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The quality of service (QoS) in 5G/6G communication enormously depends upon the mobility and agility of the network
architecture. An increase in the possible uses of 5G vehicular network simultaneously expands the scope of the network’s
quality of service (QoS). To this end, a safety-critical real-time system has become one of the most demanding criteria for the
vehicular network. Although different mathematical and computation methods have traditionally been used to optimize the
allocation of resources, but the nonconvexity of optimization issues creates unique type of challenges. In recent years, machine
learning (ML) has emerged as a valuable tool for dealing with computational complexity that involves large amounts of data in
heterogeneous vehicular networks. By using optimization and cutting-edge machine learning techniques, this article gives
readers an insight about how 5G vehicular network resources can be allocated to reinforce network communication.
Furthermore, a new federated deep reinforcement learning- (FDRL-) based vehicle communication method is presented as a
new insight. Finally, a UAV-aided vehicular communication system based on FDRL-based UAVs is proposed as a novel

resource management technique to optimize 5G and 6G quality of services.

1. Introduction

Nowadays, it is imperative to develop a robust 5G new radio
(NR) system [1] because of exponential increase in cellular
mobile devices and automobiles. On one hand, people’s lives
are improved in a variety of ways due to wide range of appli-
cations, but on the other hand, the required quality of ser-
vices (QoS) also need to be ensured. In this regard,
optimization of resources like computing power, sum-rate
maximization, and delay minimization has been the focus
of optimization problem formulations [2, 3]. Meanwhile,
simple convex optimization also suffices as one of the basic
scenarios to fulfil these aims. It is observed that wireless
resource management issues tend to be nonconvex and poly-
nomial, thus creating unique type of challenges. Due to com-
plexity of mathematical calculations, it is difficult to find

algorithms that are effective or powerful enough to reach
suboptimal locations. Although the vehicular network
increases the range of new services and mobility options, still
producing a massive volume of data that is difficult to com-
prehend. To address these problems, new and more power-
ful methods of calculation are required. In addition, the
DRL algorithm may be used without sharing the vehicle’s
dataset via federated deep reinforcement learning, besides
eliminating the delay issues. As a flying BS in vehicle net-
works, drones are utilized to ensure that all vehicles are con-
tinually connected. An FL technique, specifically a UAV-
aided vehicular network proposed FDRL approach, to
improve connection and minimize latency is also being stud-
ied. Proposals have also been made for an FDRL-based vehi-
cle communication system. As a flying BS in-vehicle
network, drones are utilized to ensure that all vehicles are
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continually connected. All vehicle-to-vehicle, infrastructure
(V2I), and other interconnections like 5G heterogeneous
vehicle networks are included in this concept (V2X) as
shown in Figure 1.

Vehicle-to-vehicle (V2V) communication (SRC) chan-
nels are known as DSRCs (dedicated short-range communi-
cation). It is possible to expand the variety of services
available to VUEs by using macro-BSs and RSUs in conjunc-
tion with a cellular vehicular network. In space, satellite
communications and air-to-air communications commonly
take place in which exchange of data and information is car-
ried out. For UAVs to communicate with each other, they
must fly lower in the sky. Communicating with planes and
with the ground is the primary function of these unmanned
aerial vehicles (UAVs). For heterogeneous 5G and 6G vehi-
cle networks, the requirements for quality of service (QoS)
have increased. For ultrareliable and low-latency connectiv-
ity, 5G NR supports a wide variety of new QoS criteria. Data
sent and received by machines is referred to as massive
machine-type communications (mMTC) and mobile broad-
band (MBB). Similarly, in case of dependability, the URLLC
service requires an end-to-end (E2E) latency of one millisec-
ond (ms) and can support up to one million devices per
square metre (km?).

2. Historical Background

A machine learning technique known as “deep reinforce-
ment learning” (DRL) is used to train computers to learn,
in which reinforcement learning (RL) and deep learning
(DL) are part of it (DL).

