectory data, the data is automatically collected
by the sensor, the sorting and updating cycle is short, and
the sampled trajectory data can also better express the trajec-
tory characteristics. However, this collection method also
has problems, because data is collected only when the corre-
sponding event is triggered, which may cause the situation
that the complete trajectory cannot be expressed.

3.2.2. Track Similarity Calculation. Use the corresponding
function to obtain the distance between trajectories and use
it as the metric basis. The smaller the distance is, the higher
the similarity between trajectories is. The main similarity mea-
surement methods are as follows: Euclidean distance method,
Hausdorff distance method, longest common subsequence
method, edit distance method, and dynamic time warping
method. These intertrack similarity measures are described
in detail below.

(1) Euclidean Distance Method. Euclidean distance is the most
commonly used method to measure the similarity of objects.
For the same dimension, the Euclidean distance between two
trajectory points is calculated and the Euclidean distance
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Figure 2: Architecture diagram of traditional substation equipment condition monitoring platform (reproduced from Zhang et al. 2018).
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between the trajectories can be obtained by adding the dis-
tances in each dimension.

Equation (9) is as follows:

T G,Hð Þ = 〠
v

u=1
distance gu, huð Þ,

Distance gu, huð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gua − huað Þ2 + gub − hubð Þ2

q
:

ð9Þ

(2) Hausdorff Distance Method. A common metric to mea-
sure the distance between trajectories is the Hausdorff dis-
tance method.

The main idea of the algorithm is that, given the target tra-
jectory point set G = fg1, g2,⋯,gmg and the target trajectory
point setH = fh1, h2,⋯,hvg to be matched, Hausdorff distance
calculation equation (10) of the two trajectories is as follows:

D G,Hð Þ =max d G,Hð Þ, d H,Gð Þð Þ: ð10Þ

The calculations for dðG,HÞ and dðH,GÞ are shown in
equation (11) as follows:

d G,Hð Þ =max
gu∈G

min
hn∈H

q gu − huð Þ
� �

,

d H,Gð Þ =max
hn∈H

min
gu∈G

q hu − guð Þ
� �

:

ð11Þ

Among them, 1 and 2 express the Euclidean distance
between the trajectory points in trajectory point set G and tra-
jectory point set H. Among them, 3 is the one-way Hausdorff
distance between trajectory point set G and trajectory point
set H, which is the minimum and maximum distances from
the trajectory point in trajectory point set G to the trajectory
point in trajectory point set H. It expresses the degree of the
least similarity between trajectory point set G and trajectory
point set H, and similarly, 4 can be obtained. Since the Haus-
dorff distance is directional, in general, 5 and 6 are not equal
and the maximum value is selected as the final Hausdorff dis-
tance to express the degree of difference between trajectory
point set G and trajectory point set H. That is, the distance
from each point of trajectory point setG to each point of trajec-
tory point set H is not greater than the Hausdorff distance, as
shown in Figure 1.

(3) Longest Common Subsequence Method. The main idea of
the longest common subsequence method is to find the lon-
gest common subsequence between two trajectories [16]. First
of all, the definition of a subsequence is to ensure that the
order of the original sequence remains unchanged and there
is a new sequence obtained by selecting any element from
the sequence. Thus, the subsequences may not necessarily be
contiguous. Furthermore, through the length of the longest
common subsequence, it is converted into a corresponding
distance metric to represent the similarity between the two
tracks, as shown in equation (12).

LCS G,Hð Þ =
0, if n = v = 0,

LCS rest Gð Þ, rest Hð Þð Þ + 1, if g1a − h1aj j ≤ α and g1b − h1bj j ≤ β,

max LCS rest Gð Þ,Hð Þ, LCS G, rest Hð Þð Þf g, otherwise,

8>><
>>:

QLCS G,Hð Þ = 1 −
LCS G,Hð Þ
min n, vð Þ :

ð12Þ

Among them, G and H are two trajectories and the num-
bers of trajectory points of the two trajectories are n and v. 1 is
the length of the longest common subsequence betweenG and
H, and 2 and 3 represent the thresholds in the horizontal and
vertical directions, respectively. When the difference between
the two track points in the corresponding directions is less
than 4 and 5, it means that the two track points are similar
and the value of 6 is increased by 1. Converting the longest
common subsequence length into a distance metric, the rele-
vant equation (13) is as follows:

QLCS G,Hð Þ = 1 −
LCS G,Hð Þ
min n, vð Þ : ð13Þ

min ðn, vÞ represents the smaller of n and v.
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The Euclidean distance algorithm has a simple structure
and is easy to use. However, the algorithm requires the trajec-
tory to have the same number of trajectory points, which
causes a relatively large limitation for the input of experimen-
tal data, and does not consider other factors in the process,
because the Euclidean distance is very sensitive to noise.When
there is noise in the trajectories, it is easy to affect the similarity
judgment between trajectories and affect the accuracy of the
experimental results.

