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Accurate image moment computation is critical because they are used in a variety of fields, including image reconstruction and
object recognition. Orthogonal polynomials are frequently used to compute moments due to their numerous intersecting and
important theoretical properties. In polar coordinate systems, orthogonal polynomials such as the Polar Harmonic Fourier
Transform (PHFT) and Polar Harmonic Transformation (PHT) are defined. However, the images are defined by a Cartesian
coordinate system. To obtain image moments, a double integration over a unit circle over the product of the PHFT or PHT
and the image function must be performed. The choice of double integration techniques and domain for the double integral
has a significant effect on the precision of the computed moments. We have proposed a method for using the entire unit circle
as an integration domain in this study, for image reconstruction. We used the PHFT and PHT to apply this technique to
computing moments for the reconstruction. The proposed method outperforms other state-of-the-art methods, including
Gaussian quadrature numerical integration method (GQM) and zeroth order approximation (ZOA) on variety of scenarios
using three benchmarked image sets. We have demonstrated experimentally that this technique significantly improves the
accuracy of image moments in higher order moments, as measured by reduced mean squared error (MSE). Additionally, the
proposed method significantly improved the moment’s rotational (an improvement of 1-3% as compared to GQM and an
improvement of 37-93% as compared to ZOA) and scaling invariance (an improvement of 0-500% as compared to GQM and
an improvement of 3-7000% as compared to ZOA).

1. Introduction

Image moments are important in many fields, including
object recognition, image registration, robot navigation,
image retrieval, watermarking, medical imaging, and foren-
sic applications (Flusser and Zitová [1]; Liu et al. [2]; Zitová
and Flusser [3]; Clemente et al. [4]; Hosny et al. [5]; Xu et al.
[6]; Mostafa et al. [7]; Xin et al. [8], Xin et al. [9]; Singh and
Upneja [10]; Li et al. [11]; Hosny and Darwish [12]; Ma et al.

[13]; Mahdian and Saic [14]). Image moments of a two-
dimensional function defined over a compact domain (such
as an image function) are defined as the double integration
of its product with a two dimensional basis polynomial func-
tion (Flusser and Zitová [15]). Generally, as polynomial
basis functions, products of some powers of two variables
are taken, and in this case, the moment is known as the geo-
metric moment (Flusser and Zitová [15]). If the basis func-
tions are mutually orthogonal, the corresponding moment
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is known as the orthogonal moment (Flusser and Zitová
[15]). In a vector space, any element from a basis can be
expressed as a linear combination of elements from another
basis. Since we compute the integration in the discrete
domain owing to the fact that the image function is discrete,
the orthogonal basis provides a stable computation of the
moments. In addition, orthogonal functions can be gener-
ated using recurrence relations, which allow computation
of the moments without using the large powers of variables.
Orthogonal image moments can be computed in various
compact domains. For example, Legendre moments (Teh
and Chin [16]) and Chebyshev moments (Mukundan et al.
[17]) can be defined over the rectangular domain ½−1 , 1� ×
½−1, 1�. Zernike moments (Xin et al. [8]; Xin et al. [9]),
orthogonal Fourier–Mellin moments (Sheng and Shen
[18]), polar complex exponential moments (Li et al. [11]),
and polar harmonic Fourier moments (PHFM) (Wang
et al. [19]) can all be defined over a unit disk, which is a sub-
set in two-dimensional Euclidean space with each point less
than or equal to unit distance from the origin.

Since its inception by Teague ([20]), the orthogonal set
of moment functions defined over a circular region has been
extensively studied. Due to the translation, rotation, and
scaling invariance properties, the continuous orthogonal cir-
cular moments have found many applications, including
image representation (Liu et al. [2]), forgery detection in
duplicate objects (Hosny et al. [21]), vein recognition (Wang
et al. [22]), breast cancer detection (Singh et al. [23]), SAR
image classification (Gishkori and Mulgrew [24]), biomedi-
cal image retrieval (Kumar et al. [25]), and image water-
marking (Xin et al. [8], Xin et al. [9]; Singh and Upneja
[10]; Li et al. [11]; Hosny and Darwish [12]; Ma et al. [13];
Singh et al. [26]).

Computation of the moments with the orthogonal basis
functions over circular domains involves the double integra-
tion of the product of the basis functions with the image
function over the unit disk. The basis functions are defined
over polar coordinates, while the image functions are
defined over the rectangular coordinate system. To integrate,
the two functions must be in the same coordinate system.
Generally, the image function is transformed to a polar coor-
dinate system before the integration. However, since the
image function is discrete, only an approximate value of
the moments can be computed. Therefore, an accurate algo-
rithm for computing the moments is desirable. An image
must be mapped over this domain to integrate over the
entire unit disk. There are two methods for mapping the
image: inscribed circle and circumscribed circle techniques
(Wang et al. [19]; Ma et al. [13]). Since many applications,
such as image watermarking techniques, require rotationally
invariant moments and circumscribed circles are not capable
of computing rotational invariant moments, we have
followed the inscribed circle mapping technique in this
paper. To integrate over the unit disk using discrete tech-
niques, the unit disk must be gridded. There are two popular
methods for gridding: polar grids (Xin et al. [8], Xin et al.
[9]; Hosny and Darwish [12]) and rectangular grids (Li
et al. [11]; Ma et al. [13]). The PHT moments computed
using the polar grids are shown to be more accurate when

using the rectangular grids with a zeroth order approxima-
tion by Hosny and Darwish [12]. Prior to applying the inte-
gration, the image function needs to be transformed in the
polar domain using interpolation techniques. In applications
such as watermarking, interpolation needs to be done twice,
once during the watermark embedding process, and another
time during the watermark extraction process. This might
deteriorate the performance of watermarking. Recently, Ma
et al. [13] showed that the performance of watermarking in
the rectangular domain using Gaussian numerical integra-
tion and PHFM is better than the performance of water-
marking in the polar coordinate system using PHT
moments. In addition, Singh et al. [26] showed that the per-
formance of watermarking in the rectangular domain using
blend of analytic and numerical approach and PHFM
improves the watermarking ability of Ma et al. [13].