2.1. Reinforcement Learning. Sequential decision-making
can be addressed by limiting the reward when dealing with
an unfamiliar environment. Because it does not require
many datasets to train, the method is well-suited for use in
5G and 6G vehicle networks, which have more dynamic
environments [4, 33]. In this regard, an agent is a person
or organisation that performs a task for compensation. Con-
sequently, the agent’s activities take place in the physical
world. Whenever an agent interacts with the environment,
it is presented with a representation of the environment’s
current state. In this way, a list of activities is selected by
an agent. After completing the task, the agent is given a
prize. Q-learning is a popular algorithm in the field of rein-
forcement learning. Kisacanin has highlighted the way to
calculate the reward value, which is Q, while the learner’s
rate is one, and the discount factor is also one [5]. The letter

«_»

r” denotes the award.

2.2. Extensive Education and Training. Deep learning (DL) is
based on artificial neural networks (ANNSs), which are also
known as “deep networks” (ANN); a completely linked deep
network is shown in Figure 2.

Neuron cells in the deeper layers of a densely coupled
network are known as LSTM cells in this paradigm. Deep
Q-learning makes use of DL networks (e.g., RNN models)
to estimate the Q value. Inputs to a DL network can include,
for example, the states’ S and Q values of all potential
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actions. Fully connected neural networks (FCNNs) are arti-
ficial neural networks whose architecture connects all nodes
(neurons) in one layer. CNNs are trained to find and extract
the best characteristics from photos. Their primary asset and
the classifier strength of a CNN’s last layers connect them
all. As CNNs integrate FC layers, these two topologies are
not competitors. Unconnected convolutional layers are sub-
stantially more specialised and efficient. Fully linked layers
have connections to all preceding layers, and each connec-
tion has its own weight. It is just feed forward neural net-
works. Fully connected layers are the network’s final layers.
The final pooling or convolutional layer output is flattened
and fed into the fully connected layer.

3. QoS Requirements in 5G and 6G
Mobile Networks

3.1. Service Excellence Requirements. A 5G vehicle network
large MMTC (machine-to-machine communications) is
one of the three categories that 5G is planned to include,
along with ultrareliable, low-latency connectivity (URLLC).
The V2X application scenario is defined in the new 5G
V2X service standard. Some of the more advanced uses
include vehicle platooning and remote driving. The 5G net-
work is built on top of the 4G network. In information-
centric networks, the notion of a packet data unit (PDU) ses-
sion was born.

Each PDU session has many Qualities of Service (QoS)
flows. The granularity of a PDU session’s QoS distinction
is described here. In most situations, QoS metrics are speci-
fied by a set of parameters like PER (percent) and GMB
(kps). PER stands for the percentage of packets that fail to
arrive at their destination. Vehicle platooning services must
meet E2E latency norms of 10ms and be 99.99% reliable.
Advanced driving services necessitate larger bandwidth and
reduced E2E latency, whereas ordinary driving services
necessitate higher dependability and a bit rate of up to one
gigabit per second. Figure 3 shows the model that is an oper-
ation on edge computing, and fog computing is also playing
a very important role in the process of calculation of fog in
the cars.

The physical infrastructure is identical to that used by
the MVNOs (mobile network providers) (MNO). Queue
length distributions are modelled using the extreme value
theory (EVT). A method known as the maximal likelihood
estimate (MLE) is employed to ascertain this information.
To reduce signalling overheads, a distributed FL is utilized.
Transmissions at an optimal power level remove the backlog
to improve vehicle-to-vehicle communication system that
lowers signalling costs while maintaining high reliability
and low latency [6]. The distribution of resources in area
of information (Aol) is discussed. If the volume of data
grows too large, it might create an issue of information
piracy. This research examines the trade-off between grow-
ing network knowledge and lowering Aol over a particular
threshold. To predict the future of Aol, a Gaussian process
regression (GPR) is applied. It is observed that unsupervised
learning performs well in the dynamic vehicular network,
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FIGURE 3: A computer model for calculating fog in a car.

which is a good thing, but the training data for ML models is
challenging to collect especially in dynamic situations.

