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Recent improvements in data mining technologies, besides the IoT, enable the implementation of a strategy for boosting oil output
from oil wells. As a regularly employed improved oil recovery technology, steam flood injection takes use of thermodynamic and
gravitational capabilities to deploy and neutralize oil on-site to raise oil output. Instead of relying on conventional physics to
model steam floods, this research proposes using a combination of a chimp optimization algorithm (ChOA) and a decision
tree to better represent steam flood performance. We present a method for dealing with a particular type of petroleum time
series data using ChOA in conjunction with decision trees and IoT. It is shown that the method is useful in predicting oil
production in steam floods. Even more impressive is the 4.02 percent increase in oil output that may be achieved via the use of
a new optimization system that offers the best possible steam allocation plan. Our objective has been to develop a cloud-based
minimum viable product capable of data collection and storage and also training and deployment of a cloud ChOA model.
Predictive maintenance, for example, might benefit from this workflow’s ability to analyze time series data.

1. Introduction

IoT and intelligent systems both have a solid track record in
a variety of sectors. The petroleum industry has recently
begun to pay greater attention to them. Traditional petro-
leum industry difficulties can be solved using an intelligent
system. The applications of computer science in geoscience
were outlined in reference [1]. Using computer vision, petro-
physics has made significant progress over the last few years.

Real-time data collection and model generation can be
performed through the establishment of IoT networks or a
cloud hosting. The petroleum industry exploration and pro-
duction use it extensively, notably in the upstream sector. It
has a wide range of uses. This IoT-based architecture is
described in detail in reference [2], which both provide an
overview of recent advancements in sensor networks for
the petroleum industry as well as open problems that have
to be addressed. In order to forecast a possible three percent
increase under oil production, an intelligent system and the
Internet of Things were used to establish an effective method

for predicting oil production in steam flood situations and
an optimization system for steam assignment.

Research into ways to increase oil output in order to fulfill
rising global energy needs is a hot topic. One of the most often
utilized techniques for increasing postnatural oil extraction oil
output is enhanced oil recovery. Due to low well pressure, the
natural pumping step often results in 70% residual crude oil.
There are three basic ways of increased oil recovery: heat injec-
tion, gas injection, and chemical injection. When heavy oil is
mobilized and diluted utilizing steam and gravity potential,
production wells may readily recover oil from reservoirs by
injecting steam into infill wells.

For decades, experts have been trying to predict how
much oil steam flood fields will produce. Steam flood perfor-
mance and oil output may be predicted using traditional
analytical models, which were created utilizing physics con-
cepts as well as reservoir parameters. Contrary to expecta-
tions, real oil output was far lower than predicted. Steam
flood injection intelligent system research is few and far
between. A novel steam flood screening criterion was
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developed in reference [3], using the clustering technique, an
intelligent system approach, in order to assist in the selection
of the improved oil recovery method to be used for various
reservoir circumstances. However, it does not include pro-
jections for oil output.

It has been claimed in recent years that heavy oil wells
can be improved by using a decision tree model [4]. How-
ever, decision trees need knowledge of the properties of the
optimization issue and some information about the gradient.
In recent years, the use of metaheuristic algorithms (MAs) in
optimization problems has grown in popularity [5, 6].

According to [7–9], metaheuristics can be divided into
two main classes: single-solution-based and population-
based. In the former class (simulated annealing for instance),
the search process starts with one candidate solution. This
single candidate solution is then improved over the course
of iterations. Population-based metaheuristics, however,
perform the optimization using a set of solutions (popula-
tion). In this case, the search process starts with a random
initial population (multiple solutions), and this population
is enhanced over the course of iterations. Population-based
metaheuristics have some advantages compared to single-
solution-based algorithms:

(i) Multiple candidate solutions share information
about the search space which results in sudden
jumps toward the promising part of search space

(ii) Multiple candidate solutions assist each other to
avoid locally optimal solutions

(iii) Population-based metaheuristics generally have
greater exploration compared to single-solution-
based algorithms

One of the interesting branches of the population-based
metaheuristics is swarm intelligence algorithm (SIA).

However, in this paper, we try to divide the metaheuris-
tic algorithm by their nature-inspiring origin, as previous
authoritative references have made these categories in other
ways [10–13, 16]. In this kind of categorization, there are
both single-vector and swarm methods in each category.
For example, in the physic-based category, there is GA (pop-
ulation-based) and SA (single-solution-based).

NFL theorem [14] states that there is no MA that can
effectively address all optimization issues as the best
approach. This has resulted in the creation of novel MAs
capable of addressing a range of optimization problems.
The ChOA is a new tool for collective hunting that mimics
the expertise and sexual encouragement of agents. Accord-
ing to [15], this algorithm has the potential to outperform
other MAs in terms of performance. Researchers have used
the ChOA algorithm in three different types of studies since
it was first introduced in 2020.