In the Cartesian coordinates, the image pixels, with their
center falling within the unit circle, are taken for double
integration. While there is no ambiguity for pixels
completely falling within or outside the unit circle, there is
enough ambiguity for pixels falling over the boundary of
the circle. Some pixels are left out, and some are considered
in the integration process. The moments are computed in
many applications using this traditional method known as
zeroth order approximation (ZOA) by Xin et al. [8], Xin
et al. [9], and Li et al. [11]. More about the computation of
moments in the Cartesian coordinate system is described
in the methodology section. In the traditional method,
which is a grid and summation method, and in the Gaussian
quadrature numerical integration method (GQM) (Ma et al.
[13]; Singh and Upneja [10]), the entire unit disk is not uti-
lized for the moment computation. In the proposed work,
we have used the combined analytic and numerical methods
of Singh et al. [26] to utilize the entire unit disk for the
moment computation and increase the accuracy of the com-
puted moments. Multiple moments have been proposed for
images, but there is a research gap on the moment computa-
tions. The novelty of the current work is to use the method
presented in Singh et al. [26] for image reconstruction and
providing a framework for exact moment computations for
image reconstruction. The image processing community
working in the image moments will get benefit from the
framework. For example, the moments presented in Pawlak
et al. [27], Wang et al. [28], and Wang et al. [29] can be com-
puted by the framework. For demonstration of the efficiency
of the method, we have selected four popular orthogonal
moments defined over the unit disk, the PHFT and PHT
families of moments, consisting of three types of orthogonal
basis. We then compared the accuracy of the computed
moments with the ZOA and the GQM techniques for image
reconstruction. It is observed that the method has better
accuracy for moment computations than existing methods
discussed in this paper. It has been further shown that the
moments computed by using this method are closer to the
rotational and scaling invariance properties as compared to
the existing methods. The PHFT and PHT moments over
the unit disk are discussed in the next section. The double
integration involved in the moment computations is pre-
sented in Section 3. The experimental results and discussion
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are presented in Section 4, followed by the concluding
remarks in Section 5.

2. Orthogonal Image Transform Moments

2.1. Polar Harmonic Fourier Transform Moments. The
PHFT with order u > = 0 and repetition v ∈ Z, the set of
integers, of a polar function gðr, ϕÞ is a complex function
defined over a unit disk by Wang et al. [19]:

Cuv =
2
π

ð2π
0

ð1
0

�Huv r, ϕð Þg r, ϕð Þrdrdϕ, ð1Þ

where,

Huv r, ϕð Þ = Tu rð Þeivϕ: ð2Þ

TuðrÞ is called the radial basis function and expressed as

Tu rð Þ =

1ffiffiffi
2

p , if u = 0:

sin u + 1ð Þπr2, if u > 0 and u mod 2 = 1
cos uπr2, if u > 0 and u mod 2 = 0

:

8>>>><
>>>>:

ð3Þ

The functions Huvðr, ϕÞ form an orthogonal family of
functions, i.e.,

2
π

ð2π
0

ð1
0
Hu1v1

r, ϕð Þ �Hu2v2
r, ϕð Þrdrdϕ = 1 if u1, v1ð Þ = u2, v2ð Þ, else 0:

ð4Þ

The polar function gðr, ϕÞ (it can be an image function)
can be reconstructed using the orthogonal property (Equa-
tion (4)) of PHFT moments by Wang et al. [19]:

g r, ϕð Þ = 〠
umax

u=0
〠
vmax

v=−vmin

CuvHuv r, ϕð Þ: ð5Þ

Here, umax is the maximum order of moments taken,
and vmax is the maximum repetition taken for the
reconstruction.

2.2. Polar Harmonic Transform Moments. The polar har-
monic transform consists of three families of functions,
polar complex exponential transform (PCET), polar cosine
transform (PCT), and polar sine transform (PST). PCET
with order u and repetition v (u and v are in set of integers)
of a polar function gðr, ϕÞ is a complex function defined
over the unit disc as

Cuv =
1
π

ð2π
0

ð1
0

�Huv r, ϕð Þg r, ϕð Þrdrdϕ, ð6Þ

where,

Huv r, ϕð Þ = ei 2πur2+vϕð Þ: ð7Þ

The functions Huvðr, ϕÞ with u, v ∈ Z, the set of integers,
are orthogonal to each other, that is,

1
π

ð2π
0

ð1
0
Hu1v1

r, ϕð Þ �Hu2v2
r, ϕð Þrdrdϕ = 1 if u1, v1ð Þ = u2, v2ð Þ, else 0:

ð8Þ

PCT with order u and repetition v (u is in the set of non-
negative integers and v is in the set of integers) of a polar
function gðr, ϕÞ is a complex function defined over the unit
disc as

Cc
uv =Ωu

ð2π
0

ð1
0

�Hc
uv r, ϕð Þg r, ϕð Þrdrdϕ, ð9Þ

where,

Hc
uv r, ϕð Þ = cos πur2

� �
eivϕ,

Ωu =

1
π
, if u = 0

2
π
, if u > 0

:

8>><
>>:

ð10Þ

Similarly, PST with order u and repetition v (u is in the
set of positive integers and v is in the set of integers) of a
polar function gðr, ϕÞ is a complex function defined over
the unit disc as

Cs
uv =Ωu

ð2π
0

ð1
0

�Hs
uv r, ϕð Þg r, ϕð Þrdrdϕ, ð11Þ

where,

Hs
uv r, ϕð Þ = sin πur2

� �
eivϕ: ð12Þ

Using the property given in Equation (8), we can recon-
struct the polar function gðr, ϕÞ (it can be an image func-
tion) as

g r, ϕð Þ = 〠
umax

u=−umin

〠
vmax

v=−vmin

CuvHuv r, ϕð Þ, ð13Þ

where umin in the case of PCT is 0, in the case of PST is 1,
and in the case of PCET, we have taken umin = umax; here,
umax is the maximum order of moments taken, and vmax is
the maximum repetition taken for reconstruction. Equation
(13) is reconstruction expression for the PCET. For recon-
struction using PCT and PST, the function Huvðr, ϕÞ should
be replaced with Hc

uvðr, ϕÞ and Hs
uvðr, ϕÞ, respectively.
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3. Methodology

Let us consider a square image f ðx, yÞ of size N ×N , x, y =
0, 1,⋯,N − 1. Since the domain of the PHFT and PCT
moments is unit disk, the image must be first transformed
into the unit disk. In the inscribed circle method, the pixel
coordinates are linearly scaled to ½−1 1�. Consider first the
x-coordinate of the pixel. The values x = 0, 1,⋯,N represent
the left and right boundaries of the pixels as an equation of
straight line perpendicular to the x-axis. The x-coordinates
are scaled to ½−1 1� using the linear relation x′ = −1 + ð2x/
NÞ. The width of the pixel δx can be computed by subtract-
ing boundaries of pixels. That is,

δx = −1 + 2 x + 1ð Þ
N

− −1 + 2x
N

� �
= 2
N
: ð14Þ

Therefore, the x-coordinates of the center of each pixel
in the unit disk will be cxi = −1 + ð2i/NÞ + ð1/NÞ, i = 0, 1,⋯
N − 1. Similarly, δy = 1/N and the y-coordinates of the cen-
ter of pixels in the unit disk will be cyj = −1 + ð2j/NÞ + ð2/
NÞ, j = 0, 1,⋯N − 1. With these notations, the PHFT in dis-
crete polar coordinates can be defined as

Cuv =
2
π
〠
i

〠
j

f i, jð Þ �
Huv cxi, cyj

� �
δxδy, ð15Þ

where i, j runs over all pixels on the unit disk. In the simplest
form, Equation (15) can be approximated with the following
equation:

Cuv =
8

N2π
〠
i

〠
j

f i, jð Þ �
Huv cxi, cyj

� �
, ð16Þ

where i, j are runs over indices with restriction on ðcxi, cyjÞ
that they must be within and on the unit disk. This simplifi-
cation for computing the moments is known as the zeroth
order approximation.