A DRL approach represents optimal resource allocation,
which is used to provide safe and secure vehicle communica-
tion. These challenges are interwoven with vehicle network
spectrum and computation power allocation challenges.
Then, the optimum solution is found using a combination
of single-agent and multiagent RL. Low-latency communica-
tion might be problematic due to high latency and security

and privacy problems. Using a fog computing network helps
lower the latency of cloud computing networks for cars.
Fog computing is a subset of fog networking. There are
fog servers that can execute calculations and store resources
in place of cloud servers. It provides service to a wide range
of different and scattered devices. Fading computer networks
are seen in Figure 4. The other option is to connect RSUs
and BSs to fog computing servers through wired transmis-
sion. Fog servers are more convenient for end users than
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F1GURE 4: UAV-assisted vehicular communication model.

cloud servers (e.g., VUEs). When compared to cloud com-
puting, this speeds up the transmission of data. This strategy
reduces the time it takes to respond to end VUEs, especially
during busy periods [7].

3.2. Theories and Applications of Optimization. A combined
optimization examines user association, radio resource allo-
cation, and power consumption. It describes a cloud and fog
network cross-computing layer as a technique of assigning
computing resources to clouds and fog. It controls traffic sig-
nal and traffic management on a global scale. Contract-based
incentives and matching-based computation work assign-
ments [8] will also be implemented. Fog computing vehicle
networks may be established without orthogonal multiple
access, or NOMA, according to the proposed design [9,
10]. There is also the possibility of using RL to address the
issue of user mobility. Two methods used to optimize the
subchannel and power allocation: CRO and RCCRO (real-
coded chemical-reaction optimization). Researchers inte-
grate user association with resource allocation [11]. The
joint optimization problem is solved using a mixed-integer
nonlinear algorithm. The Perron-Frobenius theory helps
minimize transmission delays. The mentioned study also
incorporates resource allocation and distributed computa-
tion oftloading to allow vehicle networks [12]. Joint optimi-
zation is a nonconvex and NP-hard issue that might be
solved by outsourcing computing tasks to dispersed com-
puters and allocating resources accordingly (CCORAO). As
a result, both the communication time and the utility of
the system are improved [13]. The DNN method, on the
other hand, is limited to short-term predictions of traffic
flow. Having additional information about traffic patterns
helps the network system to improve distribution of
resources. The LSTM algorithm has been used to develop a
time-series traffic flow prediction technique [14]. The LSTM
may be used to depict both short-term and long-term traffic
flow projections. As a result, gathering of data with a pur-
pose to train the ML model is a huge undertaking. Because
missing of data makes it impossible for the machine learning
system to accurately anticipate traffic flow. As a result,

resources are being preallocated incorrectly. For both autos
and network infrastructure, radio resources are ineffective.

For traffic flow prediction with lacking data, an LSTM
approach is proposed in this study. The missing data is dealt
with using multiscale temporal smoothing. It uses an LSTM-
DNN algorithm [15], which predicts traffic flow and parking
conditions. The data on traffic has been used to allocate
resources for vehicular fog communication throughout the
short- and long-term future (VFC). To allocate spectrum
across automobiles, RSUs analyse the forecasted data and
utilize it as a guide. Data transmission and computation
times are reduced by this suggestion. As stated in the study,
the RL-based radio resource allocation algorithm proposed
in the study takes the network’s future state into consider-
ation as specified in the study [16]. This choice is also influ-
enced by future network circumstances. The agent’s
compensation is maximized based on predicted outcomes.
In terms of throughput, the results are better than the vehicle
network. Packet loss has also been reduced to a minimum.
As previously stated, learning methods can be used for both
supervised and unsupervised learning. Various ways can be
used to reduce latency. Obtaining training data in a diverse
vehicular network is quite tough. Because of this, DRL is
being used to deal with this problem. An algorithm called
DRL has been developed to address this issue.