In general, the following are some advantages that
ChOA has over other MOAs:

(i) Especially for situations involving larger dimen-
sions, the division of chimps into autonomous

groups ensures that the search space will be thor-
oughly explored

(ii) ChOA exploitability is highlighted by the hypothe-
sized semideterministic feature in chaotic maps

(iii) Chaotic maps aid the ChOA method in resolving
local stagnations of optimas

(iv) As a result of the ChOA algorithm’s use of four
different populations of search agents, local optima
avoiding is extremely high

(v) As the number of iterations rises, special forms of
certain f parameters encourage exploitation and
convergence

(vi) Chimps learn about the search space with each
iteration

(vii) In order to preserve the greatest answer so far,
ChOA nearly relies on its own memory

(viii) ChOA contains a few settings that can be adjusted

(ix) The suggested approach is simple to implement
due to the parallel nature of independent (unre-
lated) groups and the flexibility of ChOA

(x) Chimpanzees have a wide range of abilities and
knowledge, but they all work together as part of a
group of hunters. As a result, each hunter’s unique
skill set can be put to good use at different points
in the hunt

These include time series prediction [16], COVID-19-
positive cases’ detection by X-ray pictures [15], economic
load dispatching, efficient fuzzy classification [17], and sonar
database categorization [10]. Despite the fact that these stud-
ies have some validity, attempting to solve a well-known
problem by introducing new paradigms or approaches is
not a productive research strategy.

Other optimization methods, such as hybrid SCA-ChOA
[18], combination random vector functional ChOA, and
spotted hyena Sh-ChOA, are employed in conjunction with
ChOA to increase their performance [19]. For long-term,
low-power underwater sensor networks, a hybrid ChOA/
HGS approach has been proposed [13]. Hybrid models
may be more accurate, but their excessive complexity makes
them inappropriate for difficult situations, especially those
with several dimensions.

Finally, academics have attempted to increase the
ChOA’s performance by creating or altering specific opera-
tors. In order to speed up ChOA convergence, the WChOA
employed an average weighting approach [8]. Niching-
ChOA adopted ChOA’s niching approach in order to boost
its exploratory abilities [11], whereas the EChOA [9] used
the incredibly destructive exponential mutation and correla-
tion parameters to start the population with the lowest social
status chimpanzees. Classifiers were developed using Fuzzy-
ChOA [20], which uses fuzzy models to modify the ChOA.
DLF-ChOA (dynamic levy flight ChOA) is a variation on
ChOA that aims to improve global performance [7].
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Given the novelty of ChOA, some study has focused on
how it may be improved. Because of this, its precision and
convergence rate may be enhanced even more. The goal of
this research is to increase the decision tree’s performance
by using it in conjunction with ChOA for predicting oil pro-
duction in steam floods.

According to the following structure, the rest of this
paper will be as follows: Section 2 introduces the subject
matter, Section 3 explains the technique, Section 4 gives
the simulation results and discussion, and Section 5 con-
cludes the article.

2. Background Materials

The decision tree and ChOA will be briefly reviewed in this
section.

2.1. Decision Tree. A decision tree is just a data flow diagram
architecture where each node in the middle represents tests
and each route represents the results of the tests. This means
that each leaf node represents a class label. The roots and
leaves of a tree indicate classification criteria. Visual and
analytical help for decision-making is provided by decision
trees and influence diagrams, in which the predicted values
(or usefulness) of competing choices are estimated. Three
types of nodes may be found in a decision tree’s branches:

(i) Decision nodes: a typical way to represent these
nodes is to use squares

(ii) Nodes of randomness: usually depicted by concen-
tric circles

(iii) End nodes: end nodes are frequently denoted with
triangles

Operation research frequently employs decision trees. A
probability model should be used as the best choice frame-
work or online selection model method if decision-making
should be carried out online without any recall under
incomplete knowledge. Decision trees may also be used to
calculate conditional probabilities by providing a visual rep-
resentation of the relationships between variables.

2.2. Chimp Optimization Algorithm. A fission-fusion system
governs chimp social life. The mix of society in this type of
civilization changes with time. For each community mem-
ber, there is an inherent talent or task that might vary
throughout time [21]. Due to the fact that each chimp group
has its own unique capacity to do a certain task, the notion
of independent groups is included in this algorithm.

According to prior research, chimps may be divided into
four categories: drivers, barriers, chasers, and attackers. To
ensure a successful hunt, they are tasked with a variety of
responsibilities. Rather than attempting to seize their victim,
drivers simply follow along behind them. The prey’s escape
route is obstructed by barriers erected in trees. Chasers pursue
their prey at breakneck speed in order to snatch them. As a
final precaution, predators know the prey’s escape path down
into the lower treetops. Figure 1 depicts the various stages of
the hunt. Attackers must be better at guessing the prey’s future

moves. As a result, a successful hunt is rewarded with a bigger
portion of meat for the attacker. Age, intelligence, and physical
prowess all play a part in a player’s ability to attack. It is pos-
sible for chimpanzees to switch roles during a hunt or retain
their roles throughout the entire operation.