The accuracy of the computed moment can be increased
by extending the �Huvðcxi, cyjÞδxδy term as

�
Huv cxi, cyj

� �
δxδy =

ð ð
�Huv r, ϕð Þrdrdϕ: ð17Þ

Here, the domain of integration is the rectangular
domain ½cxi − ðδ, x/2Þcxi + ðδ, x/2Þ� × ½cyj − ðδ, y/2Þcyj + ðδ
, y/2Þ� with restriction that the polar point ðr, ϕÞ must be
in the unit disk. The accuracy of the moments depends on
the computation of the double integral in Equation (17).
Several approaches for the approximation of the integration
have been proposed in the literature. The function Huv is a
function of the polar coordinates. However, in Equation
(15), the function corresponding to the image, f ðx, yÞ, is a
piecewise continuous function of the Cartesian coordinates
x and y. Therefore, to find the moments using Equation
(15), either the function f ðx, yÞ should be transformed to
the polar coordinate system or the function Huv should be

transformed to the Cartesian system. In the former case,
Xin et al. [8] and Xin et al. [9] proposed a method for double
integration over polar coordinates for accurate computation
of the Zernike moments. Similarly, Hosny and Darwish [12]
used the circular grids for the computation of PHTs. In this
method, the unit circular region is gridded in polar domain,
and the function f ðx, yÞ is interpolated over the circular
domain. In this paper, we have focused on integration of
kernel function over the Cartesian system. In this system,
the circular domain is divided into non-over lapping grids.
In Xin et al. [8] and Xin et al. [9], the authors have used
the same rectangular grids (i.e., the zeroth order approxima-
tion) in computing Zernike and pseudo Zernike moments.
Li et al. [11] used similar rectangular grids for computation
of polar harmonic moments. The moments are further used
for the application on image watermarking. In the absence of
analytical method, the numerical method is used for the
approximate evaluation of a definite integral. In the rectan-
gular grid, Equation (17) can be approximated to

�
Huv cxi, cyj

� �
= 〠

n1

p=1
〠
n2

q=1

�
Huv xp, yq

� �
, ð18Þ

where ðxp, yqÞ are n1 × n2 points taken in the neighborhood
½cxi − ð1/NÞcxi + ð1/NÞ� × ½cyj − ð1/NÞcyj + ð1/NÞ� with the
restriction that ðxp, yqÞ are within and on the unit disk.
Xin et al. [8] and Xin et al. [9] used this simplified form
for the computation of Zernike moments and pseudo Zer-
nike moments using n1 = n2 = 1 (Equation (16) is a particu-
lar case of Equation (18) with n1 = n2 = 1). In this form of
integration in the Cartesian coordinates, only the rectangu-
lar grids with centers falling within and on the unit circle
are only considered, and the rectangular grids partially fall-
ing within the unit disk but centers outside the unit circle
are neglected. This leads to the inaccuracies in the moment
computation. The resulting inaccuracies and types of rectan-
gular grids are discussed later in this section. This method
requires the evaluation of the kernel function in each of
the n1 × n2 grids. Integration techniques involving polyno-
mial interpolation can be used for increasing the accuracy
of the integration with reduced number of function evalua-
tion. Singh and Upneja [10] used the Gaussian quadrature
integration method (GQM) in which Legendre polynomials
are used for the approximation of the integration. In this
technique, the moment computation takes the form in the
following equation:

�
Huv cxi, cyj

� �
= 〠

n1

p=1
〠
n2

q=1
wpwq

�
Huv cxi + tp/N , cyj + tq/N

� �
,

ð19Þ

where ðcxi + tp/N , cyj + tq/NÞ are n1 × n2 points taken in the
neighborhood ½cxi − ð1/NÞcyi + ð1/NÞ� × ½cj − ð1/NÞcj + ð1/
NÞ� with restriction that they are within and on the unit cir-
cle. Here, wp represents weights associated with the point
inside a rectangular grid corresponding to tp. The sum of
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wp is close to 2. Ma et al. [13] used this technique for com-
puting the PHFT moments.

However, the condition that the sum of the wis is close to
two is violated at the grid elements intersecting with the cir-
cle. The points inside a grid are distributed symmetrically
with respect to the center. All the points in a grid intersect-
ing with the circle boundary are not considered for the inte-
gration. The points falling outside the circle are neglected.
Therefore, the weights will not sum to 2. Figure 1 shows
the representation of the unit circle over an image with a size
of 16 × 16. The white colored pixels are completely inside the
circle and the black colored pixels are completely outside the
circle. The colored pixels (pixels barring black and white)
represent the boundary of the circle. While using Equation
(18), the integration is performed over the whole pixel if
the center falls within the circular region and is completely
ignored when the center falls outside the circle. We have
used the analytical method to integrate the function over
the pixel even if it is partially intersected with the unit circle.
We have performed the double integration in each pixel sep-
arately. If a pixel is intersected by the circle partially, we have
used the integration boundary as the circle, instead of a rect-
angular boundary. To integrate this analytic double integra-
tion we have used dblquad in scipy library. We call this
moment computation method as QuadPack Method
(QPM). The dblquad function takes input as the function
to integrate and the limits of the double integration. For a
pixel falling completely within the circle, the limits for the
integration are constants, i.e., the boundaries of the rectan-
gular domain. When a pixel is intersected by the unit circle,
one of the limits is the equation of the unit circle ðx2 + y2

= 1Þ.
In summary, we used Equation (16) to compute the

image moments. Here, the moments are defined based on
the kernel function Hð:, :Þ. We computed the kernel func-
tion using Equation (17). The image is reconstructed with
PHT moments using Equation (13) and PHFT moments
using Equation (5).

The moment computation is implemented in python3
and executed over two systems. One is an Ubuntu system
with 8GB RAM and four cores of 2.00GHz. Another is a
Windows 10 system with 8GB RAM and four cores of
2.30GHz. Since the moment’s execution is computationally
intensive, we have used joblib library for executing the code
in parallel by using all the four cores. If we assume the inte-
grand function to be constant and equal to 1, then the dou-
ble integral of the function is the area of the domain over
which we seek the integration. Therefore, for the double
integration over the unit circle, the integration on the con-
stant function with value one must be π. Figure 2 shows
the comparison of the approximated π with the two algo-
rithms. Since at n = 7, the GQM method is approximately
close with π; we selected n = 7 for the comparison of our
method with GQM and ZOA.

Theoretically, C00 of PCET must be constant k for con-
stant image function f ðx, yÞ = k. We have tested the three
algorithms for k = 172. Using the ZOA, we computed the
value of c00 as 172:099; using the GQM, we computed this

value as 171:999; the proposed algorithm computes the c00
as 172:002. All the three algorithms perform equally well at
this property. Theoretically, the cuv with u ≠ 0 and v ≠ 0
must be zero. However, the computation of moments with
v = 4l, l ≠ 0 are not accurate and resulted in non-zero values.
In particular, we computed c04 = 0:0433, applying the tradi-
tional method, c04 = 0:0072 using the Gaussian method and
c04 = 0:0022 by applying the method presented in this paper.
Therefore, the current method looks more accurate in the
moment computations as far as constant function is
concerned.