The optional QoS level measurement equals the number
of mapped 5QIs. This statistic indicates the proportion of
unconstrained DL data volume for UEs in the cell, i.e., when
all data can be transported in one slot and no UE throughput
sample can be determined. To calculate the UE data volume,
multiply the number of primary carriers by the number of
supplementary carriers. The measurement can be subdi-
vided by QoS level. Wireless transmission bandwidth and
predicted vehicle power contribution are explored in depth
in the work [17]. Markov decision process (MDP) models
demonstrate the incorporation of processing and storage
capacity in a comparable situation [18]. Perception-
reaction time refers to the length of time it takes for a driver
to react in a safe manner. This research examines the
integration of fog resource virtualization (FRV) with
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information-centric networking (ICN). Deep neural networks
are employed in combination with an actor-critic (A3C)
(DNN) to maximize the utilization of computing resources.

Similarly, fog node is helpful for mobile customers, it
supports different operations in varied senarios [19]. In the
current world, a car’s mobility is a significant feature. Choos-
ing the optimal fog node for clients is an important consid-
eration. This study offers an effective allocation of resources
to cars so that they can better serve their customers. Once
the problem is solved, the nondominated sorting genetic
algorithm is applied. MDP was first proposed as a tool for
making resource decisions [20]. In order to better understand
fog computing, researchers are looking at SDV-F (software-
defined vehicular-based fog computing). Consequently, a
method known as DRL is used to shorten the amount of time
it takes for fog servers to accomplish operations. BSs employ a
wide range of mission-oriented strategies. Each BS has its own
edge computing server. The vehicle network may benefit from
edge computing since it is both long-term and cost-effective.
To maximize fog layer processing capacity, this is done. Con-
sequently, according to the article, a method known as DRL is
used to shorten the amount of time it takes for fog servers to
accomplish operations. BSs employ a wide range of mission-
oriented strategies. Each BS has its own edge computing
server. The vehicle network may benefit from edge computing
since it is both long-term and cost-eftective.

3.3. Resource Allocation. An adaptive and online resource
allocation has been created to improve the user experience
[21]. Communication loss can be reduced in a vehicular
edge computing network. An examination of radio and
computer resources has been initiated by the discovery of
unknown network statuses. A mobility-aware greedy algo-
rithm has also been studied [22].

These methods are effective in reducing latency and
maximizing energy efficiency. Nonconvex and NP-hard
optimization problems, on the other hand, are extremely
challenging to solve [23]. Then, it is a real challenge to deci-
pher them. This challenge was solved using a machine learn-
ing method. In this way, the complexity of a nonlocal
computer system is minimized. If the QoS criterion in a
vehicle network is not met, a distributed user association
algorithm is being evaluated. By allocating radio resources
intelligently, the network load may be balanced while latency
is decreased. Furthermore, two game theories [24] were used
to test the load balancing scheme’s effectiveness. Within the
limits of maximum allowable delays, the idea of reducing the
processing time of vehicles is examined. An SDN-based task
offloading system for FiWi (fiber-wireless interconnect)
approaches is then developed. As a result, network perfor-
mance is improved while latency is kept to a minimum.
The radio resource management challenge for the 5G vehicle
network is developed with an age of information (Aol)
awareness [25]. An LSTM and a DRL are used to conduct
online decentralised testing at the VUE pairings. It gives
RSUs the ability to allocate bandwidth and make decisions
about packet scheduling. Even though just a portion of the
network’s state can be viewed, this method nonetheless man-
ages to maximize the efficient use of available resources

without requiring any prior knowledge of the network’s
dynamics. The DNN model incorporates a convolutional
neural network (CNN) [26]. A rough approximation of the
offloading scheduling strategy and value function is made
using this technique. A DRL was then added.

DRLOSM’s goal is to reduce energy consumption while
also maximizing the number of retransmitted activities and
costs. Researchers are examining the ADMM, or alternate-
direction method of multipliers. The algorithm is dispersed.
Content caching and computation are made possible by
information-centric heterogeneous network infrastructure.
Users with diverse virtual services can share communication,
processing, and caching resources on the intended network
system. Also, in the work of [27], mobility-based approach
VEC servers are used to do conscious task offloading.