The Hausdorff distance method is more widely used in
practical scenarios and also has higher efficiency and accu-
racy. However, this method is sensitive to noise track points.
Even if there are a small number of noise points, it will have
a significant impact on the calculation of similarity distance.
Therefore, when using this method, it is necessary to pay
attention to the removal of track noise points.

Due to the discontinuity of subsequences, when noise
occurs in the trajectory, it can be avoided as much as possi-
ble. Therefore, the longest common subsequence algorithm
has higher robustness and accuracy. However, due to the
huge amount of data points in the trajectory, the algorithm
requires a large amount of calculation and is not efficient.
Even if the idea of dynamic programming is used, it still
consumes a lot of computing time. Therefore, this method
is less used in projects with massive data.

3.3. Design of Big Data Platform for Condition Monitoring of
Substation Equipment

3.3.1. Traditional Substation Equipment ConditionMonitoring
Platform Architecture. The information procurement layer is
the establishment for laying out the substation condition

checking information stage. The recorded information sources
and substation gear condition observing information in the
conventional social dataset are transferred to the information
stockroom through ETL (extraction, change, cleaning, and
stacking). ETL will extricate, clean, change, and burden the
information dispersed in different business frameworks (like
security creation, projection of the board, and condition
checking frameworks), with the goal that this essential infor-
mation becomes top notch and significant information for
brilliant substations. Its consistent construction is displayed
in Figure 2 [17].

3.3.2. Design of the Condition Monitoring Platform for
Substation Equipment under Big Data. The data acquisition
layer mainly collects data of substation equipment through
CAC (state access controller), sensors, etc. and transmits it
to CAG (state access gateway machine) in the form of Web
service. According to the advantages of the distributed file
systemHDFS and relational databaseMySQL in various fields,
the data storage layer will integrate HDFS and MySQL and
play their respective roles in their areas of expertise. Condition
monitoring big data with unified specifications is stored in the
distributed file system HDFS. MySQL is mainly used to store
various model information of substation equipment condition
monitoring and manage Hive metadata. The tables, fields, and
spacers created by Hive will be stored in MySQL. While
performing data operations, the MySQL engine needs to be
started to verify the existence of metadata. Impala can share
metadata information with Hive.

Most of the traditional solutions use conventional data
storage and analysis methods, resulting in poor system scal-
ability and high cost, and cannot meet the requirements of

Table 1: Comparison of characteristics of main types of new energy vehicles in China.

Type Hybrid electric vehicle Blade electric vehicles Fuel cell vehicle

Driving mode
Internal combustion engine

+motor drive
Motor drive Motor drive

Energy system
Battery, internal combustion
engine power generation unit

Battery Fuel cell

Use energy Fuel, electric energy Electric energy
Hydrogen, formaldehyde or

gasoline, etc.

Infrastructure
Gas station, grid charging

facility (optional)
Grid charging facilities

Storage and loading
equipment of fuel cell raw

materials

Main features

The emission is very low, the
energy conversion efficiency is
related to the mixing degree
and mixing mode, the driving

range is long, the vehicle
function is not limited, and

part of it depends on crude oil,
so the structure is complex

Zero emission, high energy
conversion efficiency, short
driving range, limited vehicle
function, independent of
crude oil, relatively simple

structure

Zero emission or ultralow
emission, high energy

conversion efficiency, long
driving range, unlimited

vehicle functions, can not rely
on crude oil, poor adaptation
to the working environment

Key points of technological development
Multi-energy management,

optimal control

Storage battery and its
management, charging

facilities

Fuel cell life and cost,
hydrogen storage,

hydrogenation facilities
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substations for complex analysis and trend prediction of the
collected monitoring data. The integration of distributed data
storage technology and big data analysis technology into the
condition monitoring data platform brings a new idea to the
data storage and analysis of condition monitoring. Consider-
ing the immense measure of information of substation hard-
ware, it is important to relocate the information of
conventional the social dataset (like MySQL) to nonsocial
dataset. Figure 3 shows the design of the substation hardware
condition checking stage under enormous information [18].