4. Experimental Result and Discussions

In this section, we will analyze the accuracy of the computed
moments using the proposed method. We will compare the
performance of the method with other two methods, ZOA
and GQM. For measuring the accuracy of the moments,
we have used image reconstruction using Equations (5)
and (13). We have applied the method for computing
moments over four orthogonal moments: PHFM, PCET,
PCT, and PST. Three test images from diverse backgrounds
are also selected for the study (Figure 3). One is the famous
Lena image, another is a logo, and the third is a medical
image.

4.1. PHFM. Figure 4 shows reconstruction of images using
the three algorithms. The first row is reconstructed using

Figure 1: Representation of a unit circle over a 16 × 16 image. The
white colored pixels are completely inside the circle, and the black
colored pixels are completely outside the circle. Red colored pixels
represent the intersection with circle at top and bottom, purple
colored pixels represent the intersection with circle at left and
right. Yellow colored pixels represent the intersection with circle
at left and bottom. Pink colored pixels represent the intersection
with circle at top and right. Green colored pixel represents the
pixels where the circle is relatively parallel and close to one of the
four boundaries.
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ZOA, the second row is reconstructed using the GQM, and
the third row is reconstructed using the QPM. The first
two columns correspond to the reconstructed Lena image
using moments and repetitions 0-20 and 0-100, respectively.
Similarly, the next two columns correspond to the recon-
structed Logo image using moments and repetitions 0-20
and 0-100, respectively. And the last two columns corre-
spond to the reconstructed medical image using moments
and repetitions 0-20 and 0-100, respectively. It is apparent
from the figure that at low maximum order (0-20) for recon-
struction, the three algorithms look similar with each other
for all the three images. However, at higher maximum order
(0-100) for reconstruction, the superiority of the GQM over
the ZOA and the superiority of the QPM over the other two
algorithms is apparent. At higher maximum moments, white
patches appear at the center and the edges of the recon-
structed image in first rows in all the three images. In the
second row, the white patches at the center are clearly appar-
ent in all the three images. The last row, which represents
the image reconstruction using our method, clearly looks
better than the reconstructed images using the other two
algorithms in all the three images. Statistically, the recon-
structed images are compared using the mean squared
reconstruction error (MSE, ϵ), structural similarity index
(SSIM), and feature similarity index (FSIM). The MSE is
defined as

ϵ =
∑i,j f i, jð Þ − g i, jð Þð Þ2

∑i,j f i, jð Þ2 , ð20Þ

where f and g represents the original image and the recon-
structed image, respectively. The indices i, j runs over the
pixels within the unit circle. The MSE is average of the
square of the difference of the origin image and recon-
structed image. Therefore, the small values in the MSE indi-
cate good reconstruction of the image, while the large values
in the MSE indicate a large difference in the original image

and the reconstructed image. SSIM is the second statistics
used to measure similarity between the images (Wang et al.
[30]). It is relying on the fact that human visual system is
highly adapted to extract the structural properties from
images. FSIM is the third statistics used to measure similar-
ity between the images (Zhang et al. [31]). It is relying on the
fact that the human visual system primarily understands
images based on the low level features. The local structures
can be measured with the phase congruency. In FSIM, phase
congruency is used as primary feature. The range of the
SSIM and FSIM is 0-1. The high values in SSIM and FSIM
represent a high similarity between the images, while the
low values represent a low similarity between the images.

Table 1 shows the MSE, SSIM, and the FSIM between the
base images and the reconstructed images. At low orders (0-
20), the MSE, SSIM, and FSIM in all the three images across
the algorithms are similar. Overall, at smaller order image
reconstruction, the performance of all the three algorithms
across images is at par with each other. The performance
of the ZOA improves for the logo image. At high orders
(0-60), the reconstruction quality of Lena and medical
images drops in terms of MSE but increased in terms of
SSIM and FSIM using the ZOA moments. However, in the
logo, opposite effects appear as MSE decreased, but an
increase in SSIM and FSIM was observed. The reconstruc-
tion qualities of both the other algorithms, GQM and
QPM, have shown improvement in terms of all the three sta-
tistical parameters across the three images, as MSE drops
significantly and SSIM and FSIM increased significantly. At
orders (0-60), statistically, the quality of reconstructed
images is better using GQM and QPM as compared to
ZOA. However, between GQM and QPM, no one outper-
formed the other. At orders (0-100), the quality of recon-
structed image using ZOA has decreased in terms of all the
three statistics when compared with moment orders 0-60.
The distinction between the performance of GQM and
QPM is also apparent, as the MSE of QPM is smallest and
SSIM is largest among the three methods across the three
images. With the exception of the medical image where
FSIM of QPM is comparable with GQM, the FSIM of
QPM is largest among the three algorithms. Therefore, using
Figure 4 and Table 1, we conclude that our method outper-
formed the other two methods across the three images.

If an image is rotated with an angle α, then the modified
moments (cαuv) can be defined in terms of the moment (cuv)
of the original image as the following equation:

cαuv = e−ivαcuv: ð21Þ

Therefore, jcαuvj = jcuvj, that is the absolute value of a
moment, is invariant under rotation. Since we compute
moments of an image in discrete domain, the achievement
of the exact rotational invariant image moments is difficult,
however. To show the variation in the moments with rota-
tion in the image, we have computed the moments of the
image at 9 different angles (10∘, 20∘, 30∘, 40∘, 50∘, 60∘, 70∘,
80∘, and 90∘), counterclockwise direction. In addition to
the QPM technique, we have also analyzed the variability
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Figure 2: approximation of π using integration of unit function
over unit circle using three algorithms.

6 Wireless Communications and Mobile Computing



Figure 3: Test images taken for the study.

Figure 4: Reconstruction of image using PHFM with the three algorithms. The first row is reconstructed using the ZOA, the second row is
reconstructed using the GQM, and the third row is reconstructed using the QPM. The first two columns correspond to the reconstructed
Lena image using moments and repetitions 0-20 and 0-100, respectively. Similarly, the next two columns correspond to the
reconstructed Logo image using moments and repetitions 0-20 and 0-100, respectively. And the last two columns correspond to the
reconstructed medical image using moments and repetitions 0-20 and 0-100, respectively.

Table 1: MSE, SSIM, and FSIM between base images and reconstructed images. In columns 3-5, the images are reconstructed using orders
0-20 and repetition 0-20; in columns 6-8, the images are reconstructed using orders 0-60 and repetition 0-60; and in columns 9-11, the
images are reconstructed using orders 0-100 and repetition 0-100. The first and second columns represent the images and algorithms,
respectively, used for the reconstruction of the images.