According to a recent study, chimpanzees seek meat in
order to exchange it for social privileges like sex or groom-
ing. Because of this, intelligence and knowledge may have
an unintentional influence on the quest. The term “social
incentives” has been used solely by humans and chimpan-
zees, to our knowledge. A unique advantage is given to
chimpanzees in this regard compared to other social preda-
tors. As a result, chimpanzees operate in a disorderly fashion
in the closing stages of the hunt, allowing each chimpanzee
to pursue his or her own goal of obtaining prey. Chimps
hunt in two phases: “exploration,” in which they drive,
block, and chase their prey, and “exploitation,” in which they
assault it. Exploitation is the first step of chimpanzee social
hunting. Figure 1 depicts these two stages. In the next part,
we will go through the mathematical models for the hunt’s
first two stages and its last four steps [21].

As previously stated, hunting occurs during the explor-
atory and exploitative stages. Equations (1) and (2) are used
to numerically simulate driving and pursuing the prey [21].

d = c:xprey tð Þ −m:xchimp tð Þ�� ��, ð1Þ

xchimp t + 1ð Þ = xprey tð Þ − a:d, ð2Þ
where t is the latest iteration, a, m, and c are the regression
coefficients, and xchimp and xprey denote the chimp and prey
position vectors, respectively. Additionally, a, m, and c coef-
ficients are determined using

a = 2:f:r1 − a, ð3Þ

c = 2:r2, ð4Þ
m =Chaotic value: ð5Þ

The iteration procedure reduces f nonlinearly from 2.5 to 0.
Additionally, r1 and r2 are random vectors inside the range
[0,1]. Furthermore, m is a chaotic variable computed from the
numerous chaotic maps; this vector therefore captures the
chimps’ desire on the hunting process. The next sections will
provide a detailed description of these vectors. The classic
population-based method allows individuals to be seen as a sin-
gle group with a common search strategy since all individuals
act identically in local and global searches. It is possible to
obtain a straight and a stochastic search result using different
population-based techniques, but, this is only theoretical. Inde-
pendent chimp groups will be mathematically described in the
next sections, in which several methods of updating f are used.
To keep the separate groups up to date, you can use any contin-
uous function. f must be reduced with each iteration of these
equations. It must be noted that the coefficient vectors are indi-
cated in bold type such asm, a, and d, and every multiplication
between two arrays such as “a:d and f:r1” means array
multiplication.

3Wireless Communications and Mobile Computing



All minimization strategies face the challenge of locating
the global minimum. In population-based optimization
approaches, generally, the preferred manner to converge
towards the global solution can be divided into two main
stages (exploration and exploitation).

It is important to encourage individuals to spread out
during the initial phases of optimization. In other words,
instead of focusing on local minima, they should strive to
examine the entire search space. In the later steps, the indi-

viduals have to exploit knowledge obtained to converge on
the global solution. In ChOA, by fine-adjusting of the vari-
able f , we may combine these two stages to discover global
minimum with rapid convergence speed. Based on these
considerations, we propose the concept of autonomous
groups called “attacker, barrier, chaser, and driver,” which
is a four-part system.

Individual particles search the issue space using their
own technique, which is tuned by f . This means that parti-
cles can be viewed as a single group with a single strategy
when it comes to both local and global search in
population-based optimization methods. However, a
population-based optimization algorithm might possibly
result in a more randomized and directed search at the same
time if it uses a variety of autonomous groups with a shared
goal. The autonomous groups are mathematically modeled
in this study, using several methods for updating f . To put
it another way, the organizations differ in their approach
to exploration and exploitation. An autonomous group’s
strategy can be updated using any continuous function that
has a range between [0, L].

These four autonomous groups each employ their own
pattern to investigate the search space on a local and global
scale. Additionally, the most effective variations of ChOA
with distinct subgroups are selected from among the numer-
ous techniques evaluated. The dynamic features of f are
depicted in Table 1 and Figure 2. t signifies the current iter-
ation, while T denotes the total number of iterations possi-
ble. In order to increase the quality of ChOAs, dynamic
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Table 1: The f vectors.

Groups Driver Attacker Chaser Barrier

f −3t3/T3� �
+ 1:5 1:95 − 2t1/4/T1/3 −2t3/T3� �

+ 1:5 1:95 − 2t1/3/T1/4

4 Wireless Communications and Mobile Computing



equations were adjusted to include a wide variety of curves
and slopes, guaranteeing that each group shows a different
exploration behavior [21].