3.4. Development Trend of Electric Vehicles

3.4.1. Characteristics of New Energy Vehicles. The character-
istics of the main types of new energy vehicles in China are
compared as in Table 1.

3.4.2. System Scheme Design. From the analysis of functional
requirements, it can be seen that the system needs to have the
function of remote monitoring of electric vehicle motor status
and faults: data acquisition function, data processing function,
data remote transmission function, and remote monitoring
data function. The first three of these four functions need to
be realized on the vehicle end, and the remote monitoring part
is realized on the cloud server end and the display terminal.
The overall structure diagram of the system composed of each
function is shown in Figure 4.

The system design scheme is given as follows:

(1) Data acquisition function

The data acquisition part of the system can be connected
to the CAN bus as a node device to interpret the communi-
cation protocol of the application layer and obtain the data
required by the system [19].

(2) Remote monitoring data function

The data monitoring function needs to be realized by
building a monitoring system that displays the data engine.
Therefore, the mobile phone application is selected as the
monitoring interface for displaying the data engine.

3.4.3. Classification and Application Status of the Electric
Vehicle Bus System. The structure of electric vehicles is very
different from traditional vehicles, but the communication
category of the bus is still the same. Figure 5 shows the basic
structure of an electric vehicle (in series). It can be seen that
both the vehicle controller and the motor controller are con-
nected to the high-speed CAN bus of the system [1].

The vehicle controller (VCU) is designed with a modular
circuit consisting of a high-performance microcontroller,
CAN and peripheral circuits, and special sensor acquisition
circuits. The VCU receives various data on the CAN bus
(control signals such as an accelerator gear and vehicle status
such as vehicle speed, etc.), stores the required information
after analyzing and judging, and sends control commands to
the corresponding control system. The motor controller
(MCU) is designed based on a high-performance main
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Figure 5: Basic structure of electric vehicles.
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Figure 4: Overall structure diagram of electric vehicle motor status
and fault remote monitoring system.
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processor and is the unique core control electronic unit for
electric vehicles. Therefore, it can receive the control instruc-
tions sent by the VCU, can control the motor to run according
to the control instructions of the VCU, and also has the func-
tions of motor fault diagnosis, protection, and storage [20].

As can be seen, the engine speed, torque, voltage, tem-
perature, and other data collected by this system come from
the vehicle controller and the engine controller, which com-
municate with each other through the high-speed carbon
canister. Therefore, the data acquisition and transmission
module should also be connected to the high-speed CAN
bus of the electric vehicle, and then, collect the data required
by the system through the CAN bus. The data acquisition

hardware circuit is composed of the CAN transceiver,
microcontroller containing CAN controller, and its periph-
eral circuits. This hardware circuit can be directly added to
the CAN bus of electric vehicles as a CAN node device.
Through the software realization of the data acquisition cir-
cuit function by using C language, the data acquisition mod-
ule can receive the data frame composed of the motor speed
and current and other data on the CAN bus of the electric
vehicle and realize the data acquisition function.

3.4.4. Introduction to the Principle of CAN Bus.CAN (controller
area network) is a serial communication protocol of the Inter-
national Organization for Standardization (ISO). The main

Main battery current,
cell temperature

Is there an over-current
or excessive battery

temperature

Cell voltage

Whether the single
battery has overvoltage

Store and display current,
voltage and temperature

Initialization

Alarm or
disconnect system

Alarm or
disconnect system Yes

Yes

No

Figure 6: Main control flow chart.

Table 2: Experimental dataset size.

Dimension S1 S2 S3
Date 1 month 1 month 1 month

Equipment 2 kinds of equipment 4 kinds of equipment 4 kinds of equipment

Monitor type 4 types 7 types 7 types

Size (S1S2S3) 1:6 × 107 line 108 line 4 × 108 line
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control process is a continuous loop program for real-time
monitoring of battery voltage, current, temperature, and other
information, as well as surge and high-temperature alarms.
The real-time tracking information is stored for easy collection
by the host computer [21]. The flowchart is shown in Figure 6.

4. Big Data Monitoring in Smart Substation
Status Experiment

This paper discussed the application of the 3D modeling
technology of mobile big data in the electric vehicle condi-
tion monitoring system and proposed an experimental
analysis of the data model of electric equipment condition
monitoring based on connectionless hierarchical coding.