PHFM Maximum order 20 Maximum order 60 Maximum order 100
Image Method MSE SSIM FSIM MSE SSIM FSIM MSE SSIM FSIM

Lena

ZOA 0.0227 0.8171 0.9101 0.0379 0.9123 0.9237 0.0853 0.8513 0.8978

GQM 0.0228 0.8154 0.9105 0.0035 0.9779 0.9861 0.0038 0.9825 0.9879

QPM 0.0228 0.8155 0.9104 0.0034 0.9783 0.9857 0.0017 0.9904 0.9911

Logo

ZOA 0.0054 0.8784 0.9469 0.0042 0.8629 0.9342 0.0055 0.8197 0.9242

GQM 0.0054 0.8791 0.9448 0.0008 0.9827 0.9878 0.0007 0.9868 0.9904

QPM 0.0054 0.8789 0.9448 0.0006 0.9849 0.9897 0.0003 0.9941 0.9958

Medical

ZOA 0.0271 0.7493 0.9007 0.0360 0.8240 0.9297 0.1372 0.7539 0.8791

GQM 0.0279 0.7466 0.8989 0.0057 0.9605 0.9711 0.0050 0.9677 0.9774

QPM 0.0279 0.7468 0.8987 0.006 0.9554 0.9665 0.0030 0.9751 0.9777
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of the moments using the ZOA and the GQM. We have used
the mean squared error (MSE) between the absolute values
of the original images and rotated images. The MSE for
absolute moments at angle α is defined as

〠
100

u=0
〠
100

v=0
cuvj j − cαuvj jð Þ2: ð22Þ

Table 2 shows the MSE for absolute moments between
the base images and rotated images. There is a definite pat-
tern in all the images and algorithms. Between 10° and 90°,
the MSE increases with an increase in angle, but after cross-
ing the midway mark, the MSE starts decreasing. At 90°,
there is no difference in the absolute values of the moments.
The moments computed using the ZOA show larger MSE as
compared to GQM and QPM. In all the three images, the
MSE of the QPM is the smallest. Therefore, it can be con-
cluded that our method matches best with the rotation
invariance property among the three methods across the
three images.

We have also tested the scaling invariance of the image
moments. Table 3 shows MSE of the computed moments
with two sizes of the images, when images are scaled to
0.75 (size = 48 × 48) and when images are scaled to 1.25
(size = 80 × 80). We observed that at size 48 × 48, the MSE
is larger than MSE at size 80 × 80, in all the three algorithms
and three images. In watermarking applications, it is shown
that the orthogonal moments such as PHFM and PCET
behave better when the scaling factor is greater than 1 (Ma
et al. [13]; Hosny and Darwish [32]; Li et al. [11]). Therefore,
this behavior of moments is in line with previous studies.
The absolute values of the moments are larger at lower
moments and smaller at higher moments. Therefore, for a
reasonable accurately computed moment, the MSE at lower
moments should be high, and at higher moments, it must be
low, which is apparent with GQM and QPM. However, we
noted that with ZOA, this behavior is opposite, indicating
that the accuracy of the moments at higher order is not at
all par with GQM and QPM. This is again consistent with
Figure 4, where it was observed that at higher moments,
the reconstructed images have large white patches. In the
logo and medical images with size 48 × 48, the MSE of the
QPM is larger than GQM at 0-20 order moments. However,
at 80-100 order moments, the superiority of the QPM
method is clearly observed. At the image with size80 × 80,
our method outperformed all other methods as MSE is
smaller than both the methods across the three images.
Therefore, we see that the QPM method closely follows the
scaling invariance. Overall, we observed that the QPM has
a better reconstruction quality and shows a better invariance
in rotation and scaling.

4.2. PCET. Figure 5 shows the reconstruction of images
using the three algorithms applied on PCET. Similar to
PHFM, the first row is reconstructed using ZOA, the second
row is constructed using the GQM, and the third row is con-
structed using the QPM. The first two columns correspond
to the reconstructed Lena image using moments and repeti-

tions 0-20 and 0-100, respectively. Similarly, the next two
columns correspond to the reconstructed Logo image using
moments and repetitions 0-20 and 0-100, respectively. And
the last two columns correspond to the reconstructed medi-
cal image using moments and repetitions 0-20 and 0-100,
respectively. It is apparent from the figure that at the low
maximum order (0-20) for reconstruction, the three algo-
rithms look similar with each other for all the three images.
However, at higher maximum order (0-100) for reconstruc-
tion, the superiority of the GQM over the ZOA and the
superiority of the QPM over the other two algorithms are
apparent, as in the case of PHFM. Similar to PHFM, at
higher maximum moments, the white patches appear at
the center and the edges of the reconstructed image in the
first rows in all the three images. In the second row, the
white patches at the center are clearly apparent in all the
three images. However, the white patches along the edges
look more apparent as compared to PHFM. The last row,
which represents the image reconstruction using our
method, clearly looks better than the reconstructed images
using other two algorithms in all the three images in the
PCET moment. As compared with PHFM moments, the
medical images reconstructed using PCET moments appear
a little darker. Similarly, the edges of the logo also appear a
little extended in the PCET moments as compared to
PHFM.

Table 4 shows the MSE, SSIM, and the FSIM between the
base images and the reconstructed images using PCET
moments. A similar observation as in Table 1 can be made
with Table 4. Here, we analyzed the key difference of the
PCET moments with the PHFM moments. We observed
that PCET moments have higher MSE across the table com-
pared to the corresponding MSE of the PHFT moments.
Here, we are not claiming that the performance of the PHFT
is better than PCET. The two moments have a different sup-
port. As Table 1 is constructed using only positive moments
(the PHFT is only defined for positive moments), Table 4 is
constructed using both the negative and positive moments.
The objective of this study is not the comparison of the
PCET and PHFT. Here, we are comparing our method with
ZOA and GQM on various orthogonal moments such as
PHFT, PCET, PCT, and PST. Unlike the PHFT, in the PCET
image reconstruction, we note that the performance of our
method is superior without any ambiguity at the higher
moments (0-100).

Table 5 shows the MSE for absolute moments between
base images and rotated images. The analysis for this table
is similar to the analysis of the Table 2. Here, we bring the
main difference between the effects of rotation on the
moments computed using the PHFM and the PCET. We
noted that the MSE between the absolute moments between
the base images and the rotated images is smaller in PCET as
compared to the PHFM across algorithms. Therefore, the
rotational invariance is supported in a stronger way in the
PCET. At 90°, there is no difference in the absolute values
of the moments. In all the three images, the MSE of the
QPM is smallest. Therefore, it can be concluded that our
method matches best with the rotation invariance among
the three methods when applied on the PCET moments.
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Table 6 shows MSE of the computed moments with two
sizes of the image, when the image is scaled to 0.75
(size = 48 × 48) and when the image is scaled to 1.25
(size = 80 × 80). We observed that at size 48 × 48, the MSE
is larger than MSE at size 80 × 80, in all the three algorithms

and three images with the exception of QPM at higher
moments. In the image with size 48 × 48, the MSE of the
QPM and GQM at 0-20 order moments are similar across
images. However, at 80-100 order moments, the superiority
of the QPM method is clearly observed. At the image with

Table 2: MSE between absolute values of moments of base images and rotated images.