Entry points are being investigated. But, when a server is
overloaded, a second server can be assigned the overloading
duty. In this manner, the processing and computing delays
are decreased, while the vehicle’s performance is improved.
However, due to difficulties in obtaining the training data
set, the DRL technique has been adopted.

Figure 5 shows the comparison of centralised and feder-
ated learning, in which a server-side machine learning
method is employed in a distributed model. Data from
VUEs is first processed and analysed by servers. It is found
that machine learning methods are used at every level in dis-
tributed federated systems. VUEs also use server and ML
techniques, where the only information sent to the server
is information specific to the VUEs’ local ML algorithms.
As a result, privacy may be assured. A distributed machine
learning model reduces latency and improves accuracy. On
the other hand, FL is a distributed machine learning
approach in which a shared model is trained by several vehi-
cles. Instead of transmitting all the raw data to the central
server, the vehicles just communicate the updated parame-
ters of the common model to the central server using their
own local data. This approach was used to reduce congestion
in the transportation sector, where UAVs are being deployed
[28]. In order to acquire information about their surround-
ings, imaginary automobiles are equipped with cameras
and GPS systems. RSUs [29] receive the sensing data from
the vehicles and relay it to the servers. The vehicle network
can survive jamming attempts due to a hill-climbing UAV
relay device. In this way, the utility of vehicle communication
is increased by lowering the bit error rate. Moreover, energy-
conscious dynamic power optimization for each vehicle’s
energy usage has been developed [30], in which the optimal
dynamic power is found by examining vehicle collaboration
and noncooperation while maintaining the privacy of the
vehicle’s information based on FL techniques [31, 32].

4. Methodology

Despite a lack of resources, the usage of multiaccess edge
computing and software-based network services is devel-
oped to increase the diversity of traffic patterns using this
strategy. 5G and 6G mobile network QoS standards are
diverse and need further research to ensure that they can
be met.
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F1GURE 5: Improved federated deep reinforcement learning model.

1. The main server, at the start of the decision period ¢ =0, set the global DRL model Qf to a random value of f =0
2. Vehicles owned and operated by the local community, local DRL models Q and N should be initialised to a value of n = 0 for all of

the models

t >0 do while

5. for each car n in parallel, perform the following:
Get ft from the controller.

In this case, let ¢ > ft

Broadcast weights ft + 1" averages
9. Until then, we are out of time

3. Obtain a copy of f0 from the central server and set # to a value between 0 and 1
4. Initiate D’s replay memory, in each decision period ¢ =0 to T, perform the following:
the FLZ function calculation, vehicles owned and operated by the public:

6. On the present service requests Qnt, train the DRL agent locally using nnt
7. upload the weights that have been trained to the central server
8. Receive all weight updates, not just the most recent onesexecute federated averaging for this step.

ArcoriTeM 1: Improved FDRL method.

4.1.  Challenges, Unanswered Questions, and Future
Directions. SDN (switch function virtualization) and net-
work function virtualization (NFV) are two terms used
interchangeably. In 5G NR, there is a large-scale and diverse
vehicle ad hoc network. Because of these features, ML algo-
rithms cannot be used successfully. Network slicing and
software-defined networking (SDN) have lately been pro-
posed as solutions for the 5G automobile network. All kinds
of various QoS services and heterogeneous networks are not
an issue for this programme. With technologies such as SDN
and NFV, it is possible to meet the QoS requirements of 5G
NR, which depicts a multiaccess edge computing solution
that addresses the demand for processing capacity, resource
allocation, and storage capacity. A wide range of quality of
service (QoS) demands may be met by the 5G vehicle net-
work [31]. The 6G vehicle network features ultralow latency
and high data transfer speeds, as well.