To illustrate the notion of Equations (1) and (2), Figure 3
depicts a 2D and 3D representation of a chimp, as well as a
number of its probable future places. As shown, a chimpan-
zee in location (x, y) can adjust its location in relation to the
location of its prey ðx∗, y∗Þ by modifying the values of the a
and c coefficients. It is worth noting that the chimpanzees
have access to every point in the search area via the random-
ized variables r1 and r2. This method may be generalized to
search an n-dimensional space.

To arithmetically design chimps attacking behavior pat-
terns, two approaches are taken: in the first place, the chim-

panzees are able to find their prey’s position by driving,
obstructing, and chasing it. Finally, attackers are often in
charge of the hunt. The optimal posture of the prey during
the initial iteration is unknown. To address this problem,
the attacker’s location is considered to be that of the prey.
As a result, the optimal solution are preserved, and other
chimpanzees are prompted to adjust their locations depend-
ing on the best chimps’ placements. Equations (6) to (8)
define this approach [21]:

dA = c1 ⋅ xA −m1 ⋅ xj j, dB = c2 ⋅ xB −m2 ⋅ xj j, dCh
= c3 ⋅ xCh −m3 ⋅ xj j, dD = c4 ⋅ xD −m4 ⋅ xj j, ð6Þ

(x,y)

(x⁎,y⁎)(x⁎–x,y⁎)

(a) Two-dimensional

(x,y,z)

(b) Three-dimensional

Figure 3: The 2D and 3D presentation of chimps’ positions.
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x1 = xA − a1 dAð Þ, x2 = xB − a2 dBð Þ, x3 = xCh − a3 dChð Þ, x3
= xD − a4 dDð Þ,

ð7Þ

x t + 1ð Þ = 1
4〠

4

k=1
xk: ð8Þ

A chimpanzee’s location in the search area is constantly
changed based on the position of other chimpanzees, as seen
in Figure 4. The chimpanzee’s ultimate location may be
observed to be in a circle established by the positions of
the assailant, barrier, pursue, and drivers.

To summarize, the chimps will assault their prey until it
is no longer moving and then end their search. Reducing the
value of f linearly will help us better understand how an
assault works. The range of a vector is likewise lowered,
much like the range of f vector. As seen in Figure 5, a

chimp’s future position will be anyplace between its current
position and the position of the prey. Despite the recom-
mended pushing, blocking, and pursuing tactics, there is still
a possibility that chimps will be trapped in local minima. To
emphasize the exploratory skills in the evaluation stage,
another operator is required. Instead of relying on only
one operator, ChOA requires an additional operator during
the exploitation phase to help avoid local minima trapping.

Divergent and converging chimpanzee attacks are com-
mon in ChOA. This behavior is mathematically represented
in Figure 6 by allocating vector a.

ChOA’s exploration phase gets a boost with the addition
of the c vector. Equation (4) demonstrates that c is a random
vector with a range of [0, 2]. Predator-prey distance may be
calculated mathematically using Equation (4). When chimps
are out in the wild, the vector of c acts as a deterrent, keeping
them from getting close to their prey. Prey can be made
more difficult or easy to catch thanks to the vector of c.
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Chimp’s social motivation depends on hunting meat, as
previously indicated. The chimpanzees are forced to give
up their own hunts in order to get their hands on the final
piece of hunting meat. Because of this, they will do every-
thing to get their hands on flesh from a hunt in order to sat-
isfy their social needs. Chaos maps can be used to simulate
the chimpanzees’ last stage behavior, which is characterized
by randomness.

Maps utilized to increase ChOA’s performance are
shown in Table 2 and Figure 7. In reality, randomness may
be generated by these deterministic processes as well. All
chaotic maps have a starting value of 0.7. Modeling the
update process in this way looks like this [21]:

xchimp t + 1ð Þ =
xprey tð Þ − a:d if μ < 0:5,
Chaotic value if μ ≥ 0:5,

(
ð9Þ

where μ denotes a random number between 0 and 1. In this
equation, the normal behavior of chimp for changing posi-
tion xchimpðt + 1Þ = xpreyðtÞ − a:d is substituted by values
from the chaotic map (Chaotic value ) to provide chaotic
behaviors for justification of sexual motivation of chimp.
Indeed, this term reduces the risk of getting stuck in local
minima by changing the search space, chaotically. In fact,
by using the chaotic maps, we can control how the search
space is changed in addition to the random behavior.

Starting with a random chimpanzee population, ChOA
is launched in the first phase of its development (candidate
solutions). Four groups of chimps are randomly assigned.
After that, each chimp uses its own group approach to
update its f coefficients. The prey’s distance from each possi-
ble solution is then updated. Additionally, adaptive adjust-
ment of the c and m results in the avoidance of local
optima while increasing the pace of convergence. f is also

Table 2: Chaotic maps.