The Not Join Level-encoding Schema is abbreviated as
NJLS. NJLS applies this model to the condition monitoring of
substation equipment, which brings a different method to con-
dition monitoring big data storage and big data analysis [22].
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Figure 7: Data loading time and speed.

Table 3: Run times for rollup operations.

S1 S2 S3 S1 S2 S3
Hive Impala

Star 58.6 77.9 115 18.86 25.66 37.53

NJLS 25.6 34.16 46.57 8.22 12.88 18.55
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4.1. Monitoring Data Preparation

4.1.1. Data Preparation. Three sets of monitoring large data-
sets (S1S2S3) were used in this section, and three test groups
participated in a comprehensive evaluation of the model,
including data loading monitoring, aggregation operations,
and overall storage costs. The individual datasets are shown
in Table 2.

4.1.2. Monitoring Data Loading. In the test to compare the
data charging performance, this work used single-cable data
to charge Hive and Impala. Figure 7 shows the loading time
and loading speed of the monitoring data loading experiment.

The following conclusions can be drawn from the data
loading speed in Figure 7(b):

(1) Compared with the conventional star model, the
NJLS model for condition monitoring of substations

has no advantages in loading. This is due to the need
for preprocessing and hierarchical encoding settings
for the NJLS model state monitoring dataset, and the
monitoring data loading speed is about 42% of the
conventional model

(2) The data loading speed of Hive and Impala is rela-
tively stable and will not decrease significantly with
the doubling of condition monitoring data. Because
when loading data, the data to be loaded is stored
in HDFS and the metadata correction is completed
at the same time

(3) Figure 7(b) shows that the loading speed of Impala
monitoring data is slightly slower than that of Hive.
Due to the limitations of the data file format sup-
ported by Impala, Hive needs to be used to load
the data first and then perform other operations

0

20

40

60

80

100

120

S1 S2 S3

Sp
ee

d 
(1

00
00

 li
ne

s/
s)

Hive

Star
NJLS

(a)

18.89

25.64

37.54

8.31

12.87

18.52

S1 S2 S3

Sp
ee

d 
(1

00
00

 li
ne

s/
s)

Impala

Star
NJLS

(b)

Figure 8: Variation of rollup performance with dataset.

10 Wireless Communications and Mobile Computing



4.2. Operation Details.Table 3 shows the running season of the
rollup activity between the NJLS model and the star construc-
tion with various checking dataset sizes. Figure 8 shows the
presentation patterns of NJLS and star blueprint in Hive and
Impala frameworks with various condition observing datasets.

Combining Table 3 and Figure 8, it tends to be seen that (1)
the roll-up execution season of the NJLS model is 40% to 49%
more limited than that of the star model and (2) the running
season of Impala’s roll-up activity for each condition checking
informational index is more limited than that of Hive.

4.3. Storage Overhead. This group of experiments mainly ana-
lyzed the storage overhead of the NJLS model and the conven-
tional star model from the aspect of data storage and proved
through theory and experiments that the storage overhead of
the NJLS model was still smaller than that of the star model
even under large-scale condition monitoring data volume.

In this set of experiments, the number of backups was the
default value of 3 for Hadoop. Figure 9 compares the storage
overhead of the NJLS model and the regular star model in dif-
ferent condition monitoring datasets of Hive and Impala.

Taking the S2 condition observing informational collec-
tion in Figure 9 for instance, it tends to be seen that (1) the
capacity upward of the NJLS model is decreased by 34% to
40% contrasting and the ordinary star model and (2) among
numerous huge information investigation frameworks, Hive,
Impala stockpiling upward is little.

5. Discussion

With the widespread application of wireless communication
technology and sensor technology, the coverage of commu-
nication equipment is expanding [23]. Base stations set up
in cities can receive radio waves from devices with moving
objects and convert them into mobile data [24].
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Figure 9: Dataset storage overhead comparison.
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With the quick advancement of imaging innovation and
Internet innovation, varying backgrounds have advanced
higher necessities for the instinct and realness of data show
and the examination of 3D imaging innovation has likewise
gotten increasingly more consideration. The genuine work-
ing information of the electric vehicle motor is vital for the
support and innovative work of the electric vehicle motor,
and guaranteeing the security of the electric vehicle is addi-
tionally vital [25].