4.1.1. Unmanned Aerial Vehicle Assistive Vehicle Cargo
Network. In today’s more complex automotive environment
and computing requirements, mathematical optimization
methods have been around for a long time are not up to
the task. For machine learning models, obtaining training
data is a huge challenge because the vehicular network is
always evolving. In the absence of data, a DRL approach

and training are required. The use of a DRL algorithm in
the local training models of the end vehicles of 5G and 6G
automotive networks is regarded as a potential option for
reducing latency and enhancing privacy needs.

4.1.2. Caching and FL Communication Technique. End-user
automobiles benefit from reduced computation and process-
ing time due to MEC servers that use relevant FL techniques.
BSs and RSUs have been discussed. MEC servers and even-
tually automobiles use DRL algorithms that have been
trained to perform a specific task. Communication, process-
ing, and caching strategies of the FL model must be thor-
oughly examined to increase network efficiency while
preserving the heterogeneous QoS standards of the FL
model.

The third aspect is the ability to share information with
others. Cars, RSUs, BSs, drones, edge servers, and so on
are all part of the vehicular network. Using the FL method-
ology, an effective resource allocation method for these het-
erogeneous devices must be investigated for 5G and 6G
vehicle networks. One of the most important characteristics
of the vehicle network is its high mobility. The activities of
unmanned aerial vehicles (UAVs) have a significant impact
on their effectiveness. By using the FDRL protocol, it can
be possible to circumvent the problem of UAV servers
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TaBLE 1: Optimality performance of Fdrl model.

# of clusters Bound 1 Bound 2
8=p o=p/2 o=p 8=p/2

11 2.01 2.77 2.01 2.97
12 2.02 2.83 2.02 2.35
13 2.02 2.85 2.02 2.54
14 2.04 2.94 2.04 2.42
15 2.03 2.86 2.03 2.65
16 2.04 2.87 2.04 2.78
17 2.03 2.86 2.03 2.69
18 2.03 2.88 2.03 2.85
19 2.03 2.76 2.03 2.67
20 2.05 2.86 2.05 2.63
21 2.04 2.76 2.04 2.69
22 2.03 2.87 2.03 2.74

requiring different kind of data from other vehicles having
limited resources. Self-learning and reporting back to central
servers, such as MEC servers that are placed on UAVs, is
possible while utilizing this technology. By allocating radio
frequencies, the UAVs, as flying BSs, are obligated to give
VUEs the bandwidth they need. As a result, the employment
of unmanned aerial vehicles (UAVs) is essential. A method
that concentrates on the core area may cause latency. With
an FDRL strategy, VUEs will always have access to enough
spectrum resources. To construct an accurate prediction
model, UAVs can collaborate with each other and use data
from previous spectrum allocations.

Table 1 indicates that FDRL algorithm performs better
than theoretically possible lower constraints on optimality.
Two distinct limits can be employed, in which it is assumed
that each UFB can support a set of MTC devices with a total
utilization of at most 1, while the minimum bandwidth
required for allocation of the MTC devices is defined as
the inverse of its period; i.e., p and the inverse of its jitter p
/2, respectively, to ensure that the MTC devices are allocated
in an equitable manner. There are two effective bounds for
implicit deadlines and synchronous device situations. These
theoretical limitations represent lower bounds on the opti-
mality of the associated situations; therefore, it is important
to keep this in mind. The results of simulations are shown
for a range of cluster sizes, from 11 to 22. The proposed
model represents the iterative convex optimization tech-
nique with low complexity, and maximum energy efficiency
algorithm shows the strategy which may maximum energy
efficiency [26]. The energy efficiency is defined as the ratio
of total sum rate to overall utilized power of all D2D
connections.

Table 2 shows the correlation between the objective
function value and the bit rate requirement. An increase in
D2D link bit rate simultaneously increases the objective
function values from 14.1227 to 33.2101. For federated deep
reinforcement learning model, data ratios vary from 48.25 to
51.68, and admission gain increases 11.25 to 36.35 that
shows the good performance. Unmanned aerial vehicle
capacity UAV trajectory planning must be appropriately

TaBLE 2: Performance in terms of bit rate requirement, admission
gain, and objective function of the proposed FDRL model.