No. Name Chaotic map Range

1 Quadratic xi+1 = x2i − c (0,1)

2 Chebyshev xi+1 = cos i × cos−1 xið Þ� �
(-1,1)

3 Gauss/mouse xi+1 =
1, xi = 0
1/mod xi, 1ð Þ, else

(
(0,1)

4 Iterative xi+1 = sin 7π/10 × xið Þ (-1,1)

5 Logistic xi+1 = αxi 1 − xið Þ, α = 4 (0,1)

6 Singer xi+1 = 7:75xi − 23:29xi2 + 28:64xi3 − 13:29xi4
� �

× μ (0,1)

7 Bernoulli xi+1 = 2 × xi mod 1ð Þ (0,1)

8 Sine xi+1 = sin π × xið Þ (0,1)

9 Tent xi+1 =
10 × xi/7, xi < 0:7
10/3 1 − xið Þ, 0:7 ≤ xi

(
(0,1)

10 Circle xi+1 = mod xi + 0:2 − 1/4 × πð Þ sin 2πxkð Þ, 1ð Þ (0,1)
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Figure 8: Comparison of intelligent and traditional approaches for oil production prediction.

Table 3: Structure of a well level’s daily dataset.

Date Identifier of well Condition of well Sensor data Steam volume Oil volume

2021-11-12 Prod Pump 88 NA 19

2021-11-13 Prod Shut-in 198 NA 29

2021-11-12 Infill N/A NA 5 N/A

2021-11-13 Infill NA NA 10 NA

Table 4: The initial values and parameters.

Value Parameter Algorithm

ChOA

f Figure 1

r1, r2 Random

m Table 1

NLBBO and CBBO

1 Immigration probability

1 Max (I) and (E)

0.005 The probability of mutation

HGSO vc! 0ð , 1�
BMGWO a Linearly decreased from 2 to 0

CFW
Velocity 5m/s

Initial velocity 3m/s

Total weight 10−3 kg

IWT a Linearly decreased from 2 to 0

10% Elitism

GA0.08 Mutation

0.92 Crossover

0.11 The inertial movement rate (α)

PSO0.65 C1

0.93 C2
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lowered to 0 from its previous value of 2.5, further aiding
exploitation. Divergence from prey occurs when there is a
disparity between predators and prey. Finally, chaotic maps
aid in rapid convergence while avoiding local minima.

3. Model Developing

The classic technique relies on well-established algorithms
and input data to forecast an output, such as oil production.
This problem can be solved in a different way using intelli-
gent system techniques. In the MA technique, candidate
models are trained using the input and output from a train-
ing dataset (Figure 8).

The best model is determined using predetermined cri-
teria and tested on a new dataset that was never used before.
The conventional technique is motivated by physical princi-
ples, whereas data drive intelligent systems. Developing
intelligent system models does not necessitate the use of geo-
logical parameters, as is the case with more traditional
methods. The proportional value of each element in an intri-
cate nonlinear system may be determined using decision
tree-based intelligent system techniques such as random for-
ests and XGBoost [22]. Using an intelligent system’s tremen-
dous capabilities, a steam flood monitoring team can
statistically investigate ways to increase oil output. IoT and
intelligent systems work well together. Because of the real-
time data gathering, storage capabilities of IoT, and the abil-
ity to train and deploy intelligent system models on a cloud
infrastructure or IoT devices, intelligent systems can analyze
vast amounts of data gathered by IoT nodes to uncover pre-
viously unknown patterns. Incorporating IoT and intelligent
system technologies is a win-win situation for this project.

3.1. Data Collection and Introduction. In the field, edge sen-
sors gather raw data from five different data sources. Sche-
matic design, principal keys, and sample frequency differ
among the sources. To gather and cross-reference data, col-
lect errors, and consolidate them into a single location, daily
extract, transform, and load tasks are employed. After that,
they have moved to a cloud storage facility so that the data
engineering procedure may get started.

At the well level, Table 3 depicts the daily structure of a
neighboring dependent well dataset. To accurately predict
the daily oil output from each well, we want to create a single
model for each pad. Sixteen variables are included in the
dataset. Two types of wells fall under the well name
umbrella: infill and production. Sensor data is a collection
of real-time temperature and pressure readings taken in
the field. There is a difference between infill wells and those
that are currently producing oil: infill wells use steam vol-
ume as the daily amount of steam that is injected into the
wells. An oil-producing well’s daily output is known as its
“oil volume.” The empirical dataset is bound to have some
missing data. The data science stage is required before put-
ting data into a decision tree algorithm.