The 3D scene constructed by 3D imaging technology is
not only realistic but also convenient for spatial analysis. With
the explosive growth of the number of electric vehicles in
China, the technical core power battery of electric vehicles
has gradually attracted more attention. The application basis
for the development of the electric vehicle industry is the data
analysis of the operation of the power battery. Therefore,
online monitoring and evaluation of electric vehicle power
batteries are of great significance.

6. Conclusions

Combined with people’s expectations for electric vehicles and
the development trend of the electric vehicle industry, this
paper used Hadoop technology to build a substation equip-
ment condition monitoring experimental platform and briefly
described the construction process of the platform. The NJLS-
based substation condition monitoring data model proposed
in this paper was compared and analyzed in Hive and Impala
from three aspects of monitoring data loading, summary oper-
ation, and storage cost. The test results showed that the NJLS-
based substation condition monitoring data model proposed
in this paper could solve the connection operation problem
distributed in multiple troublesome tables in ROLAP. So, it
is more suitable for performing big data analysis on large-
scale and distributed clusters.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

This work was supported by the Research on Design Theory
and Control Technology of High-Speed, Light-Load and
Limited-dof Robots for Electronic Information Manufactur-
ing and Light Industrial Production (Project approval num-
ber: 2018JY0116; project name: application of 3D modeling
technology of mobile big data in the state monitoring system
of electric vehicles).

References

[1] S. Qing-Chao, D. Honghui, J. Li-Min, and Z. Hui, “Modeling
the macro-characteristic of city passenger flow based on

mobile big data,” Boletin Tecnico/Technical Bulletin, vol. 55,
no. 17, pp. 847–854, 2017.

[2] C. Stergiou and K. E. Psannis, “Recent advances delivered by
mobile cloud computing and internet of things for big data
applications: a survey,” International Journal of Network Man-
agement, vol. 27, no. 3, pp. 1–12, 2017.

[3] J. Guo, B. Song, F. R. Yu, Z. Yan, and L. T. Yang, “Object detec-
tion among multimedia big data in the compressive measure-
ment domain under mobile distributed architecture,” Future
Generation Computer Systems, vol. 76, pp. 519–527, 2017.

[4] C. Xiang, L. Fang, X. Hong, and L. Yang, “Exploiting mobile
big data: sources, features, and applications,” IEEE Network,
vol. 31, no. 1, pp. 72–79, 2017.

[5] M. S. Parwez, D. B. Rawat, and M. Garuba, “Big data analytics
for user-activity analysis and user-anomaly detection in
mobile wireless network,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 4, pp. 2058–2065, 2017.

[6] Y. Qiao, Z. Xing, Z. M. Fadlullah, J. Yang, and N. Kato, “Char-
acterizing flow, application, and user behavior in mobile net-
works: a framework for mobile big data,” IEEE Wireless
Communications, vol. 25, no. 1, pp. 40–49, 2018.

[7] C. Hu and H. Yan, “Efficient privacy-preserving dot-product
computation for mobile big data,” IET Communications,
vol. 11, no. 5, pp. 704–712, 2017.

[8] Z. Zhou, “Research on improving intelligent inspection effi-
ciency of substation based on big data analysis,” in 2020 5th
Asia-Pacific Conference on Intelligent Robot Systems (ACIRS),
Singapore, 2020.

[9] S. Srinivasan, “Mobile big data: a roadmap from models to
technologies,” Computing Reviews, vol. 60, no. 8, pp. 314–
314, 2019.

[10] A. Enayet, M. A. Razzaque, M. M. Hassan, A. Alamri, and
G. Fortino, “A mobility-aware optimal resource allocation
architecture for big data task execution on mobile cloud in
smart cities,” IEEE Communications Magazine, vol. 56, no. 2,
pp. 110–117, 2018.

[11] F. Kong and X. Lin, “The method and application of big data
mining for mobile trajectory of taxi based on MapReduce,”
Cluster Computing, vol. 6, pp. 1–8, 2018.

[12] A. W. Yusuf-Asaju, Z. M. Dahalin, and A. Ta'A, “Framework
for modelling mobile network quality of experience through
big data analytics approach,” Journal of Information and Com-
munication Technology, vol. 17, no. 1, pp. 79–113, 2018.

[13] J. Lee and L. Sangeun, “Using the mobile big data for the smart
river space management : data validation and water-friendly
space indicators,” Planning Review, vol. 101, no. null, pp. 3–
18, 2019.