Bit  Admission  Data Federated deep reinforcement

rate gain ratio (%) learning objective function
4 11.25 50.63 14.1227
4.25 15.87 49.25 16.6546
5 16.58 49.47 18.1553
5.25 36.25 48.25 20.6424
6 28.25 51.23 21.5115
6.25 11.69 52.05 24.0631
7 25.35 51.68 25.4336
7.25 22.87 49.98 28.0442
8 13.68 50.61 30.5231
8.25 12.28 49.36 31.3984
9 14.68 50.27 33.2101

established due to the battery’s limited computing, storage,
processing, and energy capabilities. The mobility and energy
of UAVs must be shared in order to maximize resources for
all VUEs in air-to-air communication (i.e., UAV-to-UAV
communication). Because of privacy issues, a decentralised
learning technique like FDRL may be used to learn about
local energy consumption and estimate future demand.
Using this method, UAVs may choose their own path.

4.1.3. Assistive UAV-Based Vehicular Network. MEC servers
use macro-BSs, RSUs, and UAVs to reduce the amount of
time it takes to do computation and processing tasks. There
are five specific conditions that must be met when using a
distributed FDRL for vehicular communication. For a vari-
ety of technological reasons, edge devices (e.g., VUEs) can-
not send data to the cloud. Another aspect is that the
training model must be fast enough, since the global model
and its local models must often swap parameters (e.g., in
VUEs). Because of this, it is imperative that all the models
can communicate with each other in a timely manner. Data
from edge devices must be labelled fast and accurate on the
same machines. Similarly, to train their local data models
efficiently, edge devices must have enough processing power
and storage capacity to handle the workload.

5. Conclusions

The research is aimed at examining the most advanced tech-
niques in traditional optimization theory, machine learning,
and specifically DRL-based resource management. A wide
variety of quality of service (QoS) criteria are examined in
the cloud, fog, and edge layers. An FL technique, specifically
a UAV-aided vehicular network proposed FDRL approach,
is examined to improve connection and minimize latency.
Proposals have also been made for an FDRL-based vehicle
communication system. It also explains 5G’s existing diffi-
culties and possible future paths in vehicle networks. The
initial step is to examine a multiaccess edge computing
method to generate ideas for more study. This study pro-
vides new opportunities for future researchers to work on



FDRL-based UAV-assisted 5G and 6G vehicular communi-
cation issues. Consequently, 5G and 6G vehicle networks
can meet a wide range of quality of service (QoS) standards.
Open study areas include an FDRL technique-based vehicu-
lar network, an FDRL technique-based unmanned aerial
vehicle (UAV), and an FDRL technique-based drone. By
using FDRL-based UAVs, any possible delay or reduction
can be handled with the help of UAV-based vehicular com-
munication using the FDRL technique. Furthermore, ML
algorithms can manage all the communication challenges
that were previously difficult to handle. As future work, for
6G networks, integrated aerial-terrestrial communication
can be expanded for channel modeling and routing. In order
to improve deployment tactics and UAV payloads, addi-
tional information is needed on the signal transmission
between the user on the ground and the flying base station.
There presently exist a multitude of channel models that
handle wireless propagation in an urban context. No chan-
nel models consider UAV-to-vehicle connectivity which is
crucial for UAV-enabled ITS. Moreover, the variants acces-
sible include restricted frequency range, fixed base nonmo-
bile end-users, or stations. A model that corrects these
flaws can lead to a better grasp of the fading effects between
buildings and properly plan drone deployment. Also, mobile
BSs and mobile vehicles can help determine the ideal drone
load-out. Lastly, the link multihop infrastructure loss may be
calculated more precisely. In this way, DRL and FDTL tech-
niques are helpful to meet a wide range of quality of service
(QoS) standards involving 5G and 6G vehicle networks.
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