Image Method 10° 20° 30° 40° 50° 60° 70° 80° 90°

Lena

ZOA 0.0171 0.0195 0.0220 0.0244 0.0267 0.0237 0.0205 0.0170 0.0

GQM 0.0093 0.0102 0.0123 0.0149 0.0169 0.0137 0.0110 0.0092 0.0

QPM 0.0091 0.0101 0.0122 0.0149 0.0168 0.0135 0.0109 0.0091 0.0

Logo

ZOA 0.0147 0.0169 0.0196 0.0236 0.0236 0.0197 0.0177 0.0156 0.0

GQM 0.0101 0.0116 0.0140 0.0166 0.0164 0.0135 0.0117 0.0105 0.0

QPM 0.0099 0.0116 0.0139 0.0165 0.0164 0.0134 0.0116 0.0102 0.0

Medical

ZOA 0.0129 0.0152 0.0176 0.0198 0.0191 0.0167 0.0146 0.0128 0.0

GQM 0.0087 0.0103 0.0123 0.0145 0.0138 0.0117 0.0101 0.0085 0.0

QPM 0.0087 0.0102 0.0122 0.0144 0.0137 0.0116 0.0100 0.0085 0.0

Table 3: MSE of absolute moments when image is scaled to various sizes (first column). The second column represents the order of the
moments taken for comparison. The range of v in all the cases is between 0 and 20.

PHFM Lena Logo Medical
Size u ZOA GQM QPM ZOA GQM QPM ZOA GQM QPM

48 × 48 0–20 0.0321 0.0322 0.0313 0.0518 0.0439 0.0442 0.1196 0.1139 0.1142

80 × 80 0–20 0.0144 0.0113 0.0111 0.0226 0.0177 0.0174 0.0660 0.0510 0.0509

48 × 48 80–100 0.0798 0.0075 0.0033 0.2504 0.0230 0.0035 0.0348 0.0016 0.0010

80 × 80 80–100 0.0614 0.0034 0.0032 0.2139 0.0047 0.0033 0.0240 0.0010 0.0009

Figure 5: Reconstruction of image using PCET with the three algorithms. The first row is reconstructed using the ZOA, the second row is
reconstructed using the GQM, and the third row is reconstructed using the QPM. The first two columns correspond to the reconstructed
Lena image using moments and repetitions 0-20 and 0-100, respectively. Similarly, the next two columns correspond to the
reconstructed Logo image using moments and repetitions 0-20 and 0-100, respectively. And the last two columns correspond to the
reconstructed medical image using moments and repetitions 0-20 and 0-100, respectively.
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size 80 × 80, our method outperformed all other methods as
MSE is very small cross the three images. Therefore, we see
that the QPM method very closely follows the scaling invari-
ance. Overall, we observed that the QPM has a better recon-
struction quality and shows better invariance in rotation and
scaling in PCET as well.

4.3. PCT. Figure 6 shows reconstruction of images using the
three algorithms. Visually, the reconstructed images using
the PCT look similar to that of PHFM. It is apparent from
the figure that at low maximum order (0-20) for reconstruc-
tion, the three algorithms look similar with each other for all
the three images. However, at higher maximum order (0-

100) for reconstruction, the superiority of the GQM over
the ZOA and the superiority of the QPM over the other
two algorithms are apparent. At higher maximum moments,
the white patches appear at the center and the edges of the
reconstructed image in first rows in all the three images. In
the second row, the white patches at the center are clearly
apparent in all the three images, similar to that of PHFM.
The last row, which represents the image reconstruction
using our method, clearly looks better than the recon-
structed images using other two algorithms in all the three
images.

Table 7 shows the MSE, SSIM, and the FSIM between the
base images and the reconstructed images using PCT

Table 4: MSE, SSIM, and FSIM between the base images and reconstructed images using PCET moments. In columns 3-5, the images are
reconstructed using orders 0-20 and repetition 0-20; in columns 6-8, the images are reconstructed using orders 0-60 and repetition 0-60; and
in columns 9-11, the images are reconstructed using orders 0-100 and repetition 0-100. The first and second columns represent the images
and algorithms, respectively, used for the reconstruction of the images.

PCET Maximum order 20 Maximum order 60 Maximum order 100
Image Method MSE SSIM FSIM MSE SSIM FSIM MSE SSIM FSIM

Lena

ZOA 0.0530 0.7945 0.8751 0.0850 0.8351 0.8752 0.1040 0.8218 0.8715

GQM 0.0480 0.8053 0.8888 0.0352 0.9016 0.9307 0.0946 0.8254 0.8502

QPM 0.0480 0.8055 0.8888 0.0345 0.9038 0.9315 0.0339 0.9107 0.9325

Logo

ZOA 0.0064 0.8196 0.9129 0.0073 0.7897 0.9164 0.0087 0.7758 0.9304

GQM 0.0069 0.8402 0.9323 0.0041 0.9014 0.9514 0.0056 0.8141 0.8870

QPM 0.0069 0.8403 0.9323 0.0041 0.9045 0.9543 0.0037 0.9167 0.9585

Medical

ZOA 0.0563 0.7502 0.8700 0.0862 0.7450 0.8531 0.1272 0.7082 0.8425

GQM 0.0532 0.7508 0.8708 0.0387 0.8577 0.9074 0.1171 0.7785 0.8489

QPM 0.0532 0.7513 0.8710 0.0388 0.8543 0.9043 0.0364 0.8632 0.9084

Table 5: MSE between absolute values of moments of base images and rotated images using PCET moments.

Image Method 10° 20° 30° 40° 50° 60° 70° 80° 90°

Lena

ZOA 0.0049 0.0059 0.0067 0.0072 0.0079 0.0071 0.0062 0.0050 0.0

GQM 0.0032 0.0047 0.0049 0.0057 0.0065 0.0055 0.0039 0.0028 0.0

QPM 0.0024 0.0028 0.0033 0.0039 0.0044 0.0036 0.0029 0.0025 0.0

Logo

ZOA 0.0041 0.0048 0.0055 0.0064 0.0064 0.0055 0.0049 0.0043 0.0

GQM 0.0027 0.0031 0.0037 0.0042 0.0042 0.0036 0.0031 0.0028 0.0

QPM 0.0026 0.0031 0.0036 0.0042 0.0041 0.0035 0.0030 0.0027 0.0

Medical

ZOA 0.0035 0.0040 0.0046 0.0052 0.0050 0.0045 0.0039 0.0034 0.0

GQM 0.0032 0.0038 0.0045 0.0047 0.0047 0.0042 0.0036 0.0030 0.0

QPM 0.0022 0.0026 0.0030 0.0036 0.0034 0.0029 0.0025 0.0022 0.0

Table 6: MSE of absolute PCET moments when the image is scaled to various sizes (first column). The second column represents the order
of the moments taken for comparison. Range of v in all the cases is between 0 and 20.