3.2. Methodology. There are five stages in the workflow pro-
cess: data collection and transmission, statistical modeling,
model creation, visualization of data, and system optimiza-
tion. We use to the front and reverse copies to fill in the
blanks for missing data for a variety of variables. Data engi-
neering requires the whole history of all wells, so no records
are discarded. The dataset has been divided into two subsets
because there are two types of wells. For each of the infill
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Multimodal benchmark function
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Figure 10: The algorithms’ convergence curves in multimodal function.
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Figure 11: The algorithms’ convergence curves in fixed-dimension function.
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wells, we construct a new data format based on the daily
amounts of steam injected into each row, column, and fea-
ture. Two sets of characteristics have been added to the

production-well subset. There is a gas/day/rate and a one-
hot encoding of production wells based on categorical data,
such as the well identifier and well condition. After reorga-
nizing infill wells and aligning production wells by date, we
create a new dataset by merging the two sets.

4. Experimental Results

On the benchmark functions, the suggested ChOA’s perfor-
mance is assessed first. After that, we will utilize the new
ChOA model to get a better handle on oil output. Nine well-
known algorithms, including PSO [23], GA, HGSO [24],
IWT [25], CBBO [26], BMGWO [27], CFW [28], WOA
[29], and NLBBO [30], were utilized to test ChOA’s perfor-
mance in benchmark functions. In MATLAB, each bench-
mark issue was run 30 times for each method. Table 4 also
shows the algorithm’s initial settings and parameters.

In this part, the suggested method is evaluated against 23
competitive benchmark functions. In order to determine the
convergence trend and local optimums, we can use 16
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3

2

1

0

–1

–2

–3
Jan

N
or

m
al

iz
ed

 o
il 

pr
od

uc
tio

n

Feb

Actutal value
Predicted value using decision tree-ChOA

Mar Apr May Mun Jul

Months

Aug Sep Oct Nov Dec

Figure 13: Comparison of actual values and predicted values using decision tree-ChOA for 12 months.

Table 5: The comparison of various benchmark algorithm in oil
production prediction.

Algorithm RMSE R2

ChOA 0:0012 ± 0:0023 0:852 ± 0:0134
CBBO 0:0213 ± 0:0055 0:633 ± 0:0425
NLBBO 0:0123 ± 0:0066 0:544 ± 0:0222
IWT 0:0152 ± 0:0045 0:725 ± 0:0352
PSO 0:0523 ± 0:0098 0:542 ± 0:0769
GA 0:0512 ± 0:0099 0:652 ± 0:0785
BMGWO 0:0265 ± 0:0045 0:733 ± 0:0211
HGSO 0:0285 ± 0:0044 0:722 ± 0:0178
CFW 0:0123 ± 0:0029 0:802 ± 0:0149

11Wireless Communications and Mobile Computing



multimodal functions and seven unimodal functions. Nine
multimodal functions, as well as seven fixed dimension mul-
timodal functions, are also utilized. In you will find further
information. Benchmark difficulties are shown graphically
in Figure 9. The comparison of various algorithms’ conver-
gence curves is shown in Figures 5–11.

Here, we provide the findings of a 30-day prediction
model that we believe is the best. Figure 12 shows the
model’s eight most critical characteristics. In order to aid
their planning and decision-making, a monitoring team
can acquire a qualitative view of the importance of each
aspect [29].

The dataset is separated into test (20 percent) and train-
ing (80 percent) datasets. According to Figure 13, real oil
output is compared to a model’s prediction of monthly oil
production. To make things easier to see, the daily output
and forecast are both calculated at the well levels and
summed over all producing wells in a pad. The root mean
square error (RMSE) measure is used to identify the best
model from the fivefold cross-validation (RMSE). There
has been a substantial improvement over prior studies in
predicting test dataset results that are within the -10% to
+10% range of the real outputs. As shown in Table 5, opti-
mum and baseline models perform well on training and test
datasets, respectively [30]. To anticipate future daily oil out-
put, the baseline model uses the most recent 30-day previous
daily production as a starting point. In terms of R2 and
RMSE, the decision tree-ChOA model exceeds the baseline
model by a wide margin.

Optimizing steam flood distribution is simple when
using a model that can reliably forecast oil production in
various sensors. It is an example of a pad with triple infill
wells, and infill well 2 took in 4211m3 of steam volume every
month, which is the true total monthly oil output. The
model forecasts that 4242m3 of oil will be produced, which
is 0.9 percent more than the actual output. A brute-force
search of all potential situations is the simplest way to find
the best steam allocation strategy to optimize production.
Because of the three infill wells, a set total steam volume is
needed to calculate the steam volumes delivered into infill
wells 1 and 2, which are two independent parameters.

For the best scenario, 30 percent steam injection into infill
well 1, four percent injection into infill well 2, and 70 percent
injection into infill well 3 yield a maximum oil output of
4339m3, which is 3.3% higher than the actual production.

While brute-force search takes more and longer the
more infill wells there are, it may be more practical to
employ alternative optimization techniques, such as gradient
descent search, in the future. In addition, this optimization
system was created with the goal of increasing oil output.
An alternative approach to optimization can be used if other
goal functions, such as reducing the steam-to-oil ratio to
reduce fuel costs, are defined.