[14] Q. Jia, “Research on mobile learning in a teaching information
service system based on a big data driven environment,” Edu-
cation and Information Technologies, vol. 26, no. 5, pp. 6183–
6201, 2021.

[15] K. K. Lwin, Y. Sekimoto, W. Takeuchi, and Institute of Indus-
trial Science, The University of Tokyo 4-6-1 Komaba, Meguro-
ku, Tokyo 153-8505, Japan, “Development of GIS integrated
big data research toolbox (BigGIS-RTX) for mobile CDR data
processing in disasters management,” Journal of Disaster
Research, vol. 13, no. 2, pp. 380–386, 2018.

[16] R. Gorli, “Interlinking OF IoT, big data, smart mobile app with
smart garbage monitoring,” International Journal of Compu-
terences & Engineering, vol. 5, no. 1, pp. 70-71, 2017.

12 Wireless Communications and Mobile Computing



[17] F. Luoyang and C. Xiang, “Location privacy in mobile big data:
user identifiability via habitat region representation,” Net-
works, vol. 3, no. 3, pp. 31–38, 2018.

[18] P. Hui, Y. Li, J. Ott, S. Uhlig, B. Han, and K. Tan, “Mobile big
data for urban analytics,” IEEE Communications Magazine,
vol. 56, no. 11, pp. 12–12, 2018.

[19] X. Cheng, L. Fang, and L. Yang, “Mobile big data based net-
work intelligence,” IEEE Internet of Things Journal, vol. 5,
no. 6, pp. 4365–4379, 2018.

[20] G. Xu, Y. Bai, Q. Pan, Q. Huang, and Y. Yang, “Data verifica-
tion tasks scheduling based on dynamic resource allocation in
mobile big data storage,” Computer Networks, vol. 126, no. oct.
24, pp. 246–255, 2017.

[21] S. Wan, J. Lu, P. Fan, and K. B. Letaief, “Toward big data pro-
cessing in IoT: path planning and resource management of
UAV Base stations in mobile-edge computing system,” IEEE
Internet of Things Journal, vol. 7, no. 7, pp. 5995–6009, 2020.

[22] J. Antonio, M. Garcia, and P. Toril, “Big data analytics for
automated QoEmanagement in mobile networks,” IEEE Com-
munications Magazine, vol. 57, no. 8, pp. 91–97, 2019.

[23] Y. Sun, H. Song, A. J. Jara, and R. Bie, “Internet of things and
big data analytics for smart and connected communities,”
IEEE Access, vol. 4, pp. 766–773, 2016.

[24] C. Li, H. J. Yang, F. Sun, J. M. Cioffi, and L. Yang, “Multiuser
overhearing for cooperative two-way multiantenna relays,”
IEEE Transactions on Vehicular Technology, vol. 65, no. 5,
pp. 3796–3802, 2016.

[25] L. Jian Jian and W. Pan, “Three-dimensional landscape ren-
dering and landscape spatial distribution of traditional villages
based on big data information system,” Mobile Information
Systems, vol. 2022, 13 pages, 2022.

13Wireless Communications and Mobile Computing


	3D Modeling Technology of Mobile Big Data Application in the Electric Vehicle Condition Monitoring System
	1. Introduction
	2. Related Work
	3. Method of 3D Modeling Technology for Mobile Big Data
	3.1. Big Data Algorithms
	3.1.1. Data Mining and Machine Learning Framework
	3.1.2. Big Data Storage
	3.1.3. Correlation Analysis
	3.1.4. Research Status of 3D Imaging Technology

	3.2. Basic Concept of Trajectory
	3.2.1. Trajectory Data Classification
	3.2.2. Track Similarity Calculation

	3.3. Design of Big Data Platform for Condition Monitoring of Substation Equipment
	3.3.1. Traditional Substation Equipment Condition Monitoring Platform Architecture
	3.3.2. Design of the Condition Monitoring Platform for Substation Equipment under Big Data

	3.4. Development Trend of Electric Vehicles
	3.4.1. Characteristics of New Energy Vehicles
	3.4.2. System Scheme Design
	3.4.3. Classification and Application Status of the Electric Vehicle Bus System
	3.4.4. Introduction to the Principle of CAN Bus


	4. Big Data Monitoring in Smart Substation Status Experiment
	4.1. Monitoring Data Preparation
	4.1.1. Data Preparation
	4.1.2. Monitoring Data Loading

	4.2. Operation Details
	4.3. Storage Overhead

	5. Discussion
	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