PCET Lena Logo Medical
Size u ZOA GQM QPM ZOA GQM QPM ZOA GQM QPM

48 × 48 0–20 0.0340 0.0148 0.0147 0.109 0.0159 0.0159 0.0157 0.0325 0.0326

80 × 80 0–20 0.0203 0.0070 0.0069 0.0601 0.0087 0.0086 0.0099 0.0157 0.0157

48 × 48 80–100 0.0656 0.0720 0.0005 0.2134 0.2151 0.0003 0.0241 0.0307 0.0001

80 × 80 80–100 0.0312 0.0696 0.0005 0.1011 0.2207 0.0004 0.0095 0.0152 0.0001
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moments. We observed that the PCT moments have a sim-
ilar MSE across the table compared to the corresponding
MSE of the PHFT moments, as Tables 1 and 7 are con-
structed using same positive moments. We observed that at
lower moments, the performance of all the three algorithms
are at par with each other across the three images. At lower
moments (0-20) of the first column of Table 7,the recon-
structed image using PCT looks better than the recon-
structed image using PHFM, as the MSE is smaller and
SSIM and FSIM are larger in the PCT. The largest change
is observed in the medical image, where the FSIM has
increased from 0.74 to 0.80. At order (0-60), the perfor-
mance of our algorithm is better than the other two algo-
rithms in all the three images, as MSE is the smallest and

FSIM is the largest in our method. The SSIM is also better
in our method, except in the medical image where the SSIM
is slightly lower than GQM. At moment order (0-100), our
method outperformed the other two methods. We noted
that the PCT moments with our method have the best SSIM
and FSIM when compared with PHFM and PCET. The
FSIM and SSIM in the medical image are 0.98 and 0.99,
respectively.

Table 8 shows the MSE for absolute moments between
base images and rotated images. We noted that the entries
corresponding to the MSE in Table 8 are larger than that
of the entries in Table 5. The entries corresponding to the
SSIM and FSIM in Table 8 are smaller than that of the
entries in Table 5. Therefore, the rotational invariance

Figure 6: Reconstruction of image using PCT with the three algorithms. The first row is reconstructed using the ZOA, the second row is
reconstructed using the GQM, and the third row is reconstructed using the QPM. The first two columns correspond to the reconstructed
Lena image using moments and repetitions 0-20 and 0-100, respectively. Similarly, the next two columns correspond to the
reconstructed Logo image using moments and repetitions 0-20 and 0-100, respectively. And the last two columns correspond to the
reconstructed medical image using moments and repetitions 0-20 and 0-100, respectively.

Table 7: MSE, SSIM, and FSIM between the base images and reconstructed images using PCT moments. In columns 3-5, the images are
reconstructed using orders 0-20 and repetition 0-20; in columns 6-8, the images are reconstructed using orders 0-60 and repetition 0-60;
and in columns 9-11, the images are reconstructed using orders 0-100 and repetition 0-100. The first and second columns represent the
images and algorithms, respectively, used for the reconstruction of the images.

PCT Maximum order 20 Maximum order 60 Maximum order 100
Image Method MSE SSIM FSIM MSE SSIM FSIM MSE SSIM FSIM

Lena

ZOA 0.0201 0.8348 0.9173 0.0403 0.9118 0.9264 0.0911 0.8444 0.8946

GQM 0.0202 0.8331 0.9175 0.0028 0.9807 0.988 0.0044 0.9816 0.9882

QPM 0.0202 0.8331 0.9175 0.0024 0.9822 0.9886 0.0012 0.9923 0.9923

Logo

ZOA 0.0045 0.8915 0.9565 0.0042 0.8644 0.9393 0.0061 0.8017 0.9168

GQM 0.0045 0.8933 0.9581 0.0008 0.9822 0.9906 0.0006 0.9872 0.9913

QPM 0.0045 0.8935 0.9582 0.0006 0.9851 0.9924 0.0002 0.9946 0.9966

Medical

ZOA 0.0205 0.8086 0.9356 0.0384 0.8287 0.9446 0.1537 0.7482 0.8886

GQM 0.0212 0.8051 0.9342 0.0047 0.9709 0.9858 0.0108 0.9668 0.9789

QPM 0.0212 0.8062 0.9344 0.004 0.9792 0.9881 0.0018 0.9886 0.9927
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capacity of the PCT is weaker than the PCET. However, the
MSE, SSIM, and FSIM of the PCT are comparable with the
statistics of the PHFM, and hence the rotational invariance
quality of the PCT is similar to the PHFM. As in the case
of PCET and PHFM, the difference in moments when
rotated at 90 ∘ is zero.

Table 9 shows MSE of the computed moments with two
sizes of the image, when the image is scaled to 0.75
(size = 48 × 48) and when yjr image is scaled to 1.25
(size = 80 × 80). We observed that at both the sizes and u
= 0 − 20, the MSE is largest among PCT, PCET, and PHFM,
except for the medical image and ZOA method. Therefore,
the scaling invariance at low moments is not as effective as
in PCET and PHFM. However, we could not draw such con-
clusions for higher moments. We also noted that the MSE of
the Lena and the logo is small in our algorithm as compared
with the other two methods, indicating that the PCT
moments with our method is supporting the scaling invari-
ance better than the other two methods. In the medical
image, the same conclusion can be drawn but at higher
moments.

4.4. PST. Figure 7 shows reconstruction of images using the
three algorithms. At first look, we note that in all the images,
there is a black round spot at the center, which appear more
prominent at lower moments. It is apparent from the figure
that at low maximum order (0-20) for reconstruction, the
three algorithms look similar with each other for all the three
images. However, at higher maximum order (0-100) for
reconstruction, the superiority of the GQM over the ZOA
and the superiority of the QPM over the other two algo-

rithms are apparent. At higher maximum moments, white
patches appear in the interior of the reconstructed image
in the first rows in all the three images. Visually, the distinc-
tion between GQM and QPM is not clear.

Table 10 shows the MSE, SSIM, and the FSIM between
the base images and the reconstructed images using PCT
moments. The statistical analysis of the table supports
Figure 7 with the fact that at lower moments, the recon-
structed images looks similar in all the three methods. At
moments with order 0-60, the superiority of the GQM and
QPM over the ZOA is observed in the table. At moments
with order 0-100, the image reconstructed using our method
has the smallest MSE except the logo image, SSIM is largest
in all the images, and except the medical image, FSIM is the
largest in our method.

Table 11 shows the MSE for absolute moments between
the base images and rotated images. At first sight, the table
shows that the MSE in GQM and QPM have values similar
across the table indicating that the two methods have similar
rotational invariance property in all the three images. Both
the algorithms have MSE smaller than the ZOA showing
that both the methods have superior rotational invariance
property than the ZOA method. As in the cases of other
three moments, the difference in moments when rotated at
90° is zero.

Table 12 shows MSE of the computed moments with two
sizes of the images, when the images are scaled to 0.75
(size = 48 × 48) and when the images are scaled to 1.25
(size = 80 × 80). We observed that at both the sizes and u
= 0 − 20, the MSE is similar in GQM and QPM across the
three images. However, u = 80 − 100, the MSE is smallest

Table 8: MSE between absolute values of moments of base images and rotated images using PCT moments.