In order to make this huge improvement, the search
agent has been divided into four separate subgroups (assail-
ant, obstacle, follower, and driver), and the chaos-based
maps have been used rather than random numbers. As a
result, the new method has no additional cost in terms of

processing power. This will only work if the various autono-
mous teams have been set up in concert. Otherwise, the
ChOA’s speed will be slightly reduced.

5. Conclusion

To handle a specific type of time series data, hybrid decision
tree ChOA algorithm has been implemented in this research.
In comparison to existing approaches, our model is able to
estimate oil output in certain steam flood situations with
an exceptional level of precision. The optimization system
that we have built can also increase oil output by 3.21% by
recommencing the best steam allocation plan. The emer-
gence of cloud platforms for IoT has enabled us to create a
cloud-based minimal level viable solution for steam flood
optimization, allowing for real-time data collection, trans-
mission, storage, and intelligent system training and deploy-
ment on cloud platforms. Steam floods may be studied more
thoroughly thanks to this research. It would be fascinating to
see how this technique may be applied to additional datasets
with comparable time series structures. This method, for
example, may be used to develop other metaheuristic algo-
rithms to forecast the quantitative amount of abrasion on a
machine part based on past records and the state of future
operations.

Data Availability

Data sharing is not applicable to this article as no new data
were created or analyzed in this study.

Conflicts of Interest

The authors state that this article has no conflict of interest.

Acknowledgments

This work was supported by the General Project of Shaanxi
Provincial Department of Science and Technology (2022JM-
409), Research and Application of Intelligent Reservoir
Dynamic Analysis Method.

References

[1] K. N. Bhanu, H. J. Jasmine, and H. S. Mahadevaswamy,
“Machine learning implementation in IoT based intelligent
system for agriculture,” International Conference for Emerging
Technology (INCET), vol. 2020, 5 pages, 2020.

[2] W. Z. Khan, M. Y. Aalsalem, M. K. Khan, M. S. Hossain, and
M. Atiquzzaman, “A reliable Internet of Things based archi-
tecture for oil and gas industry,” in In 2017 19th International
conference on advanced communication Technology (ICACT),
pp. 705–710, IEEE, PyeongChang, Korea (South), 2017.

[3] M. Q. Hama, M. Wei, L. D. Saleh, and B. Bai, “Updated creen-
ing criteria for steam Fflooding based on oil field projects
data,” in In SPE Heavy Oil Conference-Canada, Calgary,
Alberta, Canada, 2014OnePetro.

[4] M. Yan, J. C. MacDonald, C. T. Reaume, W. Cobb, T. Toth,
and S. S. Karthigan, “Machine learning and the Internet of
Things enable steam flood optimization for improved oil pro-
duction,” 2019, http://arxiv.1908.11319.

12 Wireless Communications and Mobile Computing

http://arxiv.1908.11319


[5] M. Azhdari, A. Mahmoodzadeh, and M. Khishe, “Power con-
sumption optimization in underwater wireless sensor net-
works based on EECRU clustering algorithm for routing,”
Iranian Journal of Marine Science and Technology, vol. 24,
no. 95, pp. 1–10, 2020.

[6] J. Wu, M. Khishe, M. Mohammadi, S. H. T. Karim, and
M. Shams, “Acoustic detection and recognition of dolphins
using swarm intelligence neural networks,” Applied Ocean
research, vol. 115, article 102837, 2021.

[7] W. Kaidi, M. Khishe, and M. Mohammadi, “Dynamic levy
flight chimp optimization,” Knowledge-Based Systems, no. -
article 107625, 2021.

[8] M. Khishe, M. Nezhadshahbodaghi, M. R. Mosavi, and
D. Martín, “A weighted chimp optimization algorithm,” IEEE
Access, vol. 9, pp. 158508–158539, 2021.

[9] J. Wang, M. Khishe, M. Kaveh, and H. Mohammadi, “Binary
chimp optimization algorithm (BChOA): a new binary meta-
heuristic for solving optimization problems,” Cognitive Com-
putation, vol. 13, no. 5, pp. 1297–1316, 2021.

[10] M. Khishe and M. R. Mosavi, “Classification of underwater
acoustical dataset using neural network trained by chimp opti-
mization algorithm,” Applied Acoustics, vol. 157, article
107005, 2020.

[11] S.-P. Gong, M. Khishe, and M. Mohammadi, “Niching chimp
optimization for constraint multimodal engineering optimiza-
tion problems,” Expert Systems with Applications, vol. 198,
article 116887, 2022.

[12] F. Chen, C. Yang, and M. Khishe, “Diagnose Parkinson's dis-
ease and cleft lip and palate using deep convolutional neural
networks evolved by IP-based chimp optimization algorithm,”
Biomedical Signal Processing and Control, vol. 77, article
103688, 2022.