Image Method 10° 20° 30° 40° 50° 60° 70° 80° 90°

Lena

ZOA 0.0177 0.0204 0.0227 0.0251 0.0267 0.0238 0.021 0.0178 0.0

GQM 0.0096 0.011 0.013 0.0154 0.0167 0.0137 0.0115 0.0097 0.0

QPM 0.0094 0.0108 0.0129 0.0153 0.0165 0.0135 0.0113 0.0095 0.0

Logo

ZOA 0.0153 0.0173 0.0202 0.0246 0.0253 0.0213 0.0185 0.0163 0.0

GQM 0.0105 0.0119 0.0146 0.0171 0.0173 0.0145 0.0122 0.0111 0.0

QPM 0.0103 0.0119 0.0145 0.0169 0.0173 0.0145 0.0122 0.0108 0.0

Medical

ZOA 0.0129 0.0149 0.0175 0.0194 0.0184 0.0165 0.0144 0.0129 0.0

GQM 0.0087 0.0102 0.0123 0.0142 0.0135 0.0115 0.01 0.0087 0.0

QPM 0.0086 0.0101 0.0122 0.0141 0.0134 0.0114 0.0098 0.0086 0.0

Table 9: MSE of absolute PCT moments when image is scaled to various sizes (first column). Second column represents the order of the
moments taken for comparison. Range of v in all the cases is between 0 and 20.

PCT Lena Logo Medical
Size u ZOA GQM QPM ZOA GQM QPM ZOA GQM QPM

48 × 48 0–20 0.122 0.1227 0.1182 0.4075 0.1812 0.1771 0.0587 0.4607 0.4621

80 × 80 0–20 0.0789 0.0452 0.0435 0.2477 0.0702 0.068 0.0386 0.203 0.2032

48 × 48 80–100 0.0552 0.0288 0.0142 0.1791 0.0923 0.0154 0.0224 0.0058 0.0035

80 × 80 80–100 0.0391 0.014 0.0129 0.1281 0.0168 0.0128 0.0156 0.004 0.0037
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Figure 7: Reconstruction of image using PST with the three algorithms. The first row is reconstructed using the ZOA, the second row is
reconstructed using the GQM, and the third row is reconstructed using the QPM. The first two columns correspond to the reconstructed
Lena image using moments and repetitions 0-20 and 0-100, respectively. Similarly, the next two columns correspond to the
reconstructed Logo image using moments and repetitions 0-20 and 0-100, respectively. And the last two columns correspond to the
reconstructed medical image using moments and repetitions 0-20 and 0-100, respectively.

Table 10: MSE, SSIM, and FSIM between the base images and reconstructed images using PST moments. In columns 3-5, the images are
reconstructed using orders 0-20 and repetition 0-20; in columns 6-8, the images are reconstructed using orders 0-60 and repetition 0-60; and
in columns 9-11, the images are reconstructed using orders 0-100 and repetition 0-100. The first and second columns represent the images
and algorithms, respectively, used for the reconstruction of the images.

PST Maximum order 20 Maximum order 60 Maximum order 100
Image Method MSE SSIM FSIM MSE SSIM FSIM MSE SSIM FSIM

Lena

ZOA 0.0449 0.7731 0.8728 0.0497 0.8911 0.9055 0.0918 0.8426 0.8887

GQM 0.045 0.7723 0.8726 0.0122 0.958 0.9645 0.0069 0.9792 0.9799

QPM 0.045 0.7723 0.8726 0.0122 0.958 0.9645 0.0068 0.9801 0.9801

Logo

ZOA 0.0228 0.768 0.8448 0.0116 0.8387 0.9098 0.0104 0.7866 0.8987

GQM 0.0228 0.7691 0.8454 0.0089 0.94 0.9409 0.0054 0.9569 0.9584

QPM 0.0228 0.7691 0.8454 0.0089 0.9402 0.9409 0.0056 0.9598 0.959

Medical

ZOA 0.0365 0.7599 0.9025 0.0444 0.8156 0.9354 0.1468 0.7484 0.8851

GQM 0.0373 0.7556 0.9009 0.0103 0.9496 0.9761 0.0056 0.9672 0.9865

QPM 0.0373 0.7556 0.9009 0.0103 0.9495 0.9759 0.0055 0.9701 0.9861

Table 11: MSE between absolute values of moments of base images and rotated images using PST moments.

Image Method 10° 20° 30° 40° 50° 60° 70° 80° 90°

Lena

ZOA 0.0166 0.0191 0.022 0.0246 0.0266 0.023 0.02 0.0165 0.0

GQM 0.0087 0.0098 0.012 0.0148 0.0164 0.0129 0.0106 0.0086 0.0

QPM 0.0087 0.0098 0.012 0.0148 0.0164 0.0129 0.0106 0.0086 0.0

Logo

ZOA 0.0143 0.0163 0.0184 0.0228 0.0227 0.0183 0.0168 0.0147 0.0

GQM 0.0094 0.0108 0.0127 0.0159 0.0158 0.0124 0.0106 0.0094 0.0

QPM 0.0093 0.0108 0.0127 0.0159 0.0158 0.0124 0.0106 0.0094 0.0

Medical

ZOA 0.0129 0.0156 0.018 0.0206 0.0198 0.0173 0.0147 0.0126 0.0

GQM 0.0087 0.0104 0.0123 0.015 0.0141 0.012 0.0101 0.0084 0.0

QPM 0.0087 0.0104 0.0123 0.015 0.0141 0.012 0.0101 0.0084 0.0
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in both the scaled images, indicating the superiority of our
method at higher moments across the three images at PST
moments as well.

5. Conclusion

Due to a vast area of applications of image moments, their
accurate computation is an important task. We have used
here an analytic integration method mixed with numerical
computations to compute moments at better accuracy com-
pared to recent techniques used in the literature. We have
used the technique for computing moments to a family of
moments PCET, PCT, and PCET, known as PCET moments
along with PHFT moments. We have compared their accu-
racy with simplified technique used in literature and an
improved Gaussian quadrature integration technique and
found that the method used in this paper is superior to both
of them. The PHT and PHFT moments closely follow rota-
tional invariance and scaling invariance. We found that the
accuracy as well as the rotation invariance capabilities of
the PCET and PHFT moments can be increased by using
the method discussed in this paper. In PST and PCT, the
rotation invariance statistics is similar to the other good
method GQM. However, given the better accuracy of
moments computed using QPM, the rotated image will have
better moments in terms of accuracy when compared with
the GQM. In many applications, accurate rotational invari-
ant moments are required. Such studies will benefit from
this method. For example, we showed the applicability of
the moments in image reconstruct using three test images.
One of the concerns for this method may be computational
complexity. We have used four cores available mostly in
modern laptops and computers to run the code in parallel
with four threads. We found that using these four threads,
the computational cost almost reduced four fold. In addi-
tion, the generation of the moments for various images does
not require time in multiple folds. Only once a template for
the moments needs to be computed. Once this template is
ready, the template can be applied on any number of images
to compute moments very quickly. In the future, research
can be done to reduce the complexity of the algorithm.

The approach used in this paper can be utilized in mul-
tiple applications. In addition to image reconstruction and
image watermarking, image moments can also be used in
classification problems. Here, the various orders of image
can be used to construct feature vector. The feature vector

can be used independently or can be used as addition to
other features of the image.
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