[13] Y. Yang, Y. Wu, H. Yuan, M. Khishe, and M. Mohammadi,
“nodes clustering and multi-hop routing protocol optimiza-
tion using hybrid chimp optimization and hunger games
search algorithms for sustainable energy efficient underwater
wireless sensor networks,,” Sustainable Computing: Informat-
ics and Systems, vol. 35, article 100731, 2022.

[14] D. H. Wolpert and W. G. Macready, “No free lunch theorems
for optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 1, no. 1, pp. 67–82, 1997.

[15] T. Hu, M. Khishe, M. Mohammadi, G.-R. Parvizi, S. H. T.
Karim, and T. A. Rashid, “Real-time COVID-19 diagnosis
from X-ray images using deep CNN and extreme learning
machines stabilized by chimp optimization algorithm,” Bio-
medical Signal Processing and Control, vol. 68, article 102764,
2021.

[16] H. Jia, K. Sun, W. Zhang, and X. Leng, “An enhanced chimp
optimization algorithm for continuous optimization
domains,” Complex & Intelligent Systems, vol. 8, pp. 1–18,
2021.

[17] A. Saffari, S. H. Zahiri, M. Khishe, and seyyed mohamma-
dreza mosavi, “Design of a fuzzy model of control parame-
ters of chimp algorithm optimization for automatic s onar
targets recognition,” http://ijmt.iranjournals.ir/article_
241126.html.

[18] M. Kaur, R. Kaur, N. Singh, and G. Dhiman, “SchoA: an newly
fusion of sine and cosine with chimp optimization algorithm
for HLS of datapaths in digital filters and engineering applica-
tions,” Engineering Computations, vol. 38, no. 2, pp. 975–1003,
2022.

[19] M. E. Zayed, J. Zhao, W. Li et al., “Predicting the performance
of solar dish Stirling power plant using a hybrid random vector
functional link/chimp optimization model,” Solar Energy,
vol. 222, pp. 1–17, 2021.

[20] A. Saffari, M. Khishe, and S.-H. Zahiri, “Fuzzy-ChOA: an
improved chimp optimization algorithm for marine mammal
classification using artificial neural network,” Analog Inte-
grated Circuits and Signal Processing Signal Processing,
vol. 111, no. 3, pp. 403–417, 2022.

[21] M. Khishe and M. R. Mosavi, “Chimp optimization algo-
rithm,” Expert Systems with Applications, vol. 149, article
113338, 2020.

[22] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[23] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
In Proceedings of ICNN'95-international conference on neural
networks, vol. 4, pp. 1942–1948, IEEE, Perth, WA, Australia,
1995.

[24] B. S. Yıldız, A. R. Yıldız, N. Pholdee, S. Bureerat, S. M. Sait, and
V. Patel, “The Henry gas solubility optimization algorithm for
optimum structural design of automobile brake components,”
Materials Testing, vol. 62, no. 3, pp. 261–264, 2020.

[25] M. Khishe and M. R. Mosavi, “Improved whale trainer for
sonar datasets classification using neural network,” Applied
Acoustics, vol. 154, pp. 176–192, 2019.

[26] M. R. Mosavi, M. Khishe, and M. Akbarisani, “Neural network
trained by biogeography-based optimizer with chaos for sonar
data set classification,” Wireless Personal Communications,
vol. 95, no. 4, pp. 4623–4642, 2017.

[27] M. Taghavi and M. Khishe, “A modified grey wolf optimizer
by individual best memory and penalty factor for sonar and
radar dataset,” Classification, vol. 6, no. 1, p. 120, 2019.

[28] M. Khishe, M. R. Mosavi, and A. Moridi, “Chaotic fractal walk
trainer for sonar data set classification using multi- layer per-
ceptron neural network and its hardware implementation,”
Applied Acoustics, vol. 137, pp. 121–139, 2018.

[29] W. Qiao, M. Khishe, and S. Ravakhah, “Underwater targets
classification using local wavelet acoustic pattern and multi-
layer perceptron neural network optimized by modified whale
optimization algorithm,” Ocean Engineering, vol. 219, article
108415, 2021.

[30] M. Khishe, M. R. Mosavi, and M. Kaveh, “Improved migration
models of biogeography-based optimization for sonar dataset
classification by using neural network,” Applied Acoustics,
vol. 118, pp. 15–29, 2017.

13Wireless Communications and Mobile Computing

http://ijmt.iranjournals.ir/article_241126.html
http://ijmt.iranjournals.ir/article_241126.html

	Application Research of Petroleum Basic Data Mining System Based on Intelligent Computing and Decision Tree Algorithm
	1. Introduction
	2. Background Materials
	2.1. Decision Tree
	2.2. Chimp Optimization Algorithm

	3. Model Developing
	3.1. Data Collection and Introduction
	3.2. Methodology

	4. Experimental Results
